
A First Attempt on Global Evolutionary Undersampling for
Imbalanced Big Data

I. Triguero, M. Galar, H. Bustince, F. Herrera

Abstract— The design of efficient big data learning models
has become a common need in a great number of applications.
The massive amounts of available data may hinder the use of
traditional data mining techniques, especially when evolution-
ary algorithms are involved as a key step. Existing solutions
typically follow a divide-and-conquer approach in which the
data is split into several chunks that are addressed individually.
Next, the partial knowledge acquired from every slice of data
is aggregated in multiple ways to solve the entire problem.
However, these approaches are missing a global view of the
data as a whole, which may result in less accurate models.

In this work we carry out a first attempt on the design
of a global evolutionary undersampling model for imbalanced
classification problems. These are characterised by having a
highly skewed distribution of classes in which evolutionary
models are being used to balance it by selecting only the most
relevant data. Using Apache Spark as big data technology,
we have introduced a number of variations to the well-known
CHC algorithm to work very large chromosomes and reduce
the costs associated to fitness evaluation. We discuss some
preliminary results, showing the great potential of this new
kind of evolutionary big data model.

I. INTRODUCTION

Learning from big datasets is a great challenge for most
machine learning techniques. Although they are supposed to
work better when there is an abundance of data to leverage
their outcome, in practice, they cannot be really applied
due to memory and time limitations [1]. New parallelisation
technologies, however, provide us powerful tools to handle
large amounts in the form of distributed datasets [2]. Thus,
the problem now consists of figuring out the most suitable
way of using such technology to come up with effective
learning algorithms.

Hadoop [3] and the MapReduce paradigm [4] served as the
first alternatives to deal with data-intensive kind of applica-
tions. The key point lied in the use of a distributed file system
that allowed us to parallelise multiple tasks across a cluster
of compting nodes in a transparent and fault-tolerant manner
[5]. Soon enough, the machine learning community found
multiple limitations [6] to deploy efficiently algorithms that
share data across multiple stages (e.g. iterative algorithms).

This work was supported by the Research Projects TIN2014-57251-P and
TIN2016-77356-P

I. Triguero is with the School of Computer Science, University of
Nottingham, United Kingdom. E-mail: isaac.triguero@nottingham.ac.uk

F. Herrera is with the Department of Computer Science and Artificial
Intelligence of the University of Granada, CITIC-UGR, Granada, Spain,
18071. E-mail: herrera@decsai.ugr.es

M. Galar and H. Bustince are with the Department of Automatics and
Computation, Universidad Pública de Navarra, Campus Arrosadı́a s/n, 31006
Pamplona, Spain. E-mails: {mikel.galar, bustince}@unavarra.es

New platforms such as Spark [2] or Flink [7] build upon
the MapReduce paradigm, providing us a new kind of high
throughput in-memory distributed datasets that easily allow
us to repeatedly carry out operations on the data.

Multiple MapReduce-like strategies have been developed
to adapt traditional machine learning and data mining tech-
niques to the new big data scenario. Most of these methods
are approximations of the original algorithms, and just a
few of them are exact replicas of the sequential version.
Approximate models typically divide the data into smaller
subsets in which the original algorithm is applied. Then, the
different outcomes from each part are somehow combined
[8]. Global or exact approaches aim to replicate the behaviour
of the sequential version by letting it see the data as a
whole (and not as a combination of smaller parts). As an
example, we can find the Decision Trees implemented in
Apache Spark [2] or the big data version of the k-nearest
neighbours proposed in [9]. The great advantage of this last
approach is that they may become more robust and precise,
but they tend to be slower.

Even when there are lots amounts of data, we may also
run into the situation where there is scarcity of a particular
class of samples. Focusing on two-class problems, this issue
is known as the class imbalance problem [10], in which
positive data samples (usually the class of interest) are highly
outnumbered by negative ones [11]. It brings along a series of
difficulties such as overlapping, small sample size, or small
disjuncts [12]. Several approaches have been designed to
tackle this problem, which can be divided into three main
groups: data sampling, algorithmic modifications and cost-
sensitive solutions. These models have been also successfully
combined with ensemble learning algorithms [13].

Evolutionary undersampling (EUS) [14] belongs to the
data sampling family of methods, where the main objective
is to balance the distribution of classes of the original dataset
by removing examples of the negative class. This removal is
carefully guided by a genetic-based algorithm that aims to
increase the performance on the two classes of the problem.
However, dealing with a large number of negative examples
would lead to a high chromosome size, resulting in a huge
search space that limits the straightforward application of
EUS on big data. In previous works [15], [16], we devised
approximate approaches, based on Hadoop and Spark tech-
nologies, that split the original problem into small pieces
in which EUS could be applied concurrently. Despise their
performance, these models lack of a global view of the entire
dataset.

The main goal of this work is to investigate whether a



global EUS is feasible with the current technology, in terms
of runtime and in comparison to approximate models. As
new technologies, such as Spark, allow us to take multiple
iterations over the same data without a heavy penalty, we
can now devise a parallel EUS that basically distributes time
consuming and high memory demanding operations across a
number of worker processes, while the main procedure would
be running in the driver process. As evolutionary algorithm,
we focus on the widely-used CHC evolutionary algorithm
[17], which is modified to create a more compact repre-
sentation of the chromosomes, and make use of distributed
datasets when evaluating the current population.

The paper is structured as follows. Section II provides
background information about evolutionary undersampling
for imbalanced big data classification. Section III discusses
the decisions made to take the CHC model to the big data
context with Apache Spark. Section IV analyses the empiri-
cal results. Finally, Section V summarises the conclusions.

II. BACKGROUND

This section briefly describes the big data technologies
used in this paper (Section II-A) as well as the current state-
of-the-art on imbalanced big data classification (Section II-
B).

A. Big Data Technologies

The MapReduce programming paradigm [4] is a scalable
data processing tool designed by Google in 2003. It was
designed to be part of the most powerful search-engine on
the Internet, but it rapidly became one of the most effective
techniques for general-purpose data intensive applications.

Apache Hadoop [18] is the most popular open-source
implementation of MapReduce. It is widely used because of
its performance, open source nature, installation facilities and
its distributed file system (Hadoop Distributed File System,
HDFS). Despite its popularity, Hadoop and MapReduce
cannot deal with online or iterative computing, producing
significant computational costs to reuse the data.

Apache Spark is a novel solution large-scale data process-
ing to solve the drawbacks of Hadoop. Spark is part of the
Hadoop Ecosystem and it uses the HDFS. This framework
proposes a set of in-memory primitives, beyond the stan-
dard MapReduce, aiming at processing data more rapidly
on distributed environments. Spark is based on Resilient
Distributed Datasets (RDDs), a special type of data structure
used to parallelize the computations in a transparent way.
These parallel structures let us persist and reuse results
efficiently, since they are cached in memory. Moreover,
they also let us manage the partitioning to optimize data
placement, and manipulate data using transparent primitives.
Very recently, Spark is moving towards even more eficient
APIs such as DataFrame and Datasets.

B. Imbalanced classification in the Big Data context

In a binary classification scenario a dataset is said to be
imbalanced whenever the number of instances of one class
outnumbers that of the other. In this situation, performance

measures like the accuracy rate (percentage of correctly
classified examples) are no longer valid to measure the
quality of the models obtained, since the performance over
both classes is not equally weighted. Two commonly used
alternatives are the Area Under the ROC Curve (AUC) and
the g-mean.

The AUC (Area Under the ROC-Curve) [19] provides a
scalar value measuring how well a classifier trades off its
true positive (TPrate) and false positive rates (FPrate). A
popular approximation [10] of this measure is given by

AUC =
1 + TPrate−FPrate

2
. (1)

Similarly, the g-mean is the acronym for the geometric
mean. In this case, the balance between the true positive
rates and true negative rates (TNrate) of the classifier is
measured, that is, how well the classifier is able to recognize
both classes at the same time:

g-mean =
√
TPrate ·TNrate (2)

These two measures have been extensively and interchange-
ably used in various experimental studies of imbalanced
classification [10], [14].

Any classification problem can be affected by the pres-
ence of class imbalance, and big data problems are not an
exception. Even though the quantity of data is much bigger,
the imbalance ratio (the number of majority class examples
divided by the number of negative class examples) can still
be to high so as to extract meaningful models. One main
drawback of distributing large imbalanced datasets across
different nodes is that the sample size of the minority class
in each node will become lower. As a consequence, when
a local model is learned using only a subset of the training
set, the presence of too little minority class examples can
end hindering the classifier learning phase as it is one of the
main sources of problems in imbalanced domains [10].

EUS is an interesting alternative to deal with big data
imbalanced problems as it reduces the dataset size, on the
contrary to oversampling methods that generate even more
data [20]. Hence, the corresponding model can be built faster.
Another way of reducing the dataset size is by means of ran-
dom undersampling (RUS). However, its main disadvantage
is that it could discard important data from the majority class
due to the random nature behind its functioning procedure,
whereas EUS guides the balancing of the dataset to preserve
or even improve the final performance.

Several data level algorithms were tested in [20] to deal
with imbalanced big data classification problems (random
over/undersampling and SMOTE). Afterwards, a Random
Forest classifier [21] was trained. A different approach was
taken in [22] where a fuzzy rule-based classification system
was developed to address the class imbalance problem in the
big data context. In order to do so, the authors proposed
a cost-sensitive approach developed over the MapReduce
adaptation of the fuzzy classifier.

With respect to EUS in big data applications, a preliminary
work was presented in [15]. The authors proposed a two-



Fig. 1: EUS local for extremely imbalanced datasets [16]

level parallelization model where MapReduce was used to
divide the problem into smaller subproblems over which EUS
was applied and a windowing scheme was used to reduce
the evaluation of each chromosome in each node. However,
the small-sample size problem was not addressed in this
first approach due to the limitations of Hadoop framework.
Nevertheless, this was the main focus of their subsequent
work [16], where the authors took advantage of the primitives
provided by Spark to properly deal with the small-sample
size problem. Spark allows one to broadcast a set of data
to all the nodes. This useful property was used to broadcast
all the minority class examples to all the nodes so that EUS
and the corresponding decision tree could make use of the
whole minority class information. In this work, our aim is
to go one step further using all the potential offered by
Spark to develop a first attempt of a global EUS model.
This way, we will be able not only to get rid of the small-
sample size problem, but also to obtain a reduced set which
is selected considering the dataset as a whole, which has not
been developed before.

III. A GLOBAL EVOLUTIONARY UNDERSAMPLING FOR
IMBALANCED BIG DATA WITH APACHE SPARK

In this section we describe the proposed global EUS for
imbalanced big datasets based on Apache Spark. We discuss
the necessary changes made to the original EUS proposal to
extend it to the big data context.

EUS [14] was devised as a new kind of evolutionary
instance selection algorithm [23] that accounts for the class
imbalance problem. The focus of EUS is to balance the
dataset in such a way that the performance is maximised
in both classes of the problem.

Following the general procedure of an evolutionary al-
gorithm, it starts off with a population of NP candidate
solutions. In the original EUS, a binary chromosome is used
to encode every possible solution. In this chromosome, each
bit represents the presence (1) or absence (0) of an instance
in the training set. To reduce the search space, only majority
class instances are considered for removal, including always
all the minority class instances in the final dataset.

Having a set of M majority class instances, the first issue
we encounter when dealing with big datasets (i.e. M is very
big) is that this chromosome will be extremely big as it is
representing every single majority class instance. To alleviate
this situation, we change the codification used in EUS for a
sparse chromosome that only contains the indexes of those
majority instances that are being selected. This is a very
tailored modification that works well for EUS because in the
end its main goal is to balance both classes. Therefore, we
assume here that chromosomes are going to select a very
few number of majority instances (similar to the number of
minority class examples). Otherwise, this codification would
probably take even more space than the binary representation.
Figure 2 illustrates a comparison between the standard binary
representation and the proposed sparse representation.

Fig. 2: Differences in representation for EUS. In this exam-
ple, the chromosome is representing the selection of three
majority class instances with indexes 0, 3 and 8, respectively.

The main implication of this decision is that we will
want to keep chromosomes representing a reduced number of
majority class instances from the beginning. This will cause
a few variations on the following steps of the evolutionary
process.

The initialisation procedure will be the first mechanism
affected by this. Originally, EUS randomly initialises all the
chromosomes of the population, so that, the number of 1s and
0s tend to be similar in the initial population. For imbalanced
classification, it means that the resulting preprocessed dataset
would probably have an imbalanced distribution of classes.
The original EUS corrects this issue throughout the evolution,
by having a fitness function that favors chromosomes that
produce a balanced dataset (so, typically a few number of



selected majority instances). To keep the chromosome size
to a minimum, in our implementation, we randomly take a set
of indexes in the range [0,M -1] of size equal to the number
of minority class examples.

In order to assess and rank the quality of the chromo-
somes, the original EUS uses a fitness function that is based
on how well the current chromosome balances the class
distributions and an expected performance of the selected
instances. Specifically, the performance is computed using
the nearest neighbour algorithm to classify the examples of
the training set with the selected instances represented in the
chromosome. As performance measure, the g-mean is applied
(defined in Eq. (2)).

The complete fitness function looks like this:

fitnessEUS =

{
g-mean−

∣∣∣1− n+

N−

∣∣∣ · P if N− > 0

g-mean−P if N− = 0,
(3)

where n+ is the number of positive instances, N− is the
number of selected negative instances and P is a penalization
factor that focuses on the balance between both classes. P
is typically set to 0.2 as recommended by the authors, since
it provides a good trade-off between both objectives.

As we stated before, the new codification obliges us to
keep the chromosome size to a minimum from the beginning
of the evolution. This means that we can get rid of the
balancing component of the fitness function. Therefore, the
fitness function will basically end up being the g-mean
obtained in the training set.

Definitely, the fitness function will be the most costly
operation throughout the whole evolutionary process. Thus,
this step is going to be parallelised using Apache Spark.
Subsection III-A discusses the details.

So far, the discussion above is valid for any genetic
algorithm. As a particular search algorithm, we use the CHC
evolutionary algorithm [17] that offers an excellent balance
between exploration and exploitation. CHC is an elitist
genetic algorithm making use of the heterogeneous uniform
cross-over (HUX) for the combination of two chromosomes.
It also uses an incest prevention mechanism and when the
evolution does not progress, it reinitialises the population.
The changes made in the representation of the chromosome
slightly affect some of the operators of CHC.
• The HUX operator aims at producing offspring that

are maximally different from the parents, preventing
incest. This is achieved by impeding that two parents
that are too similar in terms of Hamming distance
(over the original binary chromosome) are crossed. A
crossover is then only permitted between randomly
paired chromosomes with a Hamming distance greater
than a given threshold d. When allowed, the uniform
crossover mechanism will exchange at random fifty
percent of the differing bits of the parents’ chromosomes
to make sure that offspring are significantly different
from both parents.
Within the sparse representation of the chromosome,
we can simply extend the application of the Hamming

distance to our representation. Indexes not present in
both chromosomes will have a Hamming distance of 0.
Therefore, the Hamming distance computation comes
down to compare how many elements in both chro-
mosomes are different from each other. For example,
with a chromosome X = {4, 6, 8, 9} and other Y =
{4, 5, 7, 9}, there is a Hamming distance of 4. The
crossover operator will keep common elements in both
parents and it will take 50% of the elements from X
that are not in Y (e.g. index 6), and vice-versa (e.g.
index 7), to create a new chromosome Z = {4, 6, 7, 9}.

• When the Hamming distance between any selected
parents does not exceed the distance threshold d (i.e.
not offspring are generated), the population is partially
reinitialised. The new population is created, using the
best chromosome obtained so far as a seed. A per-
centage of the elements in the best chromosome (e.g.
35%) are randomly picked up, and their values are
changed (from 0 to 1, and from 1 to 0, in the binary
representation) according to a given parameter. The
rest of the components of chromosomes are selected
randomly.
With the sparse chromosome, we cannot get exactly
the same implementation. However, we can achieve a
very close implementation in which we randomly take
elements from the best-so-far chromosome. When a
random number in the range [0,1] is less than a certain
probability (e.g. 0.35), we take an element from the best
chromosome, otherwise, we generate a random index in
the range [0,M ]. In this way, we will end up having
the same number of elements as the best chromosome.
This point is important due to the fact that we are no
longer considering the balancing of the dataset in the
fitness function and hence, this phase will maintain the
number of instances selected.

The parameter d is usually initialised to d = L/4,
where L is the length of the chromosome. However, in our
implementation the length of the chromosome is variable
due to the indexed codification and L should be equal to
the number of negative instance. The problem is that the
probability of one index to be entered in the chromosome is
too small (due to the imbalance ratio) and hence, we aim at
obtaining a chromosome with the size of that of the minority
class. As a consequence, the Hamming distance divided by
two (incest prevention) will never be as big as L/4. In order
to model the original behaviour of this parameter, we need
to set it such that d is equal to half the number of indexes
in the chromosomes (the number of minority class instances
divided by two). This models the same behaviour because
in the original case the number of ones in a chromosome is
approximately L/2, which is divided by two to obtain L/4.

A. Spark-based CHC for Imbalanced big data

Here we now discuss the parallelisation details of our pro-
posal, focusing on the required Spark operations. Algorithm
1 shows the pseudo-code of the EUS method with precise



details of the functions utilised from Spark. In the following,
we describe the most significant instructions, enumerated
from 1 to 28.

Let trainFile be the training set stored in the HDFS as a
single file. This file is composed of h HDFS blocks that can
be examined from any computing node. The global EUS al-
gorithm starts off reading the entire trainFile set from HDFS
as an RDD, splitting the dataset into an user-defined number
of #Map disjoint partitions (Instruction 1). This operation
spreads the data across the computing nodes, caching the
different subsets (Map1,Map2,...,Mapm) into main memory.
Using a function toLabeledPoint(), the original text data is
transformed into the LabeledPoint data structure of Spark.

Next, we split this dataset into two subsets: positive set
posTrainRDD and negative set negTrainRDD, which contain
only positive and negative instances, respectively. The filter
transformation provided by Spark is used for this purpose.
For sake of simplicity on the implementation of the chromo-
somes, the negative training set is zipped with indexes (using
zipWithIndex() operation, see Instruction 2). In this work,
we assume that the number of existing positive instances
is so reduced that it will perfectly fit in the main memory
of the driver node (as we did in [16]. Thus, Instruction 3
also collects the data from worker nodes and bring it to
the driver. We will use this copy of the positive training set
posTrainDriver later on.

When the data is well distributed across the cluster of com-
puting nodes, we can now create the initial population and
assess its quality (Instructions 5-8). To do so, we first follow
the scheme explained above, creating sparse chromosomes
at random. Later, we have to evaluate the quality of such
chromosomes.

Algorithm 2 deepens into the necessary instructions to
carry out such relevant operation. For each chromosome
we have a collection of indexes representing the instances
selected from the negative training set. On the one hand,
we have to obtain the actual subset of the training set that
is represented by the indexes of every chromosome of the
population (from now on reducedSet). On the other hand,
we have to evaluate such a subset against the training set.

To obtain the actual subset of the training set, we first
have to filter the negative training set according to the indexes
contained in the current chromosome. To do this, once again,
we rely on the filter function provided with Spark (Instruction
2 of Algorithm 2). Since this is going to be a fairly small
dataset, we also collect the data from the worker nodes to the
driver. Next, both the selected negative instances and all the
local copy of positive instances (posTrainDriver) are joined
together (Instruction 3 of Algorithm 2) to form the resulting
reducedSet.

Typically, the nearest neighbour algorithm is used to
classify the training set with reducedSet. Due to the way of
working of nearest neighbor, this would oblige us to have the
reducedSet available in every single node (using for example
the broadcast function). However, after some preliminary
experiments with this approach, we concluded that the over-

head created sending such information from the driver to the
nodes slows down quite a lot the fitness function evaluation,
compromising the feasibility of the whole approach.

For this reason, we base the fitness function on an eager
model (specifically a Decision Tree), so that, we can learn a
single model in the driver node, and broadcast it over all the
worker nodes to classify the training set (See Instructions 4-5
in Algorithm 2). The main benefit of doing this is that the
model will be a very small data structure compared to the
reducedSet, and the classification phase will also be faster
than in the case of nearest neighbour.

To accelerate the fitness evaluation, we are based on the
windowing scheme defined in [15]. Under such scheme, the
chromosomes will only be assessed against a subset of the
training set each evaluation. It always includes the entire
positive set and a random subset of the negative training
set. Both datasets (posTrainRDD and negTrainRDD) were
formerly in the form distributed datasets. Therefore, applying
transformations on them is very straighforward and not
very time consuming operations. Specifically, we randomly
take negative instances according to the a given number of
windows (established in [15] as the imbalanced ratio). Later,
this the entire positive set is joined using the union operation,
obtaining the window of the training set used for fitness
evaluation. The detailed operation can be found in Instruction
6 of Algorithm 2.

After that, the classification takes place. We make use of
a mapPartitions(func) transformation to concurrently access
to the instances contained in the window set. The function
to be applied in every single portion of the data consists
of classifying every single instance using the model broad-
cast before. As a result, this function will provide pairs
< trueclass, predictedclass > for each instance of the
window. This information is brought to the driver node to
compute the g-mean as fitness measure.

When the initial population is evaluated, this is sorted
according to their fitness values (Instruction 10). Then,
the CHC algorithm enters into a loop (Instructions 11 to
29) where search relies upon recombination and repro-
duction to create new potential solutions until a number
of evaluation (MAX EV ALUATIONS) is reached or
we have re-initialised the population a number of times
(MAX REINITIALISATIONS). This loop includes all
the operations described before about the evolutionary pro-
cess i.e. crossover with incest prevention (Instructions 12-
15), elitist selection (Instructions 20-21), and reinitialisation
of the population (Instructions 23-27).

As a result of the evolutionary process, we will obtain
a balanced reduced set of instances that globally represent
the entire training set. This dataset will be later used by
a classifier to learn a model and classify the test set. In
particular, we will use the Decision Tree provided in Apache
Spark to classify the test set.

Figure 3 summarises the proposed model with a focus on
which operations are carried out in the driver node and which
are done in parallel.



Fig. 3: EUS-global: Data flow

Algorithm 1 EUS Global preprocessing
Require: trainFile; #Maps; #Windows
1: trainRDD ← textFile(trainFile, #Maps).toLabeledPoint().cache()
2: negTrainRDD = trainRDD.filter(line → line.contains(”negative”)).zipWithIndex()
3: posTrainRDD = trainRDD.filter(line → line.contains(”positive”))
4: posTrainDriver = posTrainRDD.collect()
5: d = L/2
{Initialisation}

6: for i = 1 to NP do
7: populationi = Randomly take numPositive indexes in the range [0,M-1].
8: fitnessi = evaluate(populationi, negTrainRDD, posTrain-

Driver,#Windows )
9: end for

10: population.sorted
11: while eval < MAX EVALUATIONS and reinitialisations <

MAX REINITIALISATIONS do
12: offspring = combine(population)
13: if offspring.size > 0 then
14: evaluate(offspring,negTrainRDD, posTrainDriver,#Windows)
15: offspring.sorted
16: end if
17: if offspring.size == 0 or offspring(0).fitness <

population(0).fitness then
18: d = d - 1
19: else
20: population = (offspring ++ population).sorted.take(NP)
21: evaluate(population.tail,negTrainRDD, posTrainDriver,#Windows)
22: end if
23: if d <= 0 then
24: diverge(population)
25: d = L/2
26: reinitialisations += 1
27: end if
28: end while

IV. PRELIMINARY RESULTS AND DISCUSSION

In order to assess the proposed method for imbalanced
big data, we have conducted some preliminary experiments
in one big dataset. It comes from the Evolutionary Big
Data Competition ECBDL’14 [24], [25]. For this study, we
consider a subset of 10% of the instances, in which the
number of features was reduced from 631 to 90 by means of
the feature selection algorithm applied in [25]. This dataset
contains a total of 3,489,083 instances, from which 69,133

Algorithm 2 EUS-global: Parallel fitness function using
Spark
Require: population; negTrainRDD; posTrainDriver; NumWindows
1: for i = 1 to NP do
2: negativeSetSelected = negTrainRDD.filter{case (key, value) → popula-

tion(i).contains(key).collect()}
3: reducedSet = negativeSetSelected.union(posTrainRDD)
4: model = LearnDecisionTree(reducedSet)
5: model broadcast sc.broadcast(model)
6: window = negTrainRDD.mapPartitions(dataset → RandomSelec-

tion(NumWindows)).union(posTrainRDD)
7: Outputs = window.mapPartitions(dataset → Classify(dataset,

model broadcast)).collect()
8: end for
9: return ComputeGmean(Outputs(True Class, Predicted Class))

belong to the positive class (i.e. an imbalanced ratio of 49,
approximately).

In our experiments we consider a 5-fold stratified cross-
validation model, meaning that we construct 5 random par-
titions of each dataset maintaining the prior probabilities of
each class. Each fold, corresponding to 20% of the data is
used once as test set, evaluated on a model trained on the
combination of the 4 remaining folds. The reported results
are taken as averages of the five partitions. To evaluate our
model, we consider the AUC and g-mean measures recalled
in Section II-B.

The experiments have been carried out on twelve nodes in
a cluster: a master node and eleven computing nodes. Each
one of these computing nodes has 2 Intel Xeon CPU E5-2620
processors, 6 cores per processor (12 threads), 2.0 GHz and
64GB of RAM. The network is Gigabit ethernet (1Gbps).
In terms of software, we have used the Cloudera’s open-
source Apache Hadoop distribution (Hadoop 2.6.0-cdh5.4.2)
and Spark 1.6.2. A maximum of 216 concurrent tasks are
available.

The problem of deserialisation time.



TABLE I: A snapshot of Apache Spark web UI when running collection of the negative selected set (Instruction 2 fro
Algorithm 2. It illustrates the main bottleneck we experience in the current implementation of our proposal

Metric Min 25th percentile Median 75th percentile Max

Duration 20 ms 20 ms 21 ms 21 ms 22 ms

Task Deserialization Time 2 s 2 s 2 s 2 s 2 s

GC Time 0 ms 0 ms 0 ms 0 ms 0 ms

Input Size / Records 187.4 MB / 227417 187.5 MB / 227526 187.5 MB / 227577 187.5 MB / 227635 187.5 MB / 227698

V. CONCLUDING REMARKS

In this contribution we have carried out a first attempt on
global evolutionary undersampling for imbalanced big data
classification. To do so, we have been focused on Apache
Spark as big data technology. The main advantage of this
model in comparison to existing local approaches is that it
will analyse all the data as a whole. Our preliminary results
show the potential of this scheme. However, we still need
to resolve some technological issues to make sure that the
evaluation of the fitness function is fast enough. As future
work, we consider that the design of hybrid approaches that
accelerate even more the fitness function evolution may result
in a very suitable approach to deal with imbalance big data
classification from a global perspective.

REFERENCES

[1] M. Minelli, M. Chambers, and A. Dhiraj, Big Data, Big Analytics:
Emerging Business Intelligence and Analytic Trends for Today’s Busi-
nesses (Wiley CIO), 1st ed. Wiley Publishing, 2013.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012,
pp. 1–14.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in Proceedings of the nineteenth ACM symposium on Operating
systems principles, ser. SOSP ’03, 2003, pp. 29–43.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, Jan. 2008.

[5] A. Fernández, S. Rı́o, V. López, A. Bawakid, M. del Jesus, J. Benı́tez,
and F. Herrera, “Big data with cloud computing: An insight on the
computing environment, mapreduce and programming frameworks,”
WIREs Data Mining and Knowledge Discovery, vol. 4, no. 5, pp. 380–
409, 2014.

[6] K. Grolinger, M. Hayes, W. Higashino, A. L’Heureux, D. Allison,
and M. Capretz, “Challenges for mapreduce in big data,” in Services
(SERVICES), 2014 IEEE World Congress on, June 2014, pp. 182–189.

[7] A. F. Project, “Apache flink,” 2017. [Online]. Available: https:
//flink.apache.org/

[8] I. Triguero, D. Peralta, J. Bacardit, S. Garcı́a, and F. Herrera, “MRPR:
A mapreduce solution for prototype reduction in big data classifica-
tion,” Neurocomputing, vol. 150, pp. 331–345, 2015.

[9] J. Maillo, S. Ramı́rez, I. Triguero, and F. Herrera, “knn-is: An iterative
spark-based design of the k-nearest neighbors classifier for big data,”
Knowledge-Based Systems, vol. 117, pp. 3 – 15, 2017, volume, Variety
and Velocity in Data Science.

[10] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, “An
insight into classification with imbalanced data: Empirical results and
current trends on using data intrinsic characteristics,” Information
Sciences, vol. 250, no. 0, pp. 113 – 141, 2013.

[11] G. Weiss, “Mining with rare cases,” in Data Mining and Knowledge
Discovery Handbook. Springer, 2005, pp. 765–776.

[12] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,
“A review on ensembles for the class imbalance problem: Bagging-
, boosting-, and hybrid-based approaches,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 42, no. 4, pp. 463–484, 2012.

[13] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, “Eusboost:
Enhancing ensembles for highly imbalanced data-sets by evolutionary
undersampling,” Pattern Recognition, vol. 46, no. 12, pp. 3460–3471,
2013.

[14] S. Garcı́a and F. Herrera, “Evolutionary under-sampling for classifica-
tion with imbalanced data sets: Proposals and taxonomy,” Evolutionary
Computation, vol. 17, no. 3, pp. 275–306, 2009.

[15] I. Triguero, M. Galar, S. Vluymans, C. Cornelis, H. Bustince, F. Her-
rera, and Y. Saeys, “Evolutionary undersampling for imbalanced big
data classification,” in Evolutionary Computation (CEC), 2015 IEEE
Congress on, May 2015, pp. 715–722.

[16] I. Triguero, M. Galar, D. Merino, J. Maillo, H. Bustince, and
F. Herrera, “Evolutionary undersampling for extremely imbalanced big
data classification under apache spark,” in 2016 IEEE Congress on
Evolutionary Computation (CEC), July 2016, pp. 640–647.

[17] L. J. Eshelman, “The CHC adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination,”
in Foundations of Genetic Algorithms, G. J. E. Rawlins, Ed. San
Francisco, CA: Morgan Kaufmann, 1991, pp. 265–283.

[18] A. H. Project, “Apache hadoop,” 2013. [Online]. Available:
http://hadoop.apache.org/

[19] T. Fawcett, “An introduction to roc analysis,” Pattern recognition
letters, vol. 27, no. 8, pp. 861–874, 2006.

[20] S. del Rı́o, V. López, J. Benı́tez, and F. Herrera, “On the use of
mapreduce for imbalanced big data using random forest,” Information
Sciences, vol. 285, pp. 112–137, 2014.

[21] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[22] V. López, S. del Rı́o, J. Benı́tez, and F. Herrera, “Cost-sensitive
linguistic fuzzy rule based classification systems under the mapreduce
framework for imbalanced big data,” Fuzzy Sets and Systems, vol. 258,
pp. 5–38, 2014.

[23] S. Garcı́a, J. Derrac, J. Cano, and F. Herrera, “Prototype selection for
nearest neighbor classification: Taxonomy and empirical study,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34,
no. 3, pp. 417–435, 2012.

[24] “ECBDL14 dataset: Protein structure prediction and contact map for
the ECBDL2014 big data competition,” 2014. [Online]. Available:
http://cruncher.ncl.ac.uk/bdcomp/

[25] I. Triguero, S. del Rı́o, V. López, J. Bacardit, J. M. Benı́tez, and
F. Herrera, “ROSEFW-RF: The winner algorithm for the ecbdl’14 big
data competition: An extremely imbalanced big data bioinformatics
problem,” Know.-Based Syst., vol. 87, no. C, pp. 69–79, Oct. 2015.


