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Abstract—Simulated Annealing is a well known local search
metaheuristic used for solving computationally hard optimisation
problems. Cross-domain search poses a higher level issue where a
single solution method is used with minor, preferably no modifica-
tion for solving characteristically different optimisation problems.
The performance of a metaheuristic is often dependant on its
initial parameter settings, hence detecting the best configuration,
i.e. parameter tuning is crucial, which becomes a further challenge
for cross-domain search. In this paper, we investigate the cross-
domain search performance of Simulated Annealing via tuning
for solving six problems, ranging from personnel scheduling to
vehicle routing under a stochastic local search framework. The
empirical results show that Simulated Annealing is extremely
sensitive to the initial parameter settings leading to sub-standard
performance when used as a single solution method for cross-
domain search. Moreover, we demonstrate that cross-domain
parameter tuning is inferior to domain-level tuning highlighting
the requirements for adaptive parameter configurations when
dealing with cross-domain search.

I. INTRODUCTION

Many real-world combinatorial optimisation problems are
NP-hard [1]. Heuristic search methods are often preferred over
exhaustive search methods, such as dynamic programming
or math modelling in practise, considering that they may
struggle in finding good quality solutions to these problems,
and even an acceptable solution in some cases in a prescribed
time frame. Cross-domain search [2] is a high level prob-
lem which entails solving multiple characteristically different
combinatorial optimisation problems using a single solution
method. The cross-domain search problem is an interesting
one as the features of the problems being solved may be
very different however the methods used to solve them do
so without modification. A single solution method capable of
solving the cross-domain search problem well is highly sought
after as it can not only solve existing problems, but also new
and unseen problems without modification. Moreover, if this
method can perform well across existing problems, then it is
a good candidate for solving new and unknown problems well
also.

Hyper-heuristics [3] have been explored as solution methods
for cross-domain search. Selection hyper-heuristics contain
two key components, a heuristic selection method, and move
acceptance strategy. Whilst hyper-heuristics appear to perform

well for cross-domain search, their studies emphasise on
high level heuristic selection methods with disregard or lack
of reasoning in the choice of move acceptance strategies
used for accepting or rejecting neighbourhood moves. Single
point based metaheuristics, also referred to as local search
metaheuristics [4] perform an iterative search based on a single
solution. They are usually employed as the move acceptance
component within hyper-heuristics and have also been used
on their own for tackling the cross-domain search problem. It
is this component that is the focus of this study.

The performance of heuristic optimisation methods is af-
fected by their parameter settings. Parameter tuning to find
the best settings is therefore required to achieve the best
performance of such methods. The parameter setting prob-
lem is itself another example of an computationally difficult
problem requiring an exponential number of evaluations in the
number of parameters and parameter levels to find the best
configuration. Surveys on parameter tuning (algorithm config-
uration) methods can be found in [5], [6]. Cross-domain search
however entails solving characteristically different problems.
This means that the optimal parameter settings are unlikely
to be the same when solving different problems. A steady-
state memetic algorithm (SSMA) was tuned for cross-domain
search in [7]. Surprisingly, they showed that the best parameter
configuration obtained on a training set of problems and
on an extended set of problems remained the same for the
SSMA. Some key details were however not explored; whether
cross-domain tuning is a viable strategy for improving the
cross-domain performance, that is that it does not perform
worse than per domain tuning, and whether the Taguchi
orthogonal array design of experiments method [8], as used
in the aforementioned paper, is a suitable strategy for tuning
a cross-domain search method.

Simulated Annealing [9], abbreviated herein to SA, is an
extremely popular metaheuristic used for solving optimisation
problems. In this paper, we use SA as the move acceptance
component of a stochastic local search metaheuristic, thus
eliminating any influence of heuristic selection methods, and
investigate different tuning strategies for improving its cross-
domain performance across six problem domains.

The rest of this paper is structured as follows. Section II pro-
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vides an introduction to Simulated Annealing as a stochastic
local search metaheuristic, and the methodology for this study
is given in Section III. The results are discussed in Section IV,
and conclusions are provided in Section V.

II. SIMULATED ANNEALING

Simulated Annealing (SA) is a stochastic local search meta-
heuristic used for solving many combinatorial optimisation
problems. The pseudo-code of SA as a single point based
search algorithm is provided in Algorithm 1. The actual
SA move acceptance component is depicted by Lines 9
to 14 which is used as a part of other metaheuristics/hyper-
heuristics [10].

SA works by accepting a candidate solution if its cost
is better than or equal to that of the current solution, or
if a random number in the range [0, 1] is less than some
probability P determined by the metropolis criterion [11].
The metropolis criterion has two parameters, one being the
signed difference between the current and candidate solu-
tion (δ), and the other being a temperature (t) determined
by an accompanying annealing schedule encapsulated in the
getCurrentTemperature() method on Line 10.

Algorithm 1: A stochastic local search metaheuristic using
Simulated Annealing as its move acceptance method.

1 s← generateInitialSolution();
2 sbest ← s;
3 while terminationCriterionNotMet do
4 h← getHeuristicToApply();
5 s′ ← h(s);
6 if f(s′) < f(sbest) then
7 sbest ← s′;
8 end
9 δ ← f(s′)− f(s);

10 t← getCurrentTemperature();
11 P ← e−

δ
t ;

12 if f(s′) ≤ f(s) || random ∈ [0, 1] < P then
13 s← s′;
14 end
15 end
16 return sbest;

A. Cooling Schedules

SA requires the use of a cooling schedule to decrease the
temperature parameter, t, over time such that the probability
of accepting a worse move decreases over time. Such an-
nealing schedules include linear cooling, geometric cooling,
and Lundy and Mees cooling [12]. Linear cooling decreases
the temperature linearly as the search progresses whereas
both geometric cooling and Lundy and Mees cooling use an
exponentially decaying function to decrease the temperature.

In this study, we use the geometric cooling schedule which
has been adapted for a time based termination criterion. The
standard version of geometric cooling is given in Equation 1

and its time based equivalent in Equation 2 where t0 and tfinal
are the parameters of the cooling schedule and are the initial
and final temperatures respectively. α is a value such that t0×
αn = tfinal, i is the current iteration, and E is the current
elapsed time scaled linearly in time between 0.0 (start) and
1.0 (end).

ti = t0 × αi (1)

tE = t0 ×
(
tfinal
t0

)E
(2)

B. Temperature Settings

The setting of the initial temperature is important because
it directly affects the number of initial worse moves that
are accepted. SA relies on the acceptance of many worse
moves initially in order to escape local optima in the search
landscape. If this setting is too low, then SA will become stuck.
In contrary, if this setting is too high, then it is possible that
SA performs random walk of the search space for a significant
proportion of the search. There are several methods used in
the literature for determining this parameter value; some set
this to be a factor of the cost of the initial solution [13], others
propose that the maximum expected change in cost is used [9],
[14] such that all worsening moves are accepted, whereas a
value is calculated in [13], [15] such that a percentage of
moves are accepted at the initial temperature.

The setting of the final temperature is equally as important
because as the search nears its end, SA should accept very
few to no worse moves, allowing the search to converge. If
this setting is too high, then the search will not converge
resulting in a relatively poor quality solution being found.
On the other hand, if this setting is too low, then the search
could prematurely converge as there will be no worse moves
accepted for a significant proportion of the search. The final
temperature is usually set to some small value close to zero.

III. METHODOLOGY

In this paper, we compare three strategies for tuning SA
as a cross-domain stochastic local search algorithm. As the
stochastic local search framework, the HyFlex framework [16]
is used, which is a software framework developed to enable the
implementation and testing of cross-domain heuristic search
methods such as hyper-heuristics and metaheuristics. HyFlex
contains a total of 6 problem domains, each with 12 problem
instances. Each problem domain contains a set of move
operators (heuristics) which define the solution neighbour-
hood. In this paper, we choose a minimum subset of move
operators performing single perturbations on the solution, and
where necessary modify the existing framework, to facilitate a
true stochastic local search framework. The number of move
operators and problem instances used in this study for each
problem domain are shown in Table I.

Each tuning strategy uses the same underlying SA algorithm
however the parameters are tuned to meet different objectives.
Three parameter tuning strategies are used in this paper to



TABLE I
TOTAL NUMBER OF MOVE OPERATOR(S) AND PROBLEM INSTANCES USED FOR EACH PROBLEM DOMAIN WITHIN THE EXPERIMENTATION.

Domain Operator(s) (HyFlex ID) Instance(s)

BP [17] 3
(1) falkenauer/u1000-01, (9) testdual7/binpack0,
(11) testdual10/binpack0 [19].
(7) triples2004/instance1, (10) 50-90/instance1 [20].

FS [21] 1 (1) 20x5/2, (3) 100x20/4, (8) 500x20/2,
(10) 200x20/1, (11) 500x20/3 [23].

PS [24] 3
(5) Ikegami-3Shift-DATA1.2 [25].
(8) ERRVH-B, (9) MER-A,
(10) BCV-A.12.1, (11) ORTEC01 [26].

MAX-SAT [27] 1

(3) parity-games/instance-n3-i3-pp,
(4) parity-games/instance-n3-i3-pp-ci-ce,
(5) parity-games/instance-n3-i4-pp-ci-ce [28].
(10) jarvisalo/eq.atree.braun.8.unsat [29].
(11) highgirth/3sat/hg-3sat-v300-c1200-4 [30].

TSP 1 (0) pr299, (2) rat575, (6) d1291,
(7) u2152, (8) usa13509 [31].

VRP [32] 2

(1) Solomon/RC/RC207,
(2) Solomon/RC/RC103,
(5) Homberger/RC/RC2-10-1,
(6) Homberger/R/R1-10-1,
(9) Homberger/C/RC1-10-8 [33].

allow us to evaluate whether the Taguchi method is a viable
tuning strategy for cross-domain search, and whether cross-
domain tuning is actually a feasible approach for improving
the performance of a search method for cross-domain search.
The first strategy, θDL, represents the scenario where the pa-
rameters are tuned for each problem domain, i.e. it is not cross-
domain tuned. The second strategy, θXD-µ̄, uses mean µnorm
results per parameter level as used in the Taguchi method for
cross-domain tuning, and the third strategy, θXD-Best, uses the
parameter settings that achieve the best performance across the
tuning instances representing the cross-domain tuned method
using a full factorial tuning approach.

The time-based geometric cooling schedule used in Sim-
ulated Annealing (SA) contains two parameters, the ini-
tial temperature setting (t0), and the final temperature set-
ting (tfinal). One method of calculating the initial tem-
perature is described in [34]. In this method, an accep-
tance ratio (χ0) is specified which relates to the percent-
age of worse moves that are initially accepted. The set-
tings (levels) considered for each parameter used in the
tuning processes for both χ0 and tfinal where χ0 ∈
{0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90} and
tfinal ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0,
1000.0, 10000.0}.

Parameter tuning for θDL was performed by performing a
full factorial experiment on one small and one large instance
for each respective problem domain as summarised in Table II.
For each combination of parameter settings, 31 trials were
executed for a total of 10 nominal minutes each with respect
to the CHeSC competition [2], equivalent to 438 seconds on
a computer equipped with an Intel Core i7 3820 CPU @
3.60GHz and 16 GB of memory. The results per problem
instance were normalised with respect to the µnorm normali-
sation scheme as used in [35] to allow comparisons to be made
across multiple problems and problem instances. The best

parameter configuration was then chosen as the configuration
that has the minimum µnorm score over both tuning instances.
The process is repeated for each of the problem domains
for the domain-level tuning strategy, resulting in a set of
parameters for each problem domain.

Parameter tuning for θXD-Best uses the same methodology
as that for θDL however a single configuration is chosen that
minimises the sum of the µnorm scores over all 12 tuning
instances.

For the θXD-µ̄ tuning strategy, each parameter is considered
independent of other parameters to determine the mean av-
erage performance for each parameter level, as used in the
Taguchi method1. In this study for example, a 2 factor design
is used with 10 levels per factor meaning that for each level, a
mean µnorm score is calculated over 10 configurations (using
the same parameter level). The setting for each parameter is
then chosen (independently of one another) as the one which
has the lowest mean µnorm score over all 12 tuning instances.

The performance of all three strategies are then evaluated
across all 45 problem instances as summarised in Table I to
allow us to compare the performance of each method across. In
practise, cross-domain tuning should be performed on a proper
subset of problem domains than those they are evaluated on.
In this paper, we wanted to show a best-case scenario for
cross-domain tuning to compare it to the domain-level tuning
strategy. Hence, in this case, we utilise the full set of problem
domains.

IV. EXPERIMENTAL RESULTS

Three variations of the Simulated Annealing move accep-
tance method are investigated in this paper based on the
methodologies for determining their parameter configuration

1In this study, the Taguchi method cannot reduce the computational budget
for parameter tuning since a 2 factor design is used. Orthogonal Arrays can
reduce the required number of parameter configurations to evaluate when
using 3 or more design factors.



TABLE II
PROBLEM INSTANCES USED IN THE TUNING PROCESS.

Problem Domain Tuning Instances
Bin Packing 1, 11
Flow Shop 1, 11
Personnel Scheduling 5, 9
MAX-SAT 5, 11
Travelling Salesman Problem 2, 8
Vehicle Routing Problem 1, 6

(θ). A domain-level configuration, θDL, a cross-domain level
configuration with the best performance in tuning, θXD-Best,
and a cross-domain level configuration which minimises the
mean µnorm scores for each parameter, θXD-µ̄.

A. Parameter Tuning

With 100 results per configuration (per domain), for brevity
the results for each parameter configuration for θDL and
θXD-Best have been omitted. The parameter configurations
determined for each variation are summarised in Table III.
Figure 1 and Figure 2 show the results from tuning for
θXD-µ̄. The setting of the final temperature has a much larger
effect on the performance of SA compared to the initial
temperature, and in both cases, the performance improves as
the settings are reduced with the best settings for t0 and tfinal
being 5% and 0.00001 respectively. This yields an interesting
observation as it would suggest that accepting improving or
equal quality moves only (as t0 and tfinal tend closer to 0,
the probability of accepting any worse move during the search
also tends to 0) would improve the cross-domain performance
of such methods. The interaction plot in Figure 2 shows how
changing the initial temperature effects the performance of SA
using different final temperatures. This reveals an interesting
behaviour in that there appears to be a crossover point whereby
depending on the final temperature setting, increasing the
initial temperature causes the cross-domain performance of SA
to deteriorate rather than improve. Note that the data points
in Figure 2 also relays the results used for the θXD-Best tuning
strategy, hence the best configuration is that with the minimum
mean of µnorm. The cross-domain parameter tuning strategies
both favour the smallest final temperature setting of 0.00001
however for the initial temperature, the largest value of χ0

(90%) was favoured by θXD-Best whereas the smallest value
(5%) was favoured by θXD-µ̄.

B. Comparison of Tuning Strategies

The configuration obtained from each tuning strategy was
used to compare each strategy on the extended set of problem
instances, the computational results for which are shown in
Table IV. The mean µrank was calculated for each strategy
over all 30 problem instances to give an overview of the
cross-domain performance of each method. These were 0.324,
0.490, and 0.505 for θDL, θXD-Best, and θXD-µ̄ respectively. This
indicates that tuning using a full factorial approach performs
better, in general, than using the configuration resulting in
the best mean µnorm results as used in the Taguchi method.

TABLE III
BEST PARAMETER SETTINGS DEDUCED FROM A COMBINATORIAL TUNING

PROCESS FOR EACH PROBLEM DOMAIN, θDL(domain), AND EACH
CROSS-DOMAIN VARIANT θXD-BEST , AND θXD-µ̄ .

SA variant configuration χ0 tfinal
θDL(BP) 5% 10−5

θDL(FS) 10% 10−3

θDL(PS) 90% 104

θDL(MAX-SAT) 5% 10−1

θDL(TSP) 10% 100

θDL(VRP) 70% 10−3

θXD-Best 90% 10−5

θXD-µ̄ 5% 10−5

Fig. 1. Main effects plot of the mean µnorm results for both parameters over
all tuning instances. (Lower is better).

Fig. 2. Interaction plot of χ0 and tfinal using the mean µnorm results over
all tuning instances. (Lower is better).



TABLE V
KRUSKAL-WALLIS ONE-WAY ANOVA COMPARING THE PERFORMANCE

OF θDL , θXD-BEST , AND θXD-µ̄ WITH n0 THAT ALL RESULTS ARE FROM THE
SAME DISTRIBUTION AT CI = 95%.

Instance θDL θXD-Best θXD-µ̄ χ2(2) p

B
P

7 31.50 78.00 31.50 61.35 4.754× 10−14

1 32.05 76.90 32.05 57.09 4.01× 10−13

9 37.21 66.58 37.21 24.48 4.84× 10−6

10 38.37 64.26 38.37 19.02 7.43× 10−5

11 31.60 77.81 31.60 60.59 6.96× 10−14

M
A

X
-S

A
T 3 17.68 66.40 56.92 57.22 3.76× 10−13

5 17.27 62.40 61.32 56.51 5.36× 10−13

4 20.58 63.89 56.53 45.87 1.08× 10−10

10 17.82 71.98 51.19 63.84 1.37× 10−14

11 22.29 63.50 55.21 42.44 6.09× 10−10

PS

5 18.53 44.47 78.00 75.72 3.60× 10−17

9 16.00 52.81 72.19 69.34 8.78× 10−16

8 21.13 41.87 78.00 70.49 4.92× 10−16

10 18.56 45.31 77.13 73.17 1.29× 10−16

11 20.34 42.73 77.94 71.76 2.61× 10−16

FS

1 44.66 51.60 44.74 1.35 5.09× 10−1

8 44.08 52.18 44.74 1.72 4.23× 10−1

3 44.60 48.55 47.85 0.41 8.15× 10−1

10 47.68 48.53 44.79 0.33 8.49× 10−1

11 48.03 47.81 45.16 0.22 8.97× 10−1

T
SP

0 42.58 49.94 48.48 1.29 5.24× 10−1

8 48.61 46.97 45.42 0.22 8.97× 10−1

2 40.58 50.74 49.68 2.65 2.65× 10−1

7 57.16 43.13 40.71 6.72 3.48× 10−2

6 47.61 47.05 46.34 0.03 9.83× 10−1

V
R

P

6 46.00 44.32 50.68 0.92 6.30× 10−1

2 47.84 46.29 46.87 0.05 9.74× 10−1

5 31.85 33.13 76.02 53.78 2.10× 10−12

1 46.74 46.55 47.71 0.03 9.84× 10−1

9 45.76 45.69 49.55 0.41 8.13× 10−1

Moreover, a two-tailed Wilcoxon signed rank test using the
µnorm results from each problem instance for each strat-
egy showed that both cross-domain tuning strategies do not
perform statistically significantly different from each other
(p = 0.6701). Hence, Taguchi orthogonal arrays can be utilised
to reduce the computational cost of parameter tuning for
cross-domain search without significantly affecting the overall
performance compared to if a full factorial approach was used.

A Kruskal Wallis one-way ANOVA test was performed, a
non-parametric variant since the results do not constitute a
normal distribution, to compare the three parameter tuning
strategies. This test was performed for each problem instance
using the full set of results obtained using each strategy. The
results are shown in Table V where the best strategy, or best
group of strategies, for each instance is highlighted grey. A
darker shade of grey is used to show the best overall strategy
which is that that has the lowest mean rank as obtained from
the Kruskal Wallis test statistics. Results that are unshaded
perform significantly worse (CI = 95%) than the best group
of strategies as determined by a follow-up multiple comparison
test when p ≤ 0.05.

The results of the ANOVA test shows unsurprisingly that
domain-level tuning performs consistently amongst the best
strategy for all but one instance. While the mean µrank scores

showed that θXD-Best performed better than θXD-µ̄ on average,
the performance of θXD-µ̄ differed significantly from θDL, and
the best strategy for each instance, less often compared to
θXD-Best.

C. Behavioural Observations

The solution qualities of accepted moves and current best
solutions were also recorded to produce progress plots using
the domain-level tuned parameter settings, θDL, and using the
cross-domain, θXD-Best, tuned parameter settings for domains
where the different settings result in a significant effect on the
performance of SA and are shown in Figure 3.

Both configurations for solving the MAX-SAT problem
produces the usual behaviour of a search method using SA
as shown in Figure 3(a) and Figure 3(b). While the per-
formance using both configurations is significantly different,
the behaviour reflected in the traces are quite similar. The
settings used for the domain-level strategy uses a low initial
temperature (χ0 = 5%) and a final temperature which means
that very few worse moves are still accepted at the end of
the search. The cross-domain configuration on the other hand
uses a very high initial temperature (χ0 = 90%) resulting in
a comparatively slow intensification of the search. Moreover,
the low setting for the final temperature means that the search
becomes stuck after ≈ 1/3rd of the search accepting only
improving or equal quality moves.

The best configuration for solving the Bin Packing problem
on the other hand (χ0 = 5%, tfinal = 0.00001) illustrates
that the best performance is achieved by accepting as few
worse quality moves as possible. The trace in Figure 3(c)
shows a Bin Packing problem being solved by SA using
this configuration. After an initial period of diversification,
very few worse moves are accepted simulating an accepting
improving or equals move acceptance scheme. Use of the
cross-domain configuration can be seen in Figure 3(d). The
high initial temperature results in a gross overshoot of the
search resulting in wasted search time and ultimately poor per-
formance. This is in contrast to the cross-domain configuration
solving the MAX-SAT problem where this initial temperature
setting appears balanced and highlights the sensitivity of SA
not only to the parameter initialisation method, but also the
move operators.

The Personnel Scheduling problem has a highly modal
search landscape. Therefore, a random walk of the search
space appears to perform the best with the domain-level
parameter settings being set to their highest settings (χ0 =
90%, tfinal = 10000). This behaviour can be seen in Fig-
ure 3(e) and does not symbolise the characteristic behaviour
of SA. Figure 3(f) shows the Personnel Scheduling problem
being solved using the cross-domain configuration. While it
starts in a similar way to the domain-level configuration, the
search very quickly becomes stuck in a local optima leading
to poor overall performance.
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(a) SA solving MAX-SAT problem instance ID 10 using the θDL parameter
configuration, χ0 = 5% and tfinal = 1.0.
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(b) SA solving MAX-SAT problem instance ID 10 using the θXD-Best
parameter configuration, χ0 = 90% and tfinal = 0.00001.
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(c) SA solving Bin Packing problem instance ID 11 using the θDL parameter
configuration, χ0 = 5% and tfinal = 0.00001.
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(d) SA solving Bin Packing problem instance ID 11 using the θXD-Best
parameter configuration, χ0 = 90% and tfinal = 0.00001.
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(e) SA solving Personnel Scheduling problem instance ID 5 using the θDL
parameter configuration, χ0 = 90% and tfinal = 10000.0.
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(f) SA solving Personnel Scheduling problem instance ID 5 using the
θXD-Best parameter configuration, χ0 = 90% and tfinal = 0.00001.

Fig. 3. Objective value progress plots for the accepted and best solutions during a 10 (nominal) minute run on different problems comparing the behaviours
of the Simulated Annealing local search metaheuristic solving each respective problem using the domain-level tuning strategy, θDL (left), and cross-domain
tuning strategy, θXD-Best (right).



TABLE IV
MEAN AVERAGE, BEST RESULTS, AND STANDARD DEVIATION OF RESULTS OBTAINED BY EACH PARAMETER CONFIGURATION STRATEGY OVER 31

TRIALS PER INSTANCE.

Problem θDL θXD-Best θXD-µ̄
Instance Mean Best SD Mean Best SD Mean Best SD

B
P

7 0.0597 0.0558 0.0017 0.0681 0.0637 0.0024 0.0597 0.0558 0.0017
1 0.0328 0.0306 0.0017 0.0364 0.0351 0.0013 0.0328 0.0306 0.0017
9 0.0419 0.0394 0.0014 0.0437 0.0406 0.0015 0.0419 0.0394 0.0014
10 0.1221 0.1200 0.0010 0.1233 0.1206 0.0013 0.1221 0.1200 0.0010
11 0.0610 0.0576 0.0015 0.0680 0.0632 0.0019 0.0610 0.0576 0.0015

M
A

X
-S

A
T 3 7.81 4.00 2.02 15.42 10.00 2.59 14.06 5.00 3.47

5 13.74 7.00 3.55 34.48 16.00 10.53 33.84 16.00 11.13
4 7.65 3.00 2.36 18.42 8.00 7.40 16.45 5.00 7.42
10 8.87 4.00 2.28 17.81 9.00 2.99 14.45 9.00 2.34
11 8.26 7.00 0.86 10.35 7.00 1.25 9.87 7.00 0.99

PS

5 49.71 42.00 4.24 96.58 44.00 55.97 1020.61 289.00 366.41
9 51855.35 43315.00 4386.94 92249.65 79159.00 6530.84 99356.55 93175.00 3495.57
8 48566.10 45056.00 2012.74 51395.10 47258.00 2129.63 59961.19 57423.00 1019.24
10 1655.48 1530.00 75.27 1870.65 1654.00 147.74 2953.84 1920.00 771.37
11 474.61 392.00 51.51 1094.35 415.00 642.66 4434.61 1836.00 1268.87

FS

1 6282.61 6236.00 23.60 6287.87 6236.00 24.52 6282.77 6236.00 25.21
8 26815.16 26751.00 32.66 26827.03 26751.00 37.70 26817.35 26751.00 33.54
3 6347.32 6319.00 19.49 6349.61 6305.00 20.61 6350.00 6319.00 19.00
10 11406.13 11359.00 33.79 11405.23 11344.00 30.82 11403.45 11359.00 35.63
11 26666.61 26594.00 38.17 26666.97 26589.00 41.81 26663.19 26567.00 44.09

T
SP

0 58777.11 55208.13 2347.26 59319.11 55573.38 2300.23 59217.79 55521.81 2389.84
8 2.506×107 2.479×107 1.408×105 2.505×107 2.479×107 1.416×105 2.505×107 2.479×107 1.419×105

2 7936.98 7728.33 138.51 7974.66 7749.98 138.89 7972.13 7760.97 136.95
7 76982.33 75168.37 707.72 76617.48 74786.50 703.26 76569.54 74758.34 711.64
6 59621.38 57856.92 1037.75 59618.37 57783.36 1070.81 59611.85 57783.36 1067.06

V
R

P

6 324710.35 309246.58 6677.93 324400.15 309249.74 6630.66 325643.45 309290.71 6537.70
2 29523.78 25257.79 2022.90 29419.82 26042.13 2067.75 29447.22 25279.36 2087.32
5 347218.93 290779.35 84216.34 344662.76 282081.86 81847.89 563641.13 539264.30 11335.90
1 30565.62 24270.15 3815.53 30599.03 25336.76 3761.66 30564.85 24270.15 3816.14
9 389054.67 373573.02 7259.43 389027.63 373186.27 7260.28 390219.82 379735.24 6935.30

TABLE VI
RANKS OF THE OBTAINED DOMAIN-LEVEL PARAMETER CONFIGURATION

COMPARED TO OTHER CONFIGURATIONS WITH RESPECT TO EACH
INDIVIDUAL TUNING INSTANCE.

Problem Domain Instance I Instance II
θDL(BP) 1 1
θDL(FS) 12 2
θDL(PS) 19 1
θDL(MAX-SAT) 1 2
θDL(TSP) 1 1
θDL(VRP) 1 3

D. Cross-domain Suitability

The parameter sensitivity combined with the characteris-
tically different requirements for move acceptance favoured
by some problems would suggest that SA is perhaps not the
most suitable choice for the move acceptance component of
a cross-domain search method, requiring intervention from
domain experts for configuring its parameters. Further, the
configurations obtained by the full factorial parameter tuning
experiment for the domain-level strategy, θDL, was not the
top ranked configuration for both tuning instances within each
problem domain. The ranks of the obtained configuration for
both instances of each problem domain are shown in Table VI
showing that parameter sensitivity remains an issue even at an
intra-domain level.

V. CONCLUSIONS

In this paper, we investigated the plausibility of tuning a
simulated annealing metaheuristic for cross-domain search.
We showed that cross-domain parameter tuning then can be
used to improve the cross-domain performance of the sim-
ulated annealing based stochastic local search metaheuristic.
Moreover, Taguchi orthogonal arrays can be used to reduce
the computational budget of the tuning process without sig-
nificantly affecting its performance cross-domain compared
to if a full factorial design was used. Automatic parameter
tuning methods [6] have been used previously to find the best
parameter configurations for solving specific types of problems
and parameter tuning is shown in this study to be of value for
tuning a cross-domain search method. Hence, such methods
should also be of value for cross-domain algorithms. The
complete picture however shows that whilst the cross-domain
tuning strategies investigated can be used to improve the cross-
domain performance, they are still inferior to domain-level
tuning methods. Therefore, parameter tuning methods would
have more benefit being applied at such a level and success
at a cross-domain level is debatable.

The procedure used to calculate the initial temperature in
this study considers only the worse move deltas to calculate a
temperature such that initially a certain proportion of those
worse moves are accepted. This however ignores the ratio
of improving to non-improving solutions generated by the



move operators and for cross-domain search, means that the
behaviour of the simulated annealing algorithm can vary sig-
nificantly using the same parameter configurations. Moreover,
some problems benefited from settings which detract from the
characteristic behaviour of SA, instead simulating a random
walk or acceptance of improving or equal moves only. Adap-
tive variants of SA have been previously proposed such as
Adaptive Simulated Annealing [36]. However by introducing
such strategies, an increasing number of parameters are also
introduced whose settings can effect the performance of the
search method and drastically increases the complexity of such
strategies. Moreover, such strategies tend to adapt to the search
space rather than the characteristics of the problem being
solved. Evidently, significant improvement can be realised
through intelligent parameter setting strategies and/or adaptive
methods.

In future work, the computational time budget for parameter
tuning in cross-domain search methods can be reduced by us-
ing the Taguchi orthogonal array design of experiments with-
out significantly effecting its potential overall performance.
Tuning the parameters for each domain however still remains
the superior strategy highlighting the requirement for adaptive
move acceptance methods which are less sensitive to their
parameter settings for cross-domain search. The observations
of the behaviour of the domain-level tuned Simulated Anneal-
ing method across multiple problems also raises important
questions for cross-domain search methods. How does the
choice of move acceptance component effect the cross-domain
performance of such algorithms, and which move acceptance
method(s), if any, is (are) suitable for cross-domain search?
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