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Abstract: There has been considerable progress in both the theory and practice of
agent programming since Georgeff & Rao’s seminal work on the Belief-Desire-
Intention paradigm. However, despite increasing interest in the development
of autonomous systems, applications of agent programming are confined to a
small number of niche areas, and adoption of agent programming languages in
mainstream software development remains limited. This state of affairs is widely
acknowledged within the community, and a number of reasons and remedies have
been proposed. In this paper, I present an analysis of why agent programming
has failed to make an impact that is rooted in the class of programming problems
agent programming sets out to solve, namely the realisation of flexible intelligent
behaviour in dynamic and unpredictable environments. Based on this analysis,
I outline some suggestions for the future direction of agent programming, and
some principles that I believe any successful future direction must follow.

1 Introduction

There is increasing interest in the application of autonomous intelligent systems technology
in areas such as driverless cars, UAVs, manufacturing, healthcare, personal assistants,
etc. Robotics and autonomous systems have been identified as one of the Eight Great
Technologies [49] with the potential to revolutionise our economy and society. There is
also an increasing focus on autonomous systems in artificial intelligence research, with,
for example, special tracks on Cognitive Systems and Integrated Systems/Integrated AI
Capabilities at AAAI 2015 & 2016. Given the level of interest in both industry and
academia, one might expect the agent programming community, which specialises in
theories, architectures, languages and tools for the development of intelligent autonomous
systems to be thriving, and the languages and tools they have developed to support the
development of intelligent autonomous agents to be in widespread use in AI research and
perhaps in industry.

However the impact of agent programming in both mainstream AI and in applications
is minimal. Surveys suggest that the adoption of Agent-Oriented Programming Languages
(AOPL) and Agent-Oriented Software Engineering (AOSE) in both research and industry
is limited [14, 52, 27]. Moreover, the most distinctive and mature outputs of the agent
programming community, the Belief-Desire-Intention (BDI)-based approaches which
specifically target the development of intelligent or cognitive agents and which would appear
to be best suited to the development of autonomous systems, are least used. One could
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argue that the current relatively low take-up of agent programming is not necessarily a
cause for concern; there is often a lag in the adoption of new programming paradigms and
languages. For example, it took nearly twenty years for object-oriented languages to be
adopted in mainstream development. However I believe such a view of the adoption of agent
programming languages and methodologies is too sanguine. Adoption of object-oriented
languages was driven by the emergence of new kinds of applications that were difficult to
program in languages such as C (e.g., GUI-based applications). The corresponding ‘forcing’
applications for agent programming (e.g., control of simple autonomous vehicles, high-level
control in cognitive robotics), are already being developed, and not in agent programming
languages.

In this paper I explore the reasons for the apparent lack of interest in agent programming
in the broader AI research community and developers of agent-based systems, and make
some proposals about what the agent programming community can (and should) do about
it. By ‘agent programming’ I mean the whole spectrum of agent programming techniques
developed to support the implementation of autonomous agents, from more ‘object oriented’
approaches such as JADE [2] to BDI-based approaches such as Jason [5]. I focus on models,
languages and platforms for programming individual agents, as these are most relevant
to the implementation of autonomous systems.1 I will use the term ‘agent programming
community’ to refer to the developers of these languages and tools (exemplified by the
Engineering Multi-Agent Systems (EMAS) workshop and its predecessors) rather than
their intended users. Except where the distinction is relevant, in the interests of brevity, I
often do not distinguish between agent programming languages and the theories on which
a language is based or the platform implementing the language specification, and use
‘agent programming language’ (APL) as a general term to denote the outputs of the agent
programming community. My analysis of why agent programming is failing to have an
impact applies to all forms of agent programming, as the capabilities necessary to realise
intelligent autonomous behaviour (enumerated in Section 4 below) are independent of the
approach used. However my proposals focus primarily on BDI-based approaches.

The analysis and proposals together can be seen as a ‘manifesto’ (in the sense of a
declaration of aims and policy) for agent programming. Like all manifestos, it embodies
a set of assumptions and values which may not necessarily be shared by all in the agent
programming community. However the fact that agent programming is failing to have an
impact seems unarguable, and, if nothing else, I hope this paper will contribute to the
ongoing discussion of the future direction of agent programming as an area of research.

This paper elaborates on themes sketched in [26]. However it offers a deeper analysis of
why extending the feature set of current BDI-based APLs is necessary for wider adoption
of agent technology, and the proposals for how these features can be incorporated within
an extended BDI architecture are more fully fleshed out (though still not complete). The
remainder of the paper is organised as follows. In Section 2, I briefly review previous work
on the impact of APLs on AI generally and the development of applications, and discuss
previous proposals to increase the adoption of APLs in Section 3. In Section 4, I define the
problem the problem that agent programming is trying to solve. In Section 5, I summarise
the current state of the art in BDI-based agent programming languages, and highlight some
of the key limitations of the current ‘BDI core feature set’. In Section 6, I briefly sketch
some of the developments in AI in CS generally that will impact the adoption and future
development of agent programming languages. In Section 7, I present some proposals for
future research in agent programming, before concluding in Section 8.
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2 Current Adoption of APLs

In [14], Dignum & Dignum report the results of an on-line survey of the use of agent
languages and frameworks in the implementation of industrial agent-based systems. The
survey was conducted in 2008, and respondents were asked to provide information about
the type of agent-based application, the key characteristics of the application domain, and
whether an agent programming language or methodology had been used in developing
the system. They received 25 responses. The majority of responses related to academic
projects with industrial prototypes or deployments (84%); only 8% of responses were from
industry.2 An analysis of the data revealed that only 8% of projects had resulted in large-scale
deployments, with most (56%) resulting in a prototype or lab demonstrator. 40% of projects
made no use of an agent programming language; in the remaining 60%, the most commonly
used APL was Jade/Jadex (20%), and one project used JACK. Other BDI-based languages
such as Jason or 2APL were not used. Even if all the Jade/Jadex projects used Jadex, this
suggests that at most 24% of projects used some kind of BDI-based APL. The most common
application domains were logistics (24% of projects) and crisis management (12%). In an
attempt to determine the extent to which the results of their survey reflected the state of
practice, Dignum & Dignum also analysed the papers appearing in the industrial applications
track of the main agents conference, the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS) in 2007 and 2008. Of a total of 29 papers, 24% clearly
described real-world applications that went further than proof of concept or a prototype,
and in 24% MAS implementation platforms were used. While this analysis suggests that
the proportion of projects reaching industrial deployment may be higher than indicated by
the survey results, the number of projects using agent programming languages is broadly
consistent with the survey.

In [52], Winikoff presents an analysis of applications appearing in the AAMAS
Industry/Innovative Applications tracks in 2010 and 2012. The results are broadly similar to
those reported in [14], in that most of the systems described do not require intelligent goal-
based (BDI) agents, and the focus of many applications is at the multiagent system (MAS)
coordination level (e.g., game theory, MDPs). Moreover, the use of agent programming
languages and agent-oriented software engineering methodologies in the papers surveyed
was limited. Winikoff also considers industrial involvement in the AAMAS conference over
the period 2007–2012. If industrial involvement were high, it is perhaps more plausible that
the low adoption of APLs in industry may be attributed to deficiencies in the languages and
platforms themselves. However the data suggest that industrial involvement in AAMAS
declined over the period. Low adoption may therefore be simply a consequence of agent-
based solutions being perceived as irrelevant to industrial problems. Given the increased
interest in autonomous systems, this seems surprising; however it is consistent with the
analysis I present in Section 4.

The most recent survey is that by Müller & Fischer in 2014 [27]. They identified 46
‘mature’ applications (out of 152 surveyed applications), 55 ‘industry validated research
prototypes’ and 46 ‘research prototypes’. They found that:

• 82% of all surveyed applications focus on the MAS level, while only 9% focus on
‘intelligent agents’;

• the majority of mature applications are concentrated in a few industrial sectors: logistics
& manufacturing, telecoms, aerospace and e-commerce; and



4 B. Logan

• only 10% of mature applications clearly used a BDI-based platform; of those that did,
all used the JACK [50] platform.3

They conclude that while there are a considerable number of deployed agent-based systems
(some of considerable longevity), the adoption of multiagent systems and technologies is
mostly limited to niche markets. Müller and Fisher list a number of caveats concerning
their study data. In particular, “the large number of applications in the multi-agent systems
category certainly reflects the focus towards multi-agent topics in the call for participation
rather than a lack of intelligent agent[s]”. In addition, they note that some applications used
more than one platform, and for some applications the information was not available, so the
number of mature applications using a BDI platform may be higher than 10%. However,
even allowing for these factors, from their results it seems hard to argue that BDI agents
are having a significant impact in application development.

The survey by Müller & Fischer is useful in establishing that agent and multiagent
systems and technologies are being applied in real applications (though even allowing for
the time required to translate research ideas into practice [28], one might question whether
46 is a “considerable number”). Otherwise the broad picture is similar to that reported by
Dignum & Dignum and Winikoff, namely that relatively few deployed systems involve
‘intelligent agents’. An obvious question then arises: why do so few fielded applications
involve the use of intelligent agents? Before returning to this question in Section 5, in
the next section I briefly review previous proposals for how the adoption of APLs can be
increased.

3 Previous Proposals to Increase the Adoption of APLs

The state of affairs reported by Müller & Fischer has been recognised for some time within
the agent programming community, and there have been a number of proposals as to how to
increase the take-up of agent programming in mainstream software development and how
agent programming languages should evolve in order to maximise their adoption. These
proposals reflect and draw on a larger discussion within the community, in the form of talks
and panel sessions at agent programming workshops, including the Dagstuhl Seminar on
Engineering Multi-Agent Systems [15] and the EMAS 2013 & 2014 workshops. In this
section I briefly review some of the proposals that have emerged from this discussion.

In [52] Winikoff draws on his analysis of the adoption of APLs (discussed in the previous
section) to identify a number of challenges for engineering multiagent systems and propose
directions for future work in engineering MAS. He focusses on the relevance of the AAMAS
community to industry, the relevance of the ‘agent engineering’ sub-community to the rest
of AAMAS, and, in particular, the extent to which the methodologies, languages and tools
developed by this sub-community are used both in the wider AAMAS community and in
industry. I focus here on the latter question, as being more closely related to the topic of
the current paper.4 He makes five recommendations, of which two are particularly relevant
here:

• stop designing AOPLs and AOSE methodologies . . . and instead . . .

• move to the “macro” level: develop techniques for designing and implementing
interaction, integrate micro (single cognitive agent) and macro (MAS) design and
implementation
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However this proposed change of focus appears to ignore the possibility that the reason
current applications focus on coordination of MAS rather than intelligent agents, is that the
support provided by current agent programming languages for developing intelligent agents
is inadequate. As such, it risks becoming a self-fulfilling prophecy. I will return to this point
in the next section. Winikoff also identifies the lack of techniques for the assurance of MAS
as a barrier to adoption of agent technology. This is a valid concern, but falls outside the
scope of the current paper, which is more narrowly focussed on the role and design of agent
programming languages.

In [21] Hindriks reviews the history of engineering multiagent systems, including agent
programming, and presents a vision of how ‘cognitive agent technology’ can form a basis for
the development of next-generation autonomous decision-making systems. Like Winikoff,
he makes a number recommendations and identifies a number of directions for future
research, including:

• pay more attention to the kind of support (specifically tools) required for engineering
MAS applications

• focus more on issues related to ease of use, scalability and performance, and testing

• facilitate the integration of sophisticated AI techniques into agents

• show that agent-orientation can solve key concurrency and distributed computing issues

• put more effort into integrating agent-based methodologies and programming
languages

He concludes that to stimulate the adoption of cognitive agent technology and MAS, the
agent programming community must provide “methods and tools that jointly support the
agent-oriented mindset”. However Hindriks’s analysis does not directly address the causes
of the low take-up of agent programming in mainstream software development. Rather
his proposals can be read as possible or desirable extensions to current APLs rather than
features necessary for wider adoption.5

Many of the features identified by Winikoff and Hindriks are clearly important for
the wider adoption of agent programming languages. However I believe their analyses
fundamentally mistake the nature of the problem faced by the agent programming
community. The key problem lies elsewhere, and has not previously been articulated. I turn
to this in the next section.

4 The Problem Agent Programming is Trying to Solve

To understand what it might mean for agent programming to have an impact, we must first
define the problem that agent programming is trying to solve.

There are many different views of the aims and objectives of ‘agent programming’
considered as a field. As a first approximation, these differing perspectives can be broadly
characterised as being either ‘AI-oriented’ or ‘software engineering-oriented’. The AI-
oriented view focuses on connections with the broader field of artificial intelligence, and sees
agents as ‘an overarching framework for bringing together the component AI sub-disciplines
that are necessary to design and build intelligent entities’ [24]. The software engineering-
oriented view on the other hand, focuses on synergies between software engineering and
agent research.6 Each tradition is associated with its own set of research questions and
academic workshops. For example the AI-oriented view is represented by workshops such
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as Agent Architectures Theories and Languages (ATAL), while the software engineering-
oriented view is represented by workshops such as Agent-Oriented Software Engineering
(AOSE). The call for papers for the first ATAL workshop, held in 1994, states:

Artificial Intelligence is concerned with building, modeling and understanding systems
that exhibit some aspect of intelligent behaviour. Yet it is only comparatively recently
— since about the mid 1980s — that issues surrounding the synthesis of intelligent
autonomous agents have entered the mainstream of AI. . . . The aim of this workshop . . . is
to provide an arena in which researchers working in all areas related to the theoretical and
practical aspects of both hardware and software agent synthesis can further extend their
understanding and expertise by meeting and exchanging ideas, techniques and results with
researchers working in related areas.

— ATAL 1994 CfP

In contrast, the call for papers for the first AOSE workshop, held in 2000, focuses on
synergies with software engineering research, and states:

‘Since the 1980s, software agents and multi-agent systems have grown into what is now
one of the most active areas of research and development activity in computing generally.
There are many reasons for the current intensity of interest, but certainly one of the most
important is that the concept of an agent as an autonomous system, capable of interacting
with other agents in order to satisfy its design objectives, is a natural one for software
designers. Just as we can understand many systems as being composed of essentially
passive objects, which have state, and upon which we can perform operations, so we can
understand many others as being made up of interacting, semi-autonomous agents.

This recognition has led to the growth of interest in agents as a new paradigm for software
engineering. In this workshop . . . we will seek to examine the credentials of agent-based
approaches as a software engineering paradigm, and to gain an insight into what agent-
oriented software engineering will look like.’

— AOSE 2000 CfP

The differences in emphasis between the two views of agent programming is clearly reflected
in the research focus of the two workshops. In the AI-oriented view, the focus is on building
systems that exhibit intelligent autonomous behaviour, while in the software engineering-
oriented view, (semi)autonomous agents are seen as a way of conceptualising complex
software systems containing many dynamically interacting components, each with their
own thread of control and engaging in complex coordination protocols.

In what follows, I focus on the AI-oriented view. There are several reasons for this
choice. The AI-oriented view represents the original motivation for agent programming as
a subfield, and I would argue that the most significant contributions of agent programming
to the broader AAMAS community have emerged from this tradition, e.g., the 2007
IFAAMAS Influential Paper Award for Rao & Georgeff’s work on rational agents [31]. In
addition, the agent programming languages and tools developed in this tradition are arguably
the most mature software products of the agent programming community, representing
approximately thirty years of cumulative development. Lastly, the combination of these two
factors (a clear need in the AI community to develop intelligent autonomous systems, and
a distinctive set of ideas about how to implement intelligent autonomous agents in the form
of the BDI paradigm) offers the best hope for agent programming to have a broader impact.

In the AI-oriented view, agents are a way of realising the broader aims of
artificial intelligence. Agents are intelligent autonomous systems which combine multiple
capabilities, e.g., sensing, problem-solving and action, in a single system. Agent
programming is seen as a means of realising and integrating these capabilities to achieve
flexible intelligent behaviour in dynamic and unpredictable environments. This view rests



An Agent Programming Manifesto 7

on the belief that there is commonality, at least at the architecture level, between agents in
widely differing domains, such as autonomous vehicles, healthcare, training simulations,
entertainment, etc. The question then is what might this commonality consist in?

To answer this question, we must first define what it means to ‘achieve flexible intelligent
behaviour in dynamic and unpredictable environments’. There are many definitions of
intelligent behaviour; however, key to most is consideration of both ends (goals) and means
(plans) when choosing which course(s) of action to pursue. As a working definition, we will
say that an agent is intelligent to the extent that the set of means to which it commits at any
given time, and the ways those means are progressed, approximates an optimal progression
of an optimal set of means given the goals of the agent and the plans it has to achieve them.7

What counts as ‘optimal’ is clearly dependent on the particular domain or application of
interest. Different ends will have differing characteristics (e.g., the utility resulting from
achieving the end), and different means will likewise have different characteristics (e.g.,
time, cost and resources required by the means). The particular tradeoff between the set of
means adopted (and how they are progressed) and the ends achieved depends on the domain;
for example, whether the use of higher cost means is justified in achieving an additional
end. However such domain specific details should not obscure the key interaction between
means and ends in intelligent behaviour.

This view of intelligence can be traced back at least as far as Bratman [7, 6] and
the early work on the Procedural Reasoning System (PRS) [18], and underpins much
of the subsequent work in areas such as rational action selection, e.g., [34], intention
reconsideration, e.g., [54], goal lifecycles, e.g., [39], etc. It also forms the basis of much of
the work in the BDI paradigm (reviewed in the next section); however the core problems
are independent of their characterisation in terms of beliefs, desires and intentions. Rather
it implies a set of key capabilities of an intelligent agent (however realised), and hence any
agent programming language that aims to support the development of such agents. These
capabilities include being able to take into account the possible ends to which an agent
might commit, the ends to which it is currently committed, the intended means of achieving
these ends, and its available means, when deciding what courses of action to follow [6].
In BDI terminology, this amounts to the ability to deliberate over desires (in the sense of
potential goals), goals, intentions and plans, and reason about the interactions between them.
Note that this is a stronger requirement than simply selecting plans rationally (unless the
agent’s beliefs extend to beliefs about its available means, the courses of action to which it
is currently committed, etc.). An agent may select a course of action to achieve an end that
conflicts with its currently intended means and still be rational in the sense of [31], even if
it has alternative means of achieving the end that do not conflict with its current intentions.

For example, consider an agent that is committed to a set of ends and a corresponding set
of intended means, and which must decide whether to commit to a new end, and if so, how
to achieve it. Making an intelligent decision in such a situation involves consideration of the
means available to achieve the end, and whether they conflict with the means to which the
agent is currently committed. Whether a set of intentions conflict may in turn depend on the
way in which they are progressed; some execution orders may give rise to conflicts, while
others may not. If a conflict is inevitable, the agent must decide whether the conflict can
be resolved by suspending progression of one or more intended means, whether to achieve
an end to which it is committed in another way, or whether to abandon one or more of the
ends to which it is currently committed (or the new end). In some circumstances, deciding
whether to commit to a new end may also depend on anticipated or possible ends that may
arise in future. For example, a taxi agent may commit to one fare (in the centre of town) and
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not another (in the suburbs), in the expectation that there will be more fares in the centre of
town in the future.

In the next section, I examine the extent to which state of the art agent programming
languages, and in particular BDI-based APLs, support these key capabilities necessary to
realise intelligent behaviour.

5 The State of the Art and its Limitations

The Belief-Desire-Intention (BDI) model [6] and its underlying theoretical underpinnings
[31] are arguably the main contribution of the agent programming community to the
broader field of AI. The BDI approach can be seen as an attempt to characterise how
flexible intelligent behaviour can be realised in dynamic and unpredictable environments,
by specifying how an agent can balance reactive and proactive behaviour.

In BDI-based agent programming languages, the behaviour of an agent is specified
in terms of beliefs, goals, and plans. Beliefs represent the agent’s information about the
environment (and itself). Goals represent desired states of the environment the agent is
trying to bring about. Plans are the means by which the agent can modify the environment
in order to achieve its goals. A plan consists of a head and a body. The head consists of a
trigger (an event template) and a context condition, which together specify the situations
in which the plan should be considered as a means of achieving a goal, or responding to a
change in the agent’s beliefs. The body of a plan is composed of steps which are either basic
actions that directly change the agent’s environment or subgoals which are in turn achieved
by other plans. Plans are pre-defined by the agent developer, and, together with the agent’s
initial beliefs and goals, form the program of the agent.

For each event (belief change or top-level goal), the agent selects a plan which forms
the root of an intention and commences executing the steps in the plan. If the next step
in an intention is a subgoal, a (sub)plan is selected to achieve the subgoal and added to
the intention. In most BDI-based agent programming languages, plan selection follows
four steps. First the set of relevant plans is determined. A plan is relevant if its triggering
condition matches a goal to be achieved or a change in the agent’s beliefs the agent should
respond to. Second, the set of applicable plans are determined. A plan is applicable if its
belief context evaluates to true, given the agent’s current beliefs. Third, the agent commits
to (intends) one or more of its relevant, applicable plans. Finally, from this updated set of
intentions, the agent then selects one or more intentions, and executes one (or more) steps
of the plan for that intention. This process of repeatedly choosing and executing plans is
referred to the agent’s deliberation cycle [9] or agent reasoning cycle [5]. Deferring the
selection plans until the corresponding goal must be achieved allows BDI agents to respond
flexibly to changes in the environment, by adapting the means used to achieve a goal to the
current circumstances.

The BDI approach has been very successful, to the extent that it is arguably the dominant
paradigm in agent programming [19], and a wide variety of agent languages and platforms
have been developed that at least partially implement the BDI model. A number of these
languages and platforms are now reasonably mature in terms of their feature set (if not
always in terms of their software engineering) e.g., [50, 8, 5, 10, 20]. They encompass
each of the components of the BDI model in at least rudimentary form, and often have a
solid theoretical foundation in the form of a precise operational semantics specifying what



An Agent Programming Manifesto 9

beliefs, desires and intentions mean, and how they should be implemented. It is therefore
appropriate to consider what the scientific contribution of this work consists of.

5.1 The BDI Core Feature Set

The features common to state of the art BDI languages, and that currently define this style
of programming, are essentially limited to:

• selecting pre-defined plans at run time based on the triggering event and the agent’s
current beliefs; and

• some support for handling plan failure, e.g., aborting the plan in which the failure
occurred (perhaps after performing some ‘cleanup’ actions), and trying another
applicable plan to achieve the current subgoal; if there are no applicable plans which
have not previously been tried for the current subgoal, failure is propagated to higher-
level motivating goals.

These features constitute the ‘core feature set’ of BDI-based agent programming, in the
sense that they are found in nearly all BDI agent platforms, and there is a fair degree of
agreement about their semantics. Other aspects either differ from platform to platform,
e.g., the order in which intentions are executed (though the operational semantics typically
assumes execution is nondeterministic), or must be implemented by the developer using
low-level platform-specific features, often in the host language.

As might be expected of mature software platforms, the key theoretical ideas
underpinning these core features were first proposed some time ago. The approach to plan
selection based on triggering events and context conditions dates back to PRS [18] (where
they are called cues and preconditions), and, in the form in which they appear in most current
BDI-based APLs, to AgentSpeak(L) [32]. The backtracking approach to plan failure, in
which the plan in which the failure occurred is aborted and another plan selected for the
current subgoal, was introduced in [53].

While these features are useful, and are key to implementing agents based on the BDI
paradigm, the programs that can be written using (only) the core feature set is restricted
to those that realise behaviours where: the selection of applicable means is determined
purely by the agent’s beliefs about the current state of the environment (and is otherwise
non-deterministic); the means available to achieve the possible ends don’t conflict (since
the execution of intentions may be arbitrarily interleaved, actions in different plans must not
conflict); the agent always commits to new ends (since means are assumed not to conflict,
the only reason an agent does not adopt a new intention in response to an event is a lack of
an applicable plan); and where goals are never dropped until all available plans have been
tried (i.e., the agent is blindly committed to its goals).

As a result, the set of behaviours that can be programmed ‘natively’ using the
core feature set is a only small subset of those identified in Section 5 as required for
intelligent autonomous behaviour. Moreover, such relatively simple behaviours can often
be programmed without using a BDI-based agent programming language. While a BDI-
based platform may facilitate development, any saving in development time may be more
than offset by the time required to learn how to program in the ‘BDI style’.8 In contrast,
it can be argued that the MAS-level coordination techniques that form the basis of most
applications discussed in [14, 52, 27], e.g., auctions, economic approaches, game theory
etc., offer more significant advantages (often supported by theoretical guarantees) compared
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to conventional distributed systems approaches. In addition, the algorithms involved can
typically be programmed in any language, allowing easier integration into mainstream
software development practices.

5.2 Limitations of Current BDI Languages and Platforms

In the remainder of this section, I briefly highlight some of the key capabilities of an
intelligent autonomous agent that can’t easily be programmed in the current generation
of agent programming languages, and review the progress that has been made towards
implementing such capabilities in agent platforms and in the literature. Critically, the
features identified below are much harder to program from scratch in an imperative style or
using the alternative, mainstream programming techniques discussed in Section 6.2. Core
support for such capabilities would therefore give BDI languages and platforms a clear
competitive edge in the development of intelligent autonomous agents.

At each deliberation cycle, an intelligent autonomous agent with multiple goals must
make decisions about ‘what to do next’: what means (i.e., plan) to use to achieve a given
(sub)goal; which of the currently adopted plan(s) (i.e., intentions) to progress at the current
moment; and how these plan(s) should be progressed. Making such decisions involves (at
least):

• which plan to adopt if several are applicable;

• which intention to execute next;

• how to handle interactions between intentions;

• how to estimate progress of an intention;

• how to handle lack of progress of a plan or intention; and

• when to drop a goal or try a different approach.

While not all of these capabilities will be required in every agent application, a reasonable
argument can be made that many are necessary for most applications (e.g., which plan to
adopt, which intention to execute next, how to handle plan failure), and each feature is
required for a significant class of applications.

Support for making such decisions in current BDI platforms is limited at best and
often non-existent. Moreover, current BDI languages typically lack the basic underlying
representations for costs, preferences, time, resources, durative actions, etc. necessary
to implement such capabilities. Of course, some aspects of these capabilbites can be
programmed in current BDI-based agent languages. Most platforms provide ‘hooks’, and/or
primitive constructs and operations that allow a developer to control which plan is adopted,
which intention is scheduled for execution at the current cycle, etc. For example, the SE , SO
and SI selection functions of Jason [5] allow a developer to customise Jason’s event, plan
and intention selection for a particular application domain; conflicts between intentions can
be avoided by using atomic constructs available in languages such as Jason and 2APL [10]
that prevent the interleaving of actions in one plan with actions from other plans; and both
Jason and 2APL provide primitive actions to drop goals (and in 2APL, to adopt them).
However use of these non-core features requires either programming in another language
(e.g., the SE , SO and SI functions must be programmed in Java), or requires complex,
low-level bookkeeping by the developer (e.g., neither Jason nor 2APL provide primitives
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to return the current intentions of an agent, or the plans selected for each (sub)goal).9

As a result, the most difficult parts of developing an intelligent autonomous agent must
be programmed using conventional programming techniques. It is therefore perhaps not
surprising that languages and platforms which provide little or no support for the hardest
(and arguably the most central or characteristic) aspects of agent programming have not
been widely adopted.

There has been preliminary work on how support for some of the features listed above
can be integrated into BDI-based APLs, see, for example, [4, 42, 35, 46, 36, 38, 43, 37, 29,
56, 40]. (I discuss some of this work in more detail in Section 7.) However, to date, this
work has not been incorporated into the core feature set of popular BDI platforms.

One possible explanation for the current state of the art is that the ways in which decisions
regarding which plan to adopt, which intention to execute next etc., are too variable to be
easily expressed within the BDI framework, and are best left to the developer. The argument
that such issues should or must be left to the programmer is reminiscent of the ‘New Jersey
approach’ [17]: do the basic cases well, and leave the programmer to do the hard bits.
While this approach may explain the relative popularity of C vs Lisp (the focus of Gabriel’s
paper), the assumption that the current ‘BDI core feature set’ is a good tradeoff in terms of
the kinds of behaviours that can be easily programmed while at the same time being easy
for programmers to learn doesn’t seem to hold.10 It is of course possible that, while the
general problem of selecting which means to adopt for a particular end given the agent’s
beliefs can be reduced to a single programmatic approach (encompassed in the current
core feature set), decisions regarding which ends to adopt and/or how an agent’s intentions
should be progressed cannot. However, if there are no general theories or approaches to
these questions, developing agents capable of flexible intelligent behaviour in dynamic and
unpredictable environments is going to be very hard (and hence very expensive), and the
amount that agent programming can contribute to realising intelligent behaviour will be
limited.

The argument that these problems cannot or should not be addressed within (some
suitable extension) of the BDI architecture, is not, I believe, a tenable position. While the
support currently offered by state of the art APLs is useful, particularly for some problems,
the set of behaviours that can be programmed is too small relative to the requirements set out
in Section 4 for most mainstream developers to switch to BDI-based platforms. It therefore
follows that for agent programming to have a broader impact on mainstream development
and AI research generally, these problems must be addressed.

6 The Broader Context

The analysis presented in the previous section actually underestimates the scale of the
challenge facing the agent programming community. In this section, I argue that there
is good reason to suppose that the already limited impact of agent programming on
commercial/industrial agent development and AI generally is likely to decline in the
foreseeable future due to changes in the broader AI and CS context. Key assumptions
on which the BDI agent programming model are based are not as true as they
once were, allowing other AI subfields to colonise the APL space. In addition, some
mainstream computing paradigms are starting to look somewhat like simple forms of agent
programming, potentially further limiting the impact of APL technologies on mainstream
development. I discuss each of these developments below.
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6.1 Reactive Planning

The BDI approach to agent programming is based on early work on reactive planning, e.g.,
[18]. The underlying rationale for reactive planning rests on a number of key assumptions,
including:

• the environment is dynamic, so it’s not worth planning too far ahead as the environment
will change; and

• the choice of plans should be deferred for as long as possible — plans should be
selected based on the context in which the plan will be executed.

In their 1987 paper Georgeff & Lansky emphasise the difference between reactive planning
and traditional (first principles) planning: “[traditional] planning techniques [are] not suited
to domains where replanning is frequently necessary” [18].

A key implicit assumption underlying this claim is the time required by a traditional
planner to find a plan for a given goal. While generative planning remains a PSPACE
problem, advances in classical planning and increases in processing power have increased
the size of problems that can be solved by a traditional planner in a given amount of time.
Since Georgeff & Lansky’s paper, available computational power has increased by a factor of
approximately 105, and by a factor of 104 since Rao’s classic paper on AgentSpeak(L) [32]
which influenced the design of many current state of the art agent programming languages.
It is therefore perhaps now time to reconsider whether traditional planning techniques are
unsuited to domains where replanning is frequently necessary.

Generative planners can now solve a significant number of problem instances from the
ICAPS (International Conference on Automated Planning and Scheduling) International
Planning Competition11 in less than a second. The best planners are capable of solving over
half the problem instances in less than 100ms [33], which could be taken as the threshold
necessary for agent planning in (soft) real time domains. (Note that these results are from
2012.)

While there is some dispute about the extent to which Moore’s law continues to hold,
it seems safe to assume that available computational power will continue to increase, at
least in terms of transistor count, for the foreseeable future. It also seems safe to assume
that advances in classical planning will continue. Coupled with an increased interest in the
planning community in ‘real time’ planning,12 it seems likely that the range of problems
amenable to first principles planning will increase in the future. This does not mean the end
of reactive planning, but hybrid approaches will become increasingly feasible.

6.2 Reactive Programming

At the same time, work on event-driven and reactive programming13 (e.g., in robotics)
offers similar (or better) functionality to belief triggered plans in agent programming. In
reactive programming, programs are defined in terms of queries over streams of events and
their composition. Compared to the event queue/belief update and triggering of relevant
applicable plans found in most current BDI-based agent programming languages and
platforms, reactive programming-based approaches have a number of advantages including:

• a well defined model of streams (immutability, sampling, pull-based computation);

• very fast (microsecond) evaluation of simple SQL-like queries (e.g., LINQ,14

cqengine15) that scale to very large ‘belief bases’ for evaluation of context conditions.
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If belief updates and (sub)goals are seen as a stream of events in the reactive programming
sense, such programming techniques can be used to implement key aspects of the core
BDI model outlined in Section 5, e.g., the selection of pre-defined plans at run time based
on a triggering event and the agent’s current beliefs.16 Moreover, these paradigms are
increasingly a part of ‘mainstream’ Computer Science, (e.g., ‘Event Driven and Reactive
Programming’ is included in the 2013 ACM model curriculum for Computer Science [1])
and are being deployed in large scale applications.

6.3 Implications for Agent Programming

The developments discussed above do not constitute a comprehensive list of the changes
impacting or likely to impact the agent programming community. It is possible to point
to similar advances in other subfields of both AI (such as reasoning and scheduling) and
CS relevant to agent programming. Together their effect is to erode the niche currently
occupied by the current generation of agent programming languages. It follows that agent
programming as a discipline will only remain relevant if it is possible to increase the size
of the niche it occupies. To do so, agent programming languages must become capable of
addressing a wider range of problems in a generic way. The good news is that the same
developments which pose a threat to the future of agent programming can enable this
transition, as I explain in the next section.

7 The Future

In Section 4, I argued that implementing intelligent autonomous behaviour requires
deliberation over desires (in the sense of potential goals), goals, intentions, plans, and the
interactions between them. In Section 5 we saw that current BDI-based languages support
only a relatively small subset of these capabilities. For example, most BDI-based languages
provide little or no support for reasoning about whether a potential goal should be adopted.
When updating the agent’s currently intended means and determining how those means
should be progressed, the standard BDI deliberation cycle considers only the relevant
applicable means for the current event, given the agent’s current beliefs. Similarly, when
determining which intention to progress at the current cycle, possible interactions between
intentions are ignored, and most current BDI-based languages by default adopt a simple
‘round robin’ approach to scheduling intentions.

In this section, I explore how these missing capabilities might be incorporated within
the BDI model. I first consider adding support for deliberating over desires and intentions
within an extended BDI architecture, i.e., where beliefs are first order formulas and plans are
predefined by a human developer. I then consider more speculative proposals that relax the
assumptions regarding declarative and procedural knowledge in the standard BDI model.

7.1 Extending the BDI Architecture

Deliberation over desires and the interactions between them cannot be implemented in
terms of the current BDI core feature set in the way that, e.g., deliberative goals can be
implemented in terms of procedural goals (goals to do) through the use of design patterns
[23]. For example, it is difficult to implement deliberation about whether to adopt a goal,
as the agent’s intentions are not first class objects in most BDI-based languages, i.e., the
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agent’s current intentions do not form part of its belief state.17 Even if it were possible to gain
access to the agent’s current intentions, there is no easy way to write BDI code to choose
between different plans for a goal based on its current intentions. For example, assume we
were to extend the syntax of plans to include a “intention context” that specifies whether a
relevant, applicable plan should be added to the agent’s intentions, given the agent’s current
intentions. The agent developer could define a predicate, e.g., intend-p(), that evaluates
to true if the agent should commit to the current plan given its other intentions. While
this would have the effect of moving part of the definition of the deliberation cycle “into”
the APL, such an approach violates the principle of modularity of agent plans. The plan
trigger specifies the kinds of events a plan can be used to respond to. The context specifies
minimal conditions that must hold for it to be applicable. For any given plan, this information
can be determined without reference to other plans. This simplifies development, allowing
the definition of plans to achieve particular goals or respond to particular events without
reference to the other plans of the agent. However adding a new plan to the agent program
now entails modifying the definition of intend-p() to specify the sets of circumstances
in which instances of the new plan type should be intended; for example, the cases in which
it should be preferred to other plans for achieving the same goal. Similarly, there is no way
to write BDI code to decide which of the agent’s current intentions to execute at the current
cycle.

Implementing the capabilities necessary to realise flexible intelligent behaviour in
dynamic and unpredictable environments thus involves extending the standard BDI
architecture underlying most state of the art agent programming platforms with facilities to
represent and reason about desires, plans, and intentions and their progression. This is not a
new idea. Starting with PRS, a range of ‘extended’ BDI architectures have been proposed.
(It is slightly misleading to call these ‘extended BDI architectures’; as noted in Section 5, the
original accounts of the Belief–Desire–Intention approach included many of the capabilities
proposed here.) In the remainder of this subsection, I briefly review this work, and identify
a set of requirements for such an extended architecture.

PRS [18] incorporated a meta-level, and supported reflection [13] of some aspects of
the state of the execution of the agent, such as the set of applicable plans, allowing an agent
developer to program deliberation about the choice of plans in the same language used to
represent object-level plans. In [9] Dastani et al. proposed extending 3APL with a set of
programming constructs which allow the agent’s deliberation cycle to be programmed in
terms of a small set of primitives. The language is imperative and extends that proposed
in [22], mainly by adding a primitive that invokes a planner to generate a new plan. Plans
can be compared on their cost and the gain resulting from achieving the corresponding
goal, and a plan for which the cost is less than gain is selected. Later work on 3APL took
a different approach, in allowing the developer to modify the 3APL deliberation cycle by
reprogramming the 3APL interpreter in the interpreter host language. In [11] Dastani et al.
define a collection of Java classes for each mental attitude, where each class has a collection
of methods representing operations for manipulating the attitude. In order to implement
a particular deliberation cycle, the programmer must essentially modify the interpreter to
call the methods of these Java classes in a particular order. In [30] Pokahr et al present an
‘Easy Deliberation’ strategy, which aims to provide an intuitive interface for programming
deliberation at the agent-programming level. The strategy allows an agent to reason about
the conflicts and dependencies between their goals, and so select an appropriate set of active
goals for the current situation. An extended Jadex interpreter is given, augmented with meta-
actions for (de)activating goals. However consideration of conflicts is restricted to the goal
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level, and does not take into account the plans used to achieve the goals. In [51] Winikoff
presents a meta-interpreter for AgentSpeak programs written in AgentSpeak. He shows how
the meta-interpreter can be used to define alternative approaches to failure handling, and
to provide control over plan selection. In [25], Leask et al. show how procedural reflection
in the agent programming language meta-APL [16] can be used by an agent programmer
to customise the deliberation cycle of a BDI agent to control when to deliberate, which
relevant applicable plan(s) to intend, and which intention(s) to execute. Like Winikoff, and
in contrast to Dastani et al., their approach allows object-level plans and agent’s deliberation
cycle to expressed in the same language. However their use of procedural reflection allows a
broader range of capabilities to be programmed, including deliberation over desires, plans,
and intentions, and the scheduling of intention execution to avoid conflicts between actions.

There has also been a considerable amount of work on basic capabilities to support
deliberation about which plan to adopt for a goal, and whether a set of intentions can be
progressed without conflicts, etc. For example, Thangarajah et al. [42, 41] have proposed
an approach to detecting and avoiding possible conflicts between intentions based on
summary information, which involves reasoning about necessary and possible pre- and post-
conditions of different ways of achieving a goal. They present mechanisms to determine
whether a newly adopted (sub)goal will definitely be safe to execute without conflicts, or
will definitely result in conflicts, or may result in conflicts. If the goal cannot be executed
safely, execution of the intention is deferred. In [47, 48], Waters et al. present a coverage-
based approach to intention selection, in which the intention with the lowest coverage, i.e.,
the highest probability of becoming non-executable due to changes in the environment, is
selected for execution. In [35] Sardiña et al. show how an HTN planner can be integrated
into a BDI architecture to find hierarchical decompositions of plans that avoid incorrect
decisions at choice points, and so are less likely to fail during execution. Other work
has investigated how the execution of a set of intentions can be scheduled so as to avoid
conflicts. For example, the TÆMS (Task Analysis, Environment Modelling, and Simulation)
framework [12] together with Design-To-Criteria (DTC) scheduling [45] have been used in
agent architectures such the Soft Real-Time Agent Architecture [44] and AgentSpeak(XL)
[4] to schedule intentions, and in [56, 55] Yao et al. present a stochastic approach to
scheduling intentions that avoids both conflicts and maximises fairness in the progression
of the intentions for each goal.

The basic capabilities implemented in these approaches differ in their degree of
encapsulation, giving rise to a rich space of possible designs for an extended BDI
architecture. For example, the approaches based on summary information can be used to
determine when progression of an intention must be suspended, leaving decisions about
how the remaining intentions should be progressed to other deliberation, while in [55], all
scheduling decisions are encapsulated in a single process.

I believe the key requirements for such an extended architecture include a clear
operational semantics, as in e.g., [51, 25] (so preserving the key link between theory and
practice found in previous BDI-based approaches), and a uniform approach to programming
all aspects of agent behaviour, as in [25]. It seems plausible that the BDI approach of
determining which plan to adopt based on the agent’s current beliefs should apply equally to
the problem of selecting an appropriate deliberation strategy given the agent’s current state,
and moreover facilitates a modular, incremental approach to the development of deliberation
strategies. It is also desirable that the implementation of such an extended architecture
should take advantage of recent work in scalable query evaluation described in Section
6.2. However, the focus must be on extending the capabilities of agents to allow them to
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deliberate over both means and ends, rather than efficiency issues per se. There seems little
benefit in, e.g., reimplementing a standard BDI architecture using reactive programming
techniques. The key problem with existing agent platforms is not that they run too slowly
(though in some cases they may do so), but that the behaviours that can be easily programmed
are too limited to make them worth adopting by developers outside the agent programming
community.

7.2 The Longer Term

The advances in both hardware and related AI sub-disciplines highlighted in Section 6
mean we are now in a position where we can rethink the foundations of agent programming
languages. In doing so we can address some of the key challenges in agent development that
have been largely ignored for the last twenty years. Note that this is not just ‘more of the
same’—the rest of AI has moved on significantly since the early work on the BDI model,
creating significant new opportunities that agent programming can exploit.

Below, I briefly sketch one possible path such developments could take. The ideas
are shaped by my own interests and are not intended to be exhaustive or prescriptive (for
some alternative suggestions, see [21]). However I believe that all feasible futures for agent
programming entail a fundamental shift in emphasis: agent programming must become
more about describing the problem rather than ‘hacking code’, with the agent programming
language/platform doing (more of) the hard bits currently left to the agent developer.

Beliefs: how and when beliefs are updated (active sensing, lazy update); handling uncertain
and inconsistent beliefs.

Goals: goals with priorities and deadlines; maintenance and other repeating goals; when
to adopt, suspend and drop goals (cf work on goal life cycles); how to tell if a goal is
achieved (e.g., if beliefs are uncertain).

Plans: plans with durative and nondeterministic actions; plans with partially ordered steps;
when (and how) to synthesise new plans.

Intentions: how to estimate the time required to execute an intention; which intentions to
progress next; how to schedule intentions to avoid interference; how to handle plan
failure.

MAS level: how to decide when to join an open system/coalition/team; deliberation about
roles and norms; multiagent deliberation about team plans and commitments; strategic
reasoning about other agents.

A key feature common to all these possible research directions, is that they involve the APL
rather than the agent developer solving a problem.

7.3 What Counts as Progress

Identifying possible research directions is, on its own, insufficient. To count as progress,
future research in agent programming must meet a number of criteria that characterise
the unique contribution of agent programming (and agent architectures) as a field, distinct
from other subfields of multiagent systems, and artificial intelligence and computer science
generally. I therefore conclude this section with a set of ‘progress metrics’ which are rooted
in the analysis presented in Section 4:
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• extensions need to be integrated, e.g., uncertain and inconsistent beliefs have
implications for plan selection and determining when a goal is achieved, plans with
nondeterministic actions may determine when sensing is required, etc.;

• ideally, the agent language/platform needs to be modular, so that an agent developer
only needs to master the features necessary for their application; and

• the key evaluation criterion should be whether a developer has to explicitly program
something rather than how long it takes them to program it or how many errors they
make.

The last point is critical. Wherever possible, any extension must aim to make development
easier (or at least no more difficult than at present), while increasing the range of agent
behaviours. Clearly, the developer will have to write code specific to their particular
application. The aim is to raise the level of abstraction offered by the agent programming
language, and by doing so address the challenge of integrating the AI sub-disciplines
necessary to design and build intelligent autonomous entities.18 Evaluating agent programs
(and indirectly APLs) on this criterion will require richer benchmark problems (or less toy
versions of current problems). However such benchmarks are required anyway if we are
to demonstrate that APLs can solve problems that can’t easily be solved using mainstream
programming techniques.

This list of performance metrics is preliminary and can (and should) be improved.
However broad consensus around some set of metrics is essential for subfield of agent
programming to be coherent as a community, and I would argue that a list something like the
above is necessary for our research to have impact in the wider field of multiagent systems.

8 Conclusion

Agent programming has come a long way since since Georgeff & Rao’s seminal work on
the Belief-Desire-Intention paradigm. BDI has developed into the dominant approach to
agent development, and a wide variety of agent languages have been developed based on
the BDI model. Many of these languages have a solid theoretical foundation in the form of
a precise operational semantics, and several have mature platforms with at least basic tool
support.

However in all disciplines, there is a need to pause periodically to take stock, and
consider the possible shape of the future. I believe that in agent programming the need to
reflect on the future is more than usually pressing. The increasing focus on autonomous
systems such as driverless cars, UAVs, manufacturing, healthcare, personal assistants, etc.,
presents unprecedented opportunities for agent programming, but these opportunities will
only be realised if there is a significant change in direction (or at least emphasis) in agent
programming research.

This paper represents an attempt to take stock of where we are, what has been achieved,
and what key open problems remain. It presents an analysis of the current state of the art in
agent programming (and in particular BDI-based agent programming), and its limitations.
Based on this analysis, I have outlined some suggestions for the future direction of agent
programming, and some principles that I believe any successful future direction must follow.

My analysis of why agent programming is failing to have an impact differs from that
in, e.g., [21]. It is probably the case that the lack of more polished methodologies and tools
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is a contributory factor in the limited adoption of APLs; however it seems unlikely to be
the main one. There are many examples of the adoption of a programming paradigm or
language preceding (often by a significant margin) the development of high quality tools.
For example, early C++ development environments were significantly less useable than
their C equivalents; C++ was adopted because it was easier to develop certain kinds of
applications which were difficult to program in C. Rather, I believe the key reason is that
there is little incentive for developers to switch to current agent programming languages, as
the behaviours that can be easily programmed are sufficiently simple to be implementable
in mainstream languages with only a small overhead in coding time (and, as pointed out
in Section 6.2, this overhead is about to get significantly smaller). When the costs of
transitioning to APLs is also factored in, the barrier to adoption is even higher. As a result,
apart from a small number of niche applications, e.g., development of military simulations,
the costs outweigh the benefits.

Agent programming therefore isn’t (and can’t be for a long while) primarily about
software engineering. Software engineering is important, but only as a means to an end. The
agent programming community is primarily a scientific community. It’s products are new
knowledge about how to achieve flexible intelligent behaviour in dynamic and unpredictable
environments, rather than software artefacts or tools. To make progress, we need to focus
on solving challenging AI problems in an integrated, general and tractable way. By doing
so, I believe we can create theories and languages that are much more powerful and easy
to use, and secure a future for agent programming as a discipline.
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Note

1Programming frameworks for the development of MAS are an important output of the
agent programming community, but in many cases are not essential for the implementation
of individual autonomous systems.

2As the authors note, this may be a result of the academic mailing list used to advertise the
survey.

3The number of applications using a BDI-based platform is somewhat higher if all
applications are considered (16%).

4The engagement of industry with the AAMAS conference as a whole also does not seem a
particularly relevant metric when considering future directions for engineering multiagent
systems. AAMAS is a large conference, and there are typically only a relatively small
number of papers on agent programming; even if these papers were very relevant to
industry, industrial engagement with the conference as a whole could still be low.

5The alternative interpretation, that they are all necessary for the wider adoption of APLs,
implies that agent programming as a field must progress on a very broad front, and is even
more daunting than my analysis below.

6There are, of course, overlaps between the two views. In particular, there is a strand of work
in what I am characterising as the AI-oriented view, that focuses on the engineering of
intelligent autonomous systems. However the focus of work in the software engineering-
oriented tradition is much less on AI and more on distributed systems.

7Some, e.g., [34], go further, and argue that a system’s ability to reason about its own
deliberation is key to intelligence. While taking resource-boundedness into account is
clearly necessary when designing practical agents, the focus of this paper is on the
functional requirements of an intelligent autonomous agent.

8There is some evidence, e.g., [3], which suggests that BDI-based languages can
significantly increase programmer productivity relative to programming in, e.g., Java.
Even if this is the case, for current BDI-based languages to be widely adopted, there needs
to be a significant class of applications that can be mostly programmed using only the
current BDI core feature set, and there is little evidence to support this.

9The Jason .intend internal action checks if a particular triggering event occurs in any
plan within an intention. However it provides no information about the plans that have
been selected for these events, how far execution of these plans have progressed etc.
(this information is available for the current intention via the .current_intention
internal action, but not for other intentions).

10The argument that an APL should support only basic features for plan selection and failure
recovery seems spurious for another reason—most widely used programming languages
provide support for many more features than will be used in any particular application.

11www.icaps-conference.org
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12The 2014 edition of the International Planning Competition included a Sequential Agile
track for the first time. The objective of the Agile track is to ‘minimize the CPU time
needed for finding a plan’.

13See, for example rx.codeplex.com.

14msdn.microsoft.com

15code.google.com/p/cqengine

16Implementing support for handling plan failure in a reactive programming model is slightly
more complex, but possible.

17In 2APL it is possible to write a planning goal rule to drop a goal based on the agent’s
other goals, but it is not possible to decide whether to adopt a goal based on the agent’s
current goals. One can write a procedure call rule to, e.g., convert an event into a goal, but
the condition of the rule is restricted to being a belief query. In Jason, even getting access
to the agent’s current goals is difficult.

18A similar point is made by Hindriks [21] when he advocates easy access to powerful AI
techniques. However Hindriks sees this as a desirable rather than a necessary feature.


