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Abstract
We investigate a strongly correlated systemof light andmatter in two-dimensional cavity arrays.We
formulate amultimode Tavis–Cummings (TC)Hamiltonian for two-level atoms coupled to cavity
modes and driven by an external laserfieldwhich reduces to an effective spinHamiltonian in the
dispersive regime. In one-dimensionwe provide an exact analytical solution. In two-dimensions, we
performmean-field study and large scale quantumMonteCarlo simulations of both the TC and the
effective spinmodels.We discuss the phase diagram and the parameter regimewhich gives rise to
frustrated interactions between the spins.We provide a quantitative description of the phase
transitions and correlation properties featured by the system andwe discuss graph-theoretical
properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.

1. Introduction

Strongly coupled light-matter systems are at the heart ofmuch of the effort inmodern atomic and optical
physics with applications ranging fromquantum information processing to quantum simulations.

In this context, the use of cavities plays a prominent role as the strong confinement of the electromagnetic
field implies strong interactionwithmatter coupled to the cavitymodes. In particular, it offers possibilities to
realize and study a plethora of quantum light-mattermany-bodyHamiltonians such as the so-called Jaynes–
Cummings–Hubbard orRabi–Hubbardmodels [1–11], or quantum fluids of light, where the effective
interaction between lightfields ismediated by a nonlinearmedium [12–14]. This offers ways to study various
physical phenomena such as excitation propagation in chiral networks [15–17], the physics of spin glasses
[18–20] and quantumHopfield networks [21, 22], self-organization of the atomicmotion in optical cavities
[23–27] or quantumphase transitions in arrays of nanocavity quantumdots [28] and inCoulomb crystals [29].
Furthermore,modern implementations of optical andmicrowave cavities allow for the creation of lattices with
tunable geometries and dimensionality [30–32].

The paradigmatic description of cavity and circuitQED systems is typically in terms of the famousDicke
[33], Jaynes–Cummings [34] or Tavis–Cummings (TC) [35, 36]models, which describe the interaction between
themodes of the lightfield and thematter constituents, typically spin or phononic degrees of freedomof atoms
or ions. Importantly, effective spinmodels emerge in the dispersive limit of the TCorDickemodels [37, 38].
Under some circumstances this leads to spinHamiltonianswith frustrated or long-range interactions
[19, 39, 40], thus offering ways to study rich physics of quantummagnetism. This is a particularly interesting
direction allowing e.g. for studies of spin liquids [41–43]with optical quantum simulators.

While advanced numerical techniques, such as tensor networks, have been developed for spinHamiltonians
[44–47], the use of similarly efficient techniques for quantumoptical systems, where a systemof spins is coupled
to the bosonicmodes of an electromagnetic field remains limited. In this workwe usemean-field (MF)
description, exact diagonalization and large-scale quantumMonteCarlo (QMC) algorithm to study arrays
of waveguide cavities (we note that in the context of cavityQED,QMCwas implemented to study both the
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Jaynes–Cummings–Hubbard [48] and theRabi–Hubbard [49]models). This gives us rigorous tools to
investigate the emergence of the effective spin physics as a limiting case of the parent TCHamiltonian for
arbitrary lattice geometries and dimensions. Specifically, in this workwe focus on square lattice geometry andwe
study the ground state properties of the TC and the effective spinmodels for various parameter regimes.We then
show, that depending on the parameter regime and the array geometry, spinmodels with both non-frustrated
and frustrated interactions can be engineered.

The paper is organized as follows. In section 2we introduce the system and derive the effective spinmodel
from the parent TCHamiltonian. In section 3we present exact analytical solution of the spinmodel in one-
dimension. In section 4we present the results of theQMC simulation andMF analysis and discuss different
regimes provided by the investigatedmodel.We explain how the present work opens possibilities for simulating
frustrated systems in section 5 and conclude in section 6.

2. EffectiveHamiltonians

2.1.Multimode TCHamiltonian
Recent advances in integrated optical circuits, where in principle arbitrary waveguide geometries can be created
with high precision by laser engraving in the silica substrate [50] and an active experimental effort to combine
thewaveguideswith atomicmicrotraps on a single device [51, 52]motivate us to investigate a systemof three-
level atoms embeded inwaveguide cavities.

We consider a square cavity array, wherewe denote by ai (bν) themodes in the ith row (νth column) of the
array, as shown infigure 1(a).We use the latin (greek) indices to denote the rows (columns) throughout the
article. All sites of the array are occupied by identical three-level systems in aΛ configuration, where 0 , 1ñ ñ∣ ∣
denote the ground states and eñ∣ the excited state, see figure 1(b). The cavitymodes are coupledwith strength g0
to the e0ñ - ñ∣ ∣ transition, while the e1ñ - ñ∣ ∣ transition couples to a classical fieldΩwith frequency Tw which
propagates perpendicularly to the plane of the array andwhich is detuned by e T1w wD = - with respect to the

e1ñ - ñ∣ ∣ transition. In the limit g ,e 0D W one can eliminate the excited state, whichwe described in detail in
our previous publication [53]. Furthermore, under the condition of strong driving

g 10W  ( )

the resultingHamiltonian is of the TC type and reads (see appendix A for the details of the derivation and of the
fullHamiltonian)

H a a b b g a a g b b
2

. 2
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i i i
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Figure 1. Sketch of the considered coupled light-matter system. (a)Horizontal (vertical) cavitymodes a (b) couple to three-level
systems located at the nodes of the array and represented by the grey spheres. (b)The atomic level scheme. The e1ñ - ñ∣ ∣ transition is
driven by a classicalfieldwithRabi frequencyΩ and the excited state eñ∣ is adiabatically eliminated, see text for details. (c) Schematic of
the emergent spin system after the dispersive transformation of the cavitymodes. (d)Graphical representation of the parameter
regime of the emergent spinHamiltonian (5). Considering identical couplings along rows ( al ) and columns ( bl ), the sign of the
effective spin–spin interaction a bl ( ) determines the nature of the spin–spin interaction: non-frustrated if all 0l < , frustrated
otherwise. As l∣ ∣ is increased, a transition to a superradiant (SR) phase occurs, corresponding to a non-zero spin excitations of the
system.While arbitrary rectangular arrays can be considered in the non-frustrated regime, only elongated geometries give rise to a
non-trivial spin physics in the frustrated regime, see section 5 for details.
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with the effective atomic transition frequency and the effective coupling strength

a, 3
e

at
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( )

Here, i
z,s n
 are the usual Paulimatrices written in the 1 , 0ñ ñ{∣ ∣ }basis, iD n( ) the effective cavity frequencies, atw

the effective frequency of the 0 1ñ - ñ∣ ∣ transition and i L L1 .. , 1 ..y xn= = , where L Ly x( ) is the number of
rows (columns) of the array.

2.2. SpinHamiltonian
In the large detuning (dispersive) limit

g , 4iatw - D n ∣ ∣ ( )( )

one can further perform a unitary transformation to perturbatively eliminate the cavity fields in order to obtain
an effective spinHamiltonian, where a given spin is coupled to all other spins belonging to the same cavitymode
(see figure 1(c) and appendix A),

H H H H , 5spin spin,0 spin,intd= + + ( )
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are the effective spin–spin couplings along the rows (columns) and

a a a b b a b b a b b a2 2 . 8i i i i i i i iat,dw l l= + + + + +n n n n n n n n( ) ( ) ( )† † † † † †

2.3. Validity of the approximations and frustrated versus non-frustrated regime
Dispersively eliminating photonic or phononicfields leading to an effective spin physics is a known technique
often used in the design of various quantumoptical simulators. It can lead to interesting frustrated spin
Hamiltonians, e.g. in the context of trapped ions [39, 40, 54].

In order to simplify the parameter space, inwhat followswe choose all the couplings to be the same along
rows (columns): i,a il lº " ( ,bl l nº "n ). Schematically, the parameter regime of the spinHamiltonian (5)
is summarized infigure 1(d).

First we note, that the parameters 2atw ,λ and atdw of theHamiltonian (5) given by (3a), (7) and (8) can take
both positive or negative sign. In particular the sign ofλ determines the kind of physical situation provided by
the interactionHamiltonian (6c): non-frustrated if both couplings are negative, 0a bl <( ) and frustrated
otherwise. This is apparent from the formof the interactionwhich tends to align each pair of spins antiparallel
whenever the corresponding coupling is positive. This then leads to frustration as the antiparallel alignment
cannot be satisfied simultaneously for all the spins. Note thatwhile we consider square lattice for concreteness,
the presence of frustration in cavity arrays stems from all-to-all interaction between spins belonging to the same
cavitymode and, hence, is independent of the lattice geometry.

Next, we discuss the parameter regimes of theHamiltonian (5).We recall that the only requirement used in
the derivation of (5) from the parent TCHamiltonian (2) is the condition (4), g a batw - D ∣ ∣( ) .

(i)Weakly interacting regime.We refer to theweakly interacting regime as the regimewhere (we drop the a b,
indices for simplicity)

3
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. 9a b atl w∣ ∣ ∣ ∣ ( )( )

Here, we have neglected the atdw term contributing to the atomic transition frequency since atdw lµ 4. One
should verify that reaching theweakly interacting regime is compatible with the conditions (1) and (4) used in
the derivation of theHamiltonians (2) and (5). It is easy to show that it is indeed the case: substituting (7) forλ in
(9), we get g 2

at atw wD -∣ ∣ ∣ ∣. This implies, togetherwith (4), that g at w∣ ∣ ∣ ∣. Finally, substituting for g from
(3b), we get g0  W∣ ∣ ∣ ∣. This is enforced by the stronger condition (1), which completes our consistency check.

(ii) Strongly interacting regime.We refer to the strongly interacting regime as the regimewhere
2a b at atl w dw+ á ñ∣ ∣ ∣ ∣( ) . Here, the cavity fields dependence of the atdw termplays an essential role.We leave

this interesting possibility for section 5 and focus first on the scenariowhere the dynamics of the cavityfields
decouples from the spins leading to a pure spinHamiltonian.

2.4. Comment on experimental realizations
While cavityQEDhas become awell established experimental research direction, a brief discussion of whether
the ground state physics studied in this paper can be accessed in a realistic experiment is in order.We note that
since the excited state eñ∣ has been eliminated, the atoms are assumed to be trapped at the positions of the lattice
sites and the levels 0 , 1ñ ñ∣ ∣ correspond to the long-lived hyperfine states, themain decoherencemechanism is
due to the decayκ of the cavitymodes (we consider the same decay rate for allmodes). In order to estimate
whether one can reach the ground state of the spinHamiltonian (5), we consider an adiabatic preparation
scheme, i.e. a situationwhere the parameters of theHamiltonian are tuned sufficiently slowly so that the state of
the system at a given time is also its ground state [55]. Specifically, the rate of change of theHamiltonian
parameters r should bemuch smaller than the energy gap ED between the ground and thefirst excited state in
order to avoid levelmixing, r ED . Provided atw is the largest energy scale in (5), the gap corresponds to the
energy cost of exciting a single spin, i.e. E atwD » . At the same time, r should bemuch faster than the cavity
decay in order to be able to reach the desired ground state without being affected by the decay, which yields the
following condition for the timescales

r . 10at atw k w k  ∣ ∣ ∣ ∣ ( )

Using (3a) and the fact that ge 0D W  (see equation (1) and the discussion above it)we arrive at gat 0w ∣ ∣
provided g e0W D W . Therefore one can see, that the condition (10) is automatically fulfilled in the strong
coupling regime, where g0  k. This regime has been realized in a number of platforms, such as optical
microcavities [56],fibre-based cavity on atomic chip [57] or open-access on-chipmicrocavities [52] all
combinedwith 87Rb atomswith g , 2 25, 2.50 k p» ´( ) ( )MHz, 2 250, 50p ´ ( )MHz and 2 1, 6.5p ´ ( )GHz
for [56, 57] and [52] respectively.

Other elements required to realize the proposed setup have been also achieved experimentally, such as a
creation of optical lattices with unitfilling using optical tweezer arrays [58, 59] or in principal arbitrary
geometries of silica-engravedwaveguide arrays [30–32].While those elements, togetherwith the condition (10),
arewithin reach of current technology, their combination on a single device remains a challenge. Fortunately,
there are active experimental efforts to achieve this goal, for example to combine thewaveguide arrays with
atomicmicrotraps [51] or atomswith photonic-crystal nanocavities [60].

3. 1D: exact solution of the spinmodel

It is illustrative to clarify on a simple example some of the basic properties of theHamiltonian (5). Specifically,
we are interested in the nature of phase transitions featured by (5) and the scalings of critical couplings. To this
endwe consider a one-dimensional limit of (5) by taking a single cavitymode a. TheHamiltonian simplifies to

H a a a a J J J4 2 . 11z
spin
1D

atw l l= D + + + + -[ ] ( )† †

Here, J are the total angularmomentumoperators

J l x y z a
1

2
, , , , 12l

i

N

i
l

1
å s= =
=

( )

J b. 12
i

N

i
1

å s=

=

 ( )

Wenote that in the absence of the cavity fields, (11) is thewell-known Lipkin–Meshkov–Glickmodel [61], which
has been recently studied also in the context of cavityQED [62]. The advantage of themodel (11) is that it is
exactly solvable providing uswith useful analytical insights. Using the usual angularmomentum algebra

4
One should verify the self-consistency of the condition (9)when performing the simulation of the parent TCmodel, i.e. to check, whether

the resulting cavity occupation is such that at atdw wá ñ ∣ ∣ ∣ ∣.

4
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J J m m J m a, , , 13z ñ = ñ∣ ∣ ( )

J J m J J m m J m b, 1 1 , 1 , 13ñ = + -   ñ∣ ( ) ( ) ∣ ( )

where J is the half-integer total angularmomentum (J N 2= forN spins) and m J J J, 1, ,= - - + ¼ , it
follows that J m n, , ñ∣ , where n is the photon number, are the eigenstates of theHamiltonian (11). The
eigenenergies are

E n n m J J m m

m n J J m m m

4 2 1 1

4 2 1 1 , 14
J m n, , at

at

w l l
l l w

= D + + + + - -
= D + + + - - +

[ ] [ ( ) ( )]
[ ] [ ( ) ( )] ( )

where in the second linewe have regrouped the terms in order to emphasise the dependence on the photon
number n.

The implications of the first bracket in the second line of (14) are the following. For

E m4 0 15n lº D + > ( )

the ground state photon number is 0.On the other hand, for E 0n < the ground state photon number is n = ¥,
which invalidates the approximate description in terms of the effectiveHamiltonian (11). At this point it is
important to note that since both atwD - in the denominator ofλ andm can take positive or negative values,
there is always a combination ofm and atwD - where the transition n n0= « = ¥ occurs asλ is varied.
The situation is summarized in table 1. Themainmessage contained in the table 1 is that it is not possible to
simulate the frustrated spin systemusing (2) in one-dimension (see also [63]). In section 5wewill show, how this
limitation can be circumvented in two-dimensions by exploiting the properties of the atdw term (8).

Inwhat followswe shall investigate this transition and its relation to the parent TCHamiltonian (2) further.
The n n0= « = ¥ transition occurs when En changes sign. From (7) and (15)we get the expression for a
critical coupling gc

g
m2

. 16c
atw

=
D D -( ) ( )

Letsfirst consider 0atw > . In the non-frustrated case ( 0l < , atwD > ), theminimal possible value of gc
corresponds to m N 2= (i.e. all spins excited). On the other hand, for 0l > and positive atw assumed here, we
can have either 0D > or 0D < . For 0D < , we can see immediately from (15) thatEn can bemade always
negative by a suitable choice ofm. Specifically, considering the spin ground state m N 2= - , the global ground
state would correspond to n = ¥ invalidating the description in terms of (11). On the other hand, for 0D >
the systemundergoes the n n0= « = ¥ transition asλ is increased. However, it occurs for m N 2= - , i.e.
before any spin transition could possibly take place. One could nowproceed analogously for 0atw < 5.

In summary, the critical coupling at which the n n0= « = ¥ transition occurs is given by

g
N

1
, 17

c
ph

atw= D D -( ) ( )

wherewe have emphasised by the label ‘ph’, that the transition is in the photon number.
In one-dimension, the only non-trivial situation is thus the non-frustrated case, 0l < , where n= 0.Here, a

series of transitions between phases with N mexc ( ) and N m N m1 1exc exc+ = +( ) ( ) excited spins takes place as
l∣ ∣ is increased (here N m m N2 2exc = +( ) ( ) ). The corresponding coupling strengths at which these
transitions occur are obtained from (14) by solving for E EJ m J m, ,0 , 1,0= + .

For instance, considering 0atw > and atwD > , third line in table 1, thefirst spin transition from
m N 2= - to m N 2 1= - + occurs at

Table 1. Summary of phase transitions as the coupling g (λ) is varied in the 1D effective spinmodel (11) based on the analysis of (14).+ (−)
stand for positive (negative) values respectively. The ‘ n = ¥( )’ description in the second and fifth line indicates that in these cases, the
ground state corresponds to the infinite photon number independently of the value ofλ, see (15) and text for details.

atw Ground state configuration (for 0l = ) λ atwD - Δ Spin transition

+ 0 .. 0ñ∣ + − + no

+ − − no (n = ¥)
− + + yes

− 1 .. 1ñ∣ − + − yes

− + + no (n = ¥)
+ − − no

5
Wenote that (11) does not inherit the simple 2 symmetry of the parent TCmodel, namely the symmetry under simultaneous exchange

a a,z zs s s s - + -† and at atw w - , due to the nonlinear nature of the transformation yielding the effective spinmodel, see
appendix A.

5
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g
N

1
. 18c at atw w= D -( ) ( )

One can also read off from the expression (18) the scaling properties of the critical point of the spin transition
with the system size, g N1c µ and correspondingly for the critical couplingλ, N1cl µ∣ ∣ .

4. 2D: analytical study andQMCsimulations

After having analysed the situation in 1D,we now turn our attention to 2D. It is well known that theDickemodel
features second order superradiant phase transition as the coupling strength is varied [33, 64, 65].Wewill
analyse the scaling properties at this superradiant phase transition and evaluate the two-point spin correlation
functions of the cavity array. In order to do so, we employ large scaleQMC simulations using theworm
algorithm [66, 67]. In the followingwe compare theQMC results with theMF solutions.We emphasise that in
the considered square lattice geometry the spins are not all-to-all connected (they are connected only if they
belong to the same row/column), i.e. it is not apriori obvious whether theMF solutions provide an accurate
quantitative description.

In order to simplify the discussion, in this sectionwe consider equal couplings along all rows and columns,

a bl l lº = (i.e. i, ,i nD º D = D "n ).Motivated by the findings in the one-dimensional case, we focus
only on the non-frustrated casewith 0atw > and atwD > .Wewill address the frustrated case in section 5.

MF solutions.In the thermodynamic limit, one can findMF solutions of the TCmodel (2)whichwe describe
in detail in appendix B andwhichwe use for the sake of comparisonwith theQMCdata. In particular, for an
array of size N L Lx y= ´ one can find expressions for the critical strength g

c
MF of the coupling at which the

superradiant transition occurs and the number of spin excitations Nexc in the superradiant phase, which read

g
L L

L L4
19

c

x y

x y

MF
atw= D

+⎛
⎝⎜

⎞
⎠⎟ ( )

and

N
N g

g2
1 20c

exc
MF

MF 2

= -
⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟ ( )

respectively. In the specific case of a square array L L Lx yº = and in the limitD  ¥, where the descriptions
in terms of (2) and (5) should coincide, we get with the help of (7)6

L4
21c

MF, atl
w

º -¥ ( )

and

N
N

L2
1

1

4
. 22exc

MF, atw
l

º +¥ ⎜ ⎟⎛
⎝

⎞
⎠ ( )

The spinmodel (5) is an effective description of the parent TCmodel (2) in the limit of large detuning (4).
Therefore, the excitations of the TCmodel in the superradiant phase result in spin excitations in the effective
spinmodel. Here, QMCprovides an efficient numerical tool to study this limit behaviour of the TCmodel and
howwell it is described by the effective spinmodel. The results of the simulations are presented infigure 2.Here
we show the critical couplings of the superradiant phase transition gc determined usingQMC (using the total
number of photonic and spin excitations as order parameter, where the transition separates the normal and
superradiant phases characterised by zero (non-zero) value of the order parameter; square and circle data points)
and theMFprediction (19), solid and dashed lines. The red (blue)data correspond to two different system sizes
N 18 18= ´ (N 28 28= ´ ) respectively and the horizontal black lines are the values of the critical couplings

cl obtained from theQMC simulation of the effective spinmodel (5). As expected, wefind that the values of the
critical couplings approach asymptotically in the limit atwD  where the twomodels (2) and (5) coincide. In
the insets we show the finite size scaling of the critical couplings for the TC (left inset) and effective spin (right
inset)models. As in themain plot, the squares represent theQMCdata and the solid lines are theMFpredictions
(19) and (21). The slight departure of the scaling for the spinmodel for small system sizes is indeed afinite size
effect onwhichwewill commentmomentarily.We also note, that the couplings for the present 2Dmodel scale
in the sameway as the 1Dpredictions (18), i.e. in the linear extent of the system, g L1c µ . This is due to the
fact that the scaling is determined by the number of cavitymodes towhich the atoms couple rather than by the
system sizeN (see also appendix B).

6
Wenote that for the square array, g L1c

MF µ and g gs c
2 MFa µ -∣ ∣ ( ) in the vicinity of the critical point, see (B5), i.e. we recover the same

scaling behaviour as given by the single-modeDickemodel undergoing the superradiant phase transition [65, 76, 77].
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After we have verified that the critical couplings of the TCmodel coincide with those of the spinmodel, we
now study the number of excitations of the spinmodel as the coupling strength is varied. This is shown in
figure 3. The solid line corresponds to theMFprediction (22). The squares correspond to theQMC simulation
of the spinmodel (5) on a N 20 20= ´ array, wherewe have neglected ,a bl l in (6a) as atl w∣ ∣ in the
studied regime. The discrepancy between theMFprediction and theQMC simulation is precisely the
consequence of neglecting ,a bl l in (6a) and results in an offset L1 4 2- ( ) in the values ofλ—the dashed line
corresponds to theMF solution corrected for this offset7.

So far, we concentrated only on one-point observables in ourQMC simulations and found a good agreement
with theMFpredictions. In order to go beyond theMFpicture we next consider the correlation functions.
Before presenting the results and in order to get a deeper insight in the structure of the spinHamiltonians
emergent in cavity arrays, in the following sectionwe study the properties of the ground states from the group
and graph theory perspective.

4.1. Ground state structure
Symmetry considerations.We start our analysis in this section by noting that the total number of spin excitations,

N 1i i
z

exc ,
1

2
s= å +n n

ˆ ( ), is the constant ofmotion of theHamiltonian (5). This significantly simplifies the

problem in that in order tofind the ground states of (5), one only needs to solve for the eigenstates of the
interactionHamiltonian (6c)

Figure 2.Reaching the effective spinmodel as the limiting case of the TCHamiltonian. Themain plot shows critical coupling cl of the
superradiant phase transition as a function of the photon detuning. The squares and circles are the data obtained from theQMC
simulation of the TCmodel (2). The solid lines are theMFpredictions (19). The red solid line and squares (blue dashed line and
circles) correspond to system sizes N L L 18 18= ´ = ´ (N 28 28= ´ ) respectively. The solid black lines are the critical coupling
values obtained from theQMC simulation of the spinmodel (5) for a given system size. Left inset:finite size scaling of the critical
coupling of the TCmodel.Right inset:finite size scaling of the critical coupling of the spinmodel.We note that the coupling goes to
zero in the thermodynamics limit as expected, see equation (19).We have used 30atwD = in the insets.

Figure 3.Number of spin excitations of the spinmodel (5) on N 20 20= ´ array versus the interaction strengthλ. The squares
represent theQMCdata, the solid line is theMFprediction (22). The dashed line is theMFprediction corrected for thefinite size offset
(see text for details). The inset shows themagnification of the region in the vicinity of the critical coupling.

7
In the spinmodel, the transition point is obtained from E E0exc 1exc= , where E N0exc

2
at= -w¢

is the ground state energywith no spin
excitation and E N L2 4 11exc

2
at l= - + + -w¢ ( ) ( ) the energy with a single excitation (here we have used (40)). Solving forλwe find

c L4
atl = -w
which coincides with theMF result (21). Neglecting theλ terms in atw¢ (46) amounts to replacing atw¢ by atw in E E0exc 1exc=

above, yielding the solution c L L L4 1 4 4
at at at

2l = - » - -w w w
-( ) , where the last term is the offset used infigure 3.
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H E 23spin,int GS GS GSy yñ = ñ∣ ∣ ( )

in the given excitation number sector Nexc.
The problem can be further simplified by exploiting the real space symmetries of theHamiltonian (5),

similarly to the analysis carried out e.g. for the antiferromagneticHeisenberg chain [68]. Considering themost
symmetric situation, i.e. a square arraywith equal couplings (Lx= Ly, a bl l= ), the discrete symmetry group of
theHamiltonian (5) is G D,L L 4x x È=´ { }R C , where ,R C andD4 stand for permutation of rows, permutation
of columns and the dihedral group of the square array (i.e. successive rotations r r r, ,2 3 2p p p by 2p and
reflections about the horizontal (h), vertical (v) and the two diagonal (p n, ) axes of the array) respectively. In
order to get use of the symmetries, one has tofind the irreducible representations (irreps) ofG.While a
systematic approach exists forfinding irreps of the full symmetric group SN L Lx y= [69], the subduced
representations of the subgroup G SNÌ are in general reducible [70, chapter 3].Motivated by exact
diagonalization results, instead offinding the irreps ofG, we focus on the graph-theoretical properties of the
ground states inwhat follows.

Let us start with the following observation based on the exact diagonalization results of (6c) in the non-
frustrated case 0l < in the simplest non-trivial example, a plaquette (i.e. 2× 2 array)with N 2exc =
excitations. The vertices of the plaquette are labeled 1–4, see figure 4. The ground state can bewritten as

1

2
, 24GS 1 2y q qñ = ñ + ñ∣ (∣ ∣ ) ( )

where

1

4
1100 1010 0101 0011 , 251q ñ = ñ + ñ + ñ + ñ∣ (∣ ∣ ∣ ∣ ) ( )

1

2
1001 0110 , 262q ñ = ñ + ñ∣ (∣ ∣ ) ( )

whichwe symbolically write as

s
1

, 27i
i j

j

i

åq
q

ñ = ñ
qÎ

∣
∣ ∣

∣ ( )

where sjñ∣ is a specific spin configuration and iq∣ ∣ the number of such configurations belonging to a given set iq .
This seemingly artificial decomposition of the ground state into 1q ñ∣ and 2q ñ∣ is in fact directly related to the
colouring of a graph aswe nowdiscuss.

Let us start by introducing the notions necessary for our considerations whichwe then demonstrate on
specific examples of the ground state construction. To this endwe follow closely the treatment presented in [71].

• Lets consider a set S and a groupG acting on Swith ranks S∣ ∣and G∣ ∣ respectively.

• ForG a discrete group, each element g GÎ can bewritten as a product of j-cycles xj, g x x x...b b
S
b

g1 2
S1 2 ( )∣ ∣

∣ ∣ ,

where bj counts howmany j-cycles appear in the decomposition of g. The product x x x...b b
S
b

g1 2
S1 2( )∣ ∣

∣ ∣ is thus a
monomial representing the cycle structure of the element g

• Lets considerm colours c c, , m1 ¼ such that a specific colour cj is assigned to each element of S

Figure 4.Top row: all possible colourings of a plaquette with N 2exc = excitations, which can be divided in two equivalence classes 1q
(first four configurations) and 2q (last two configurations).Bottom row: five equivalence classes iq , i= 1..5 for N 4exc = of 3× 3 array.
Only one representative of each class is shown. At the beginning of each row, we display the numbering of the array. Excitations are in
red, ground state atoms in black.
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Definition 1.A colouring C is a specific configuration of colours on S.

For example, considering two colours (black and red), is a possible colouring of a plaquette.

Definition 2.An orbit of a colouringC is a set of all colourings produced by the action of the groupG on
C, C g C g Gorb ,G = Î( ) { ( ) }

Anorbit is thus an equivalence class of all colourings belonging to the orbit.

Definition 3.A stabilizer of a colouringC is a set of all group elements gwhich leaveC
invariant, C g G g C Cstab ,G = Î =( ) { ( ) }

Definition 4.A generating function (or pattern inventory or cycle index) is a polynomial given by the sumof all
monomials of elements ofG acting on S

P x x
G

x x x,
1

... . 28G S
g G

b b
S
b

g1 1 2
S1 2å¼ =

Î

( )
∣ ∣

( ) ( )∣ ∣ ∣ ∣
∣ ∣

With the definitions abovewe now introduce two theorems:

Theorem1.Pólya’s enumeration theorem [72]. Let C = { }be a set of all colourings of S using colours c c, , m1 ¼ .
Let G induce an equivalence relation on  Then

P c c c, , , 29G
i

m

i
i

m

i
i

m

i
S

1 1

2

1
å å å¼
= = =

⎛
⎝⎜

⎞
⎠⎟ ( )∣ ∣

is the generating function for the number of non-equivalent colourings of S in  .

Theorem2.Orbit-stabilizer theorem [73, 74, chapter 7].

C
G

C
orb

stab
. 30G

G

=∣ ( )∣ ∣ ∣
∣ ( )∣

( )

Equippedwith the necessary notions, we return back to the example of the ground state (24)8. In order tofind
the structure of the ground state corresponding to a given excitation number sector Nexc, we need to enumerate
the number of the sets θ and howmany elements belong to each of the set. Here, we are concerned onlywith two
colours, say black and red, which correspond to spins in ground and excited state respectively. In otherwords, θ
is precisely an orbit and q∣ ∣ is thus given by the orbit-stabilizer theorem.Wenowdemonstrate the use of the
above theorems on our example of (24). The generating functional (28) of the G D D,2 2 4 4È= =´ { }R C

group of the plaquette reads (see footnote 7)

P x x x x x

b b r b r br r

1

8
2 3 2

2 . 31

G 1
4

1
2

2 2
2

4

4 3 2 2 3 4

2 2 = + + +

= + + + +

´ ( )

( )

In the second line, we have used the Pólya’s theorem,wherewe have substituted the black (b) and red (r) colours,
x b rj

j j= + for j 1, 2, 4= . In our example of two excitations, i.e. the termwith r2 in (31), the numerical
prefactor 2means there are two equivalence classes ,1 2q q of the colourings. These can be found explicitly and
read

ð32Þ

where e stands for the identity element of the groupG. Finally, one can verify that the above relations obey the
orbit-stabilizer theorem (30) so that 41q =∣ ∣ and 22q =∣ ∣ with the states written explicitly in (26).

The above results can be generalised straightforwardly to larger arrays. In that case the ground state can be
written as

, 33
i

i iGS åy y qñ = ñ∣ ∣ ( )

8
The example of colouring of a plaquette is carried out in great detail in [72] andwe refer the reader to this reference for further information.

9

New J. Phys. 19 (2017) 063033 JMinár ̌ et al



where the orbit states iq ñ∣ are orthonormal, i j ijq q dá ñ =∣ . To give an explicit example going beyond the plaquette,

we consider a 3× 3 array andwe choose N 4exc = sector.Wefind that the total of 1269

4
=( ) spin basis states

formfive equivalence classes depicted infigure 4.
TheHamiltonian in the orbit states basis , , ,1 2 3 4 5q q q q qñ ñ ñ ñ ñ{∣ ∣ ∣ ∣ ∣ } reads

H

3 0 2 2 2
0 0 4 0 0
2 4 2 4 0
2 0 4 4 4
2 0 0 4 0

. 34spin,int =

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

Wenote that H H 02 spin,int 2 5 spin,int 5q q q qá ñ = á ñ =∣ ∣ ∣ ∣ . This can be easily understoodwhen inspecting the structure
of ,2 5q q and realizing that the action of theHamiltonian (6c) is to anihilate an excitation at a given site and create
an excitation at another site. It can be seen fromfigure 4 that such operations necessarily take a state belonging to

2q or 5q out of its equivalence class. For instance for the example of 2q infigure 4, anihilating the excitation at
position 5 and creating an excitation at position 6 results in the state 3q shown and the corresponding non-zero
matrix element H2 spin,int 3q qá ñ∣ ∣ in (34) (in fact an operation displacing two excitations at oncewould be required
for the state to remain in 2q ).

Themain result of the present discussion is that the set of states (27), which has a clear group-theoretical
interpretation in terms of equivalence classes of a coloured graph, constitutes a natural basis for the ground state
of the system.While it provides a useful insight into the structure of the ground state, it does not represent a clear
computational advantage aswe did not provide a prescription for obtaining theHamiltonian (6c) in the iq ñ{∣ }
basis. Such prescription is likely to be equivalent tofinding the irreps ofG as discussed at the beginning of this
section.We leave this investigation for futurework and restrict ourselves only to exact diagonalization in the
comparativeQMC study of the correlations presented in the following section.

4.2. Correlations
Weare now in position to study the correlation functions of the spinmodel. To this endwe consider (connected)
two-point correlations of the type i js sá ñn m

+ - . Due to long (infinite) range connectivity along the rows and the
columns, the system features only two length scales corresponding to spins belonging to the same cavitymode
(intra-cavity spins, IC) and to different cavitymodes (extra-cavity spins, EC) respectively as there are atmost two
different cavitymodes connecting any two spins of the array.We thus define two types of correlation functions,

i j, ,i i i jIC Ès s n m s sS º á ñ ¹ á ñ ¹n m n n
+ - + -{ } { }and i j, ,i jEC s s n mS º á ñ ¹ ¹n m

+ -{ }, wherewe have excluded
self-correlations of the type 1 1s sá ñ = á ñá ñ+ - ∣ ∣ . This situation is schematically depicted in the inset offigure 5(a).
Here, ICS corresponds to correlations between the spin in the green box and the spins belonging to the same row
and column (red-shaded region). Similarly, ECS corresponds to correlations between the spin in the green box
and the spins belonging to the blue-shaded region. Infigure 5we plot the ratio EC ICS S as a function of the
number of spin excitations Nexc in an N 3 3= ´ (figure 5(a)) and N 5 5= ´ array (figure 5(b)). For the 3× 3
arraywefind perfect agreement between the exact results obtained by exact diagonalization of the spin
Hamiltonian (6c) in each excitation sector and theQMC simulation of that hamiltonian9.Moreover wefind a
good agreement alsowith theQMC simulation of the TCmodel (2), which is improvingwith increasing value of

atwD as it should. Similar agreement between theQMC simulations of the spin and theTCmodel is observed
for the 5× 5 array.

5. Towards simulation of frustrated spin systems in cavity arrays

In section 3we have shown, that in one-dimension it is not possible to obtain the effective spinHamiltonian (5)
with frustrated interactions 0l > . The aimof this section is to show that this limitation can be circumvented in
two-dimensions by exploiting the properties of the dw term (8).

In order to see this, we first perform a back-of-the-envelope estimation. The reason of the breakdownof the
effectivemodel in the frustrated case in one-dimension is that asλ is decreased, the term a al † in (11) is
decreasing in away that the n n0= « = ¥ transition occurs before any spin excitation can appear.

In order to simplify the analytical treatment, fromnowonwe assume all the couplings along rows to be the
same, i,a il lº " and similarly for the columns, ,bl l nº "n . Assuming further that the row (column) cavity
photon occupation numbers are na (nb), the expectation value of the dw term (8) becomes

9
TheQMC simulation is by construction performed in grand-canonical ensemble. The values of EC ICS S were obtained by post-selecting

on the results with integer number of excitations, n Ni i, excå á ñ =n n .
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n n n n2 . 35a a b b a b a b a bdw l l l l l lá ñ = + + + + +( ) ( ) ( ) ( )

It is apparent from the above expression that themagnitude of dwá ñcan bemade small when the couplings along
rows and columns have opposite signs, a bl l= - , so that the amplitude of each bracket in (35) becomes
significantly smaller than if we take bothλwith the same sign.Wewill thus consider a scenario with frustrated
interactions along one direction (we choose the a cavitymodes) and non-frustrated one along the other (b
modes) andwe paramterize the couplings as

0, 0, . 36a b b al l l hl> < = ( )

In order to show that one can get a non-trivial frustrated–non-frustrated situationwithout breaking the
effective spin description, wewill use a self-consistency argument as follows. First we restore the free cavity fields
termswe omitted in (5) so that the effective spinHamiltonian can bewritten as (see appendix A)

H H H , 37ph spin,int= + ( )

where

H a a b b 38a
j

j j b
j

L L

j j
z

ph
1 1

at,

x y

å å å å dw s= D + D +
m

m m
m

m m
= =

( )† †

is now the photonic part (note that we have absorbed the Hd term (6b) in Hph) and Hspin,int is given by (6c).
Exploiting the fact that the zs term is diagonal in eigenstate basis in all excitation sectors Nexc of the spin
Hamiltonian (5), we substitute the spin expectation values zsá ñ in (38) and subsequently diagonalize the
photonicHamiltonian, which is a straightforward exercise as it is quadratic in the photonic degrees of freedom.
We then compare the values of the critical couplings at which a transition N N 1exc exc + occurs with that of
0  ¥ photon number in analogy to the analysis in section 3.We anticipate that a non-trivial frustrated regime
can be always obtained by appropriate tuning of the systemparameters and in particular its geometry. This is
also the regimewhich fulfills the self-consistency criterion, namely taking 0dwá ñ = in the spinmodel, using the
corresponding solutions in the photonicHamiltonian (38) andfinding that its solutions again yield 0dwá ñ = .

Figure 5.Correlations of the ground state of the spinmodel (5) in (a) a N 3 3= ´ and (b) N 5 5= ´ array. The extra to intra-cavity
ratio EC ICS S of the connected correlation functions is plotted as a function of the number of spin excitations Nexc . In (a)wefind
good agreement between the exact diagonalization results of the spinmodel (blue circles), theQMC simulation of the spinmodel (red
squares) and theQMC simulation of the TCmodel (green andmagenta triangles for 20atwD = and 40 respectively). (b) Similar
agreement is obtained for the 5× 5 array. The inset in (a) is a schematic representation of the connectivity in the cavity array: IC is
represented by the red-shaded (ECby the blue-shaded) regions, see text for details.
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5.1.Diagonalization of the spinHamiltonian
In analogy to section 4we seek to diagonalize the interaction part of the spinHamiltonian (6c)

H h.c.,a
j

L L

j j b

L

k l

L

k l
1 1 1 1

x y y x

å å å ål s s l s s= + +
m n

m n
a

a a
= ¹ =

+ -

= ¹ =

+ -

wherewe have now explicitly written the summation limits.
0-excitation sector.Here the situation is trivial, the unique ground state being simply 00 .. 00y ñ = ñ∣ ∣ , i.e. all

spins down and correspondingly s l1, ,l
z

l
z0 0y s y mº á ñ = - "m m∣ ∣

1-excitation sector. In the basis 100 .. 0 , 010 .. 0 , , 000 .. 1ñ ñ ¼ ñ{∣ ∣ ∣ }of single particle states, the interaction
Hamiltonian (6c) takes a simple form

H M M2 2 , 39a a b b a b1exc  l l= Ä + Ä ( )

where the a (b)matrices have dimensions L L L Lx x y y´ ´( ) respectively and the prefactor 2 comes from
accounting twice for each spin configuration in (6c).M arematrices with 1 everywhere except the diagonal,
where it is 0, M 1ij ijd= - . The corresponding eigenvalues andmultiplicities are

M L
L

M L

L

Matrix Eigenvalue Multiplicity

1 1
1 1

1 1

1 1

40
a x

x

b y

y

- -
-

- -
-

( )

Since 0al > and 0bl < , theminimumenergy is

E L2 1 2 41a y bmin
1exc l l= - + -( ) ( )

withmultiplicity L 1x - . The corresponding eigenvectors are

E v j L1
1

2
1 1 , 2 .. , 42a a

j
j x1= -  ñ = ñ - ñ =∣ (∣ ∣ ) ( )

E L v
L

1
1

1 , 43b y b
y j

L

j
1

y

å= -  ñ = ñ
=

∣ ∣ ( )

where 1 0 .. 01 0 .. 0j jñ º ñ∣ ∣ . The ground state eigenvectors of H1exc are then v vj a
j

b
0y ñ = ñ Ä ñ∣ ∣ ∣ and the spin

expectation values become

L L L

1

2
1

1

2
1

1
44j l

z
j

y y y

0 0y s yá ñ = - - = - +m

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( )

if j
0y ñ∣ contains an excitation at site lm or−1 otherwise.We note that s 1l

z  -m in the thermodynamic limit as
onewould expect.

In summary, we have for the ground state energies

E N a
2

, 45GS
0exc atw

=
¢

-( ) ( )

E N L b
2

2 2 1 2 , 45a y bGS
1exc atw

l l=
¢

- + - + -( ) ( ) ( )

where

2 . 46a bat atw w l l¢ = + +( ) ( )

5.2.Diagonalization of the photonicHamiltonian
Weare now in position to diagonalize the photonic quadratic form (38). In analogy to the previous paragraph,
we start our examination in the 0-excitation sector.Here the expectation values of the spin operator is simply
s s l1, ,z

l
z mº = - "m , so that the photonicHamiltonian becomes

H p M p, 47ph ph= ( )†

wherewe have introduced p a a b b,.., , ,..,L L
T

1 1y x
= ( ) . Thematrix Mph can bewritten as

M
W G

G W
48

a

T
b

ph =
⎛
⎝⎜

⎞
⎠⎟ ( )
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with

W s i j L2 , , 1 .. , 49a ij ij a a

L

i
z

y
1

x

åd l= D + =
n

n
=

⎡
⎣⎢

⎤
⎦⎥( ) ( )

W s i j L2 , , 1 .. , 50b ij ij b b
l

L

lj
z

x
1

y

åd l= D + =
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

G s i L j L, 1 .. , 1 .. . 51ij a b ij
z

y xl l= + = =( ) ( )

Mph has the following eigenvalues andmultiplicities

E L s L

E L s L

E

E

Eigenvalue Multiplicity

2 1

2 1

1

1

52

a a a x
z

y

b b b y
z

x

ph

ph

ph 1

2

ph 1

2





l

l

x

x

º D + -

º D + -

º +

º -

+

-

( )

( )

( )

where

s L L a2 , 53a b
z

a x b y l l= D + D + +( ) ( )

s L L L L s b2 4 . 53b a
z

a x b y x y
z

a b
2 2 2x l l l l= D - D + - + +( ( )) ( ) ( ) ( )

5.3. Validity and breakdown of the effective spinmodel
First we note, that due to (36), bD is not independent and can be expressed as

54b
a at

at
w

h
wD =

D -
+ ( )

(here atw is the bare atomic frequency, not atw¢ ).Motivated by the condition (4)needed for the spinmodel (5) to
be valid, we definewhatwe call the quality factor of the approximation as

Q
g g

min , , 55a

c

b

c

at
spin

at
spin

w w
=

D - D -⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ∣ ∣ ∣ ( )

where g
c
spin is given by the critical value of al , g 2

c a c a
spin

, atl w= - D -( ) , see below.
We start by determining the critical value of al at which a transition from0- to 1-excitation sector occurs in

the spinmodel. This can be simply obtained from the condition E EGS
0exc

GS
1exc= andwith the help of (45)we get

L2
. 56a c

y
,

spin atl
w
h

= - ( )

Next, the breakdown of the effectivemodel is indicatedwhen any of the photonic eigenvalues (52) becomes
negative, corresponding to infinitelymany photons in the ground state. Substituting s 1z = - in (52), the only
two candidates for theminimumeigenvalue are Ea

ph and E ph
- (we recall that 0, 0a bl l> < ). The value of al

where Eph becomes negative is determined as

E Emin : 0, 0 , 57a c a a a a,
ph ph phl l l lº = =-( ( ) ( ) ) ( )

where only the positive branch of al in the solutions of E 0a
ph l =- ( ) is considered.

The criterion of having a valid and non-trivial regime in the effective spinHamiltonian (i.e. finite number of
photons and non-zero spin excitations) thus translates into

R Q1 1. 58a c

a c

,
ph

,
spin

l

l
º >   ( )

Infigure 6we plot the contours of constantR (a) andQ (b) respectively in the L Lx yh - plane. It is apparent
from the figure that increasing both L Ly x and h∣ ∣ leads to a larger critical ratioR, i.e. we can ensure the presence
of the non-trivial region by tuning these parameters. Additionally, one can show analytically that

Rlim , 59
Ly

= ¥
¥

( )

R Rlim 60asymptotic=
h-¥

( )
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when keeping all the other parameters fixed, as expected from the contours infigures 6(a) and (b) (here
Rasymptotic is some finite asymptotic value).

So far we have concentrated only on the simple 0 and 1-excitation sectors of the spinHamiltonian. Clearly,
for the interactions to become relevant one is interested in sectors with larger number of excitations.

To this end it is possible to extend the above analysis to the N N 1exc exc + spin transitions for N 1exc 
and for each of the transitions evaluate the critical ratioR.We note that the fully analytical approach is
unfortunately obscured by the fact that for excitation sectors N 1exc > , the spin interactionmatrix (6c) does not
take the simple structure of (39) and the evaluation of eigenvalues in principle amounts to solving higher order
polynomials. Specifically, for a N N 1exc exc + spin transition, the critical value of the coupling al can be

obtained from the condition E EN N
GS GS

1exc exc= + , where E N N E2N N
GS 2 exc

exc at excd= - + +w¢ ( ) . Here, E Nexcd is

obtained from exact diagonalization of (6c). Furthermore, in order to evaluate the critical value of al for the
photonic transition (57) (needed for the evaluation ofR, (58)), we assume s s l, ,l

z z m= "m in (48), wherewe

take s N 1z N

Nexc
2 exc= - +( ) .

In practice, the restriction of theHamiltonian to a given Nexc sector clearly simplifies the analysis, however

the number of basis states still grows rapidly as N

Nexc
( ) and an extensive numerical investigation of higher

excitation number sectors goes beyond the scope of the present article. For that reason, and in order to
unambiguously show that the frustrated regime can be reached in the relevant N 1exc > sector, we focus on the
simpliest such situation, namely the1 2 spin transition. Infigure 6we plotR (c) andQ (d) for two distinct
values of η ( 1h = - and 0.5h = - ) for 0 1« and 1 2« spin transition. The solid lines correspond to the
analytical result (56) and coincide with the exact diagonalization results for the 0 1« (black crosses and red
stars for 1h = - and 0.5h = - respectively)10. It is apparent from figures 6(c) and (d) that the desired
parameter range R 1> , Q 1 can be achieved also for the1 2« spin transition and therefore the frustrated
regime can be indeed reached (this is also a confirmation of the intuitive expectation based on the analysis of the
0 1 transition alone, namely that the arbitrarily large values ofR are a strong indication that higher excitation

Figure 6.Region of validity of the effective spinHamiltonian in the single excitation sector showing the contour plot of the parameter
R (a) andQ (b) in the L Ly x h- plane. The effective spinmodel is valid provided R 1> and Q 1 , see condition (58). The solid red
(dashed black) contour lines correspond to 0.4a atwD = (0.6) respectively. (c) and (d) showR andQ versus L Ly x for different
values of η for 0 1« and 1 2« spin transition, see text for details. Parameters used: Lx= 10 (a), (b) and Lx= 3, 0.4a atwD = (c),
(d).

10
The difference in numerical values ofR andQ between figures 6(a)–(d) for a given η is a consequence of the fact that they depend not only

on the ratio L Ly x but also on the value of Lxwhich is different for (a), (b) L 10x =[ ] and (c), (d) L 3x =[ ]. Importantly, the change in the
behaviour is not qualitative, but only quantitative.
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number sectors can be reachedwithout breaking the validity of the spinHamiltonian). The smallness of the
change ofR andQ between the 0 1« and 1 2« transitions is a consequence of the fact that the difference
between the critical values of al for two adjacent excitation numbers spin transitions (N N 1exc exc + and
N N1 2exc exc+  + )decreases rapidlywith the system size (anothermanifestation of this is the finite size
scaling of the superradiant phase transition, see the insets offigure 2, where the critical coupling tends to 0 in the
thermodynamic limit.)

To recap, we have shown that the spinmodel (5)with both frustrated and non-frustrated interactions can
emerge as an effective description of the parent TCHamiltonian (2). This can be achievedwhen considering an
elongated geometry of the square array, L Ly x . On one hand this circumvents the limitations related to
realizing effective spinHamiltonianswith frustrated interactions using optical setups governed by TC
Hamiltonians [63]. Finally, we note that one can simulate the parent TCmodel in the regimewhere it yields the
effective spinmodel usingQMCavoiding thus a sign problemof the spinmodel which opens up an interesting
perspective on theQMC simulations ofHamiltonianswith sign problem.

6. Conclusions and outlook

In thisworkwehave analysed the ground states of a cavity arraywhere each intersectionof cavitymodes is occupiedby
a single atom.Wehave shown that the system’s description in termsof theTCmodel leads to an effectivedescription—
in a suitable parameter regime,where the cavitymodes canbedispersively eliminated tofirst order in theperturbation
—in termsof a two-component spinmodel. Inone-dimension,wehaveprovided exact solutionof the spinmodel
demonstrating explicitly theneedofhigherdimensions inorder toobtain frustrated spin–spin interactions.Using
large-scaleQMCsimulationof theTCmodelwehaveperformedaquantitative comparisonbetween theparentTC
and the emerging spinmodel. Specifically, in two-dimensions,wehave studied the superradiant phase transition and
theproperties of two-point correlation functions in the cavity array andwehavedescribed the graph-theoretical
structureof the ground states of the spinmodel. In all caseswe foundafirmagreementbetween the twomodels in the
regimeof validity of the approximationsused. Finally,wehaveoutlined thepossibility, by exploiting thenonlinearities
of the effective spinmodel, of studying frustrated spinHamiltoniansusing two-dimensional cavity arrays.

In conclusion, the theoretical framework andnumerical tools established in this work openways to address
the cavityQEDphysics in a quantitative way beyond the traditionalMFor perturbative treatments. The present
developments can be exploited in various scenarios, such as the study of the ground state properties in different
lattice geometries and dimensions.
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AppendixA. Effective spinHamiltonian in the dispersive regime

Weprovide the details of the adiabatic elimination of the excited state eñ∣ in our previous publication [53] (note
that herewe use the basis e , 1 , 0ñ ñ ñ{∣ ∣ ∣ } instead of e s g, ,ñ ñ ñ{∣ ∣ ∣ } in [53]). The resultingHamiltonian reads

H a a b b g a b F
2

h.c. , A1
i

i i i
i

i
i i

z
i i i

,

at,
at,å å å

w
dw s s= D + D + + + + + +

n
n n n

n

n
n n n n n

+⎜ ⎟⎛
⎝

⎞
⎠ ( ( ) ) ( )† †
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i
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i
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n n

n n n
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† †
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with x x T1w w wD = - +( ), x i e, ,n= and g0 the coupling strength of the e1ñ - ñ∣ ∣ transition.We takeΩ and
g0 to be real and positive throughout the article. Herewe have set Taux 1w w w= + in [53] and carried out the
adiabatic elimination under the usual condition g,e 0D W∣ ∣ ∣ ∣ ∣ ∣.

In this article we focus on the regime, where atw dwá ñ∣ ∣ ∣ ∣. This can be in principle always achieved in the
limit

g . A30W  ( )

Neglecting the dw term (and consequently the F term), theHamiltonian (A1) simplifies to (2),

H a a b b g a b a b
2

, A4
i

i i i
i

i
i
z

i
i i i iTC

,

at,

,
å å å å

w
s s s= D + D + + + + +

n
n n n

n

n
n

n
n n n n
+ -( ( ) ( ) ) ( )† † † †

which is the usual TCHamiltonian.
Next we proceedwith the derivation of theHamiltonian (5). Fromhere onwe take the bare atomic

frequencies to be equal for all atoms, i, ,iat, atw w n= "n .Wefind the formof the effective spinHamiltonian
after further transformation of the cavity fields.Working in the perturbative dispersive regime

g i1, , , A5i iat w n= - D "n n ∣ ( )∣ ( )( )

one can eliminate the cavity fields iteratively bymeans of unitary transformation to arbitrary order in i n [75]

H H H H S H S H S S He e , ,
1

2
, , ..., A6S S

spin TC 0
TC

int
TC

0
TC

int
TC

0
TC= = + + + + +- [ ] [ ] [ [ ]] ( )

where H0
TC, Hint

TC stand for the free and interaction part of the TCHamiltonian respectively. Tofirst order in i n ,
the antihermitianmatrix S reads

S
g

a a
g

b b , A7
i

i i i i i id
s s

d
s s= - + -n n

n
n n n n

- + - +( ) ( ) ( )† †

where i i atd w= D -n n( ) ( ) . The effective spinHamiltonian becomes

H H S H

a a b b

1

2
,

2
, A8i i i i i

z
i i i i i i j i j
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TC

at
at,
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Appendix B.MF solution of the TCmodel

TheHamiltonian of the 2D system considered in section 4 is the following:

H a a b b g a a g b b
2

. B1
i

i i
i

i
z

i
i i i i

i
i iTC

atå å å å åw
s s s s s= D + + + + + +

n
n n

n
n

n
n n

n
n n n n

- + - +
⎛
⎝⎜

⎞
⎠⎟ ( ) ( ) ( )† † † †

Wenotice that the number of two-level atoms is N L Lx y= ´ whereas the number of electromagnetic
modes is N L Lx yem = + . Thismeans that for a large 2D array N Nem andwe can apply the standardmean
field techniques originally introduced in [64, 65]. Sincewe are interested in the zero temperature limit, we
restrict our analysis to this particular case, where the calculation amounts to average the full Hamiltonian over a
set of photonic coherent states:

e e 0 , e e 0 B2i
a bi

i i

2

2

2

2a bñ = ñ ñ = ña
n

b- -a bn
n n∣ ∣ ∣ ∣ ( )

∣ ∣ † ∣ ∣ †

and tominimize the resulting non-interacting problemwith respect to the set of variational complex variables
,ia bn( ). By symmetry, the ground state solutionsmust be of the form ia b a= =n and thus the partial
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integration over the photonic degrees of freedom gives the following function of the spins only:

H L L g
2

2 , B3x y
i

i
z

i
i

i
iTC

MF 2 at *å å åa
w

s a s a s= D + + + +
n

n
n

n
n

n
+ -

⎛
⎝⎜

⎞
⎠⎟( )∣ ∣ ( )

which can be easily diagonalized in each single-atomic subspace, giving as a result for the energy of the ground
state:

E L L L L g
2

4 . B4x y x yGS
2 at

2
2 2a

w
a= D + - +⎜ ⎟⎛

⎝
⎞
⎠( )∣ ∣ ∣ ∣ ( )

Theminimization of EGS allows us to appreciate two different phases of the system: (i) a phase where the stable
solution is 02a =∣ ∣ , which physically corresponds to a zeromacroscopic number of atomic excitations in the
system (and also to a zeromacroscopic number of photons in the cavities, since this number is proportional to

2a∣ ∣ ). (ii)A superradiant phasewhere the stable solution is:

L L g

L L g4
. B5s

x y

x y

2

2
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2
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This solution is stable above a critical couplingwhich is given by:

g
L L

L L4
, B6

c

x y

x y

MF atw
=

+ D( )
( )

and physically represents themacroscopic number of photons in each cavitymode. In the superradiant phase
the atomic ground state reads:
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zs n with eigenvalues±1 and
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This expression can be used to obtain the total number of atomic excitations:

L L L L
g

g
GS

1

2
GS

1

2
1 . B9x y

i
i
z

x y
c

2

å sá + ñ = -
n

n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟∣ ∣ ( )

References

[1] Koch J andHurKLe 2009Phys. Rev.A 80 023811
[2] Schmidt S andBlatterG 2009Phys. Rev. Lett. 103 086403
[3] BhaseenM J,HohenadlerM, Silver AOand Simons BD2009Phys. Rev. Lett. 102 135301
[4] MeringA, FleischhauerM, Ivanov PA and Singer K 2009Phys. Rev.A 80 053821
[5] Silver AO,HohenadlerM, BhaseenM J and Simons BD2010Phys. Rev.A 81 023617
[6] NunnenkampA,Koch J andGirvin S 2011New J. Phys. 13 095008
[7] Ciccarello F 2011Phys. Rev.A 83 043802
[8] TanL, ZhangY-Q and LiuW-M2011Phys. Rev.A 84 063816
[9] Mascarenhas E,Heaney L, AguiarM and SantosMF 2012New J. Phys. 14 043033
[10] Quach JQ 2013Phys. Rev.A 88 053843
[11] ZhuG, Schmidt S andKoch J 2013New J. Phys. 15 115002
[12] Carusotto I andCiuti C 2013Rev.Mod. Phys. 85 299
[13] BliokhK, Rodríguez-Fortuño F,Nori F andZayats A 2015Nat. Photon. 9 796
[14] BliokhKY, SmirnovaD andNori F 2015 Science 348 1448
[15] Petersen J, Volz J andRauschenbeutel A 2014 Science 346 67
[16] PichlerH, Ramos T,Daley A J andZoller P 2015Phys. Rev.A 91 042116
[17] RamosT et al 2016Phys. Rev.A 93 062104
[18] Strack P and Sachdev S 2011Phys. Rev. Lett. 107 277202
[19] Gopalakrishnan S, Lev B L andGoldbart PM2011Phys. Rev. Lett. 107 277201
[20] BuchholdM, Strack P, Sachdev S andDiehl S 2013Phys. Rev.A 87 063622
[21] Gopalakrishnan S, Lev B L andGoldbart PM2012Phil.Mag. 92 353
[22] Rotondo P, Tesio E andCaracciolo S 2015Phys. Rev.B 91 014415
[23] Domokos P andRitschH2002Phys. Rev. Lett. 89 253003
[24] Zippilli S,Morigi G andRitschH2004Phys. Rev. Lett. 93 123002
[25] Asbóth J K,Domokos P, RitschH andVukics A 2005Phys. Rev.A 72 053417

17

New J. Phys. 19 (2017) 063033 JMinár ̌ et al

https://doi.org/10.1103/PhysRevA.80.023811
https://doi.org/10.1103/PhysRevLett.103.086403
https://doi.org/10.1103/PhysRevLett.102.135301
https://doi.org/10.1103/PhysRevA.80.053821
https://doi.org/10.1103/PhysRevA.81.023617
https://doi.org/10.1088/1367-2630/13/9/095008
https://doi.org/10.1103/PhysRevA.83.043802
https://doi.org/10.1103/PhysRevA.84.063816
https://doi.org/10.1088/1367-2630/14/4/043033
https://doi.org/10.1103/PhysRevA.88.053843
https://doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/10.1103/RevModPhys.85.299
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1126/science.1257671
https://doi.org/10.1103/PhysRevA.91.042116
https://doi.org/10.1103/PhysRevA.93.062104
https://doi.org/10.1103/PhysRevLett.107.277202
https://doi.org/10.1103/PhysRevLett.107.277201
https://doi.org/10.1103/PhysRevA.87.063622
https://doi.org/10.1080/14786435.2011.637980
https://doi.org/10.1103/PhysRevB.91.014415
https://doi.org/10.1103/PhysRevLett.89.253003
https://doi.org/10.1103/PhysRevLett.93.123002
https://doi.org/10.1103/PhysRevA.72.053417


[26] BlackAT, ChanHWandVuletićV2003Phys. Rev. Lett. 91 203001
[27] BaumannK,Guerlin C, Brennecke F and Esslinger T 2010Nature 464 1301
[28] GrocholM2009Phys. Rev.B 79 205306
[29] BermudezA and PlenioMB2012Phys. Rev. Lett. 109 010501
[30] HartmannM J, Brandao FGS L and PlenioMB2008 Laser Photon. Rev. 2 527
[31] TomadinA and Fazio R 2010 J. Opt. Soc. Am.B 27A130
[32] Schmidt S andKoch J 2013Ann. Phys., Lpz. 525 395
[33] Dicke RH1954Phys. Rev. 93 99
[34] Jaynes E andCummings F 1963Proc. IEEE 51 89
[35] TavisM andCummings FW1968Phys. Rev. 170 379
[36] TavisM andCummings FW1969Phys. Rev. 188 692
[37] PorrasD andCirac J I 2004Phys. Rev. Lett. 92 207901
[38] DengX-L, Porras D andCirac J I 2005Phys. Rev.A 72 063407
[39] KimK et al 2009Phys. Rev. Lett. 103 120502
[40] LinG-D,MonroeC andDuan L-M2011Phys. Rev. Lett. 106 230402
[41] Balents L 2010Nature 464 199
[42] Savary L andBalents L 2016Rep. Prog. Phys. 80 016502
[43] ZhouY,KanodaK andNgT-K2017Rev.Mod. Phys. 89 025003
[44] SchollwöckU2005Rev.Mod. Phys. 77 259
[45] Verstraete F,MurgV andCirac J 2008Adv. Phys. 57 143
[46] SchollwöckU2011Ann. Phys. 326 96
[47] Orús R 2014Ann. Phys., NY 349 117
[48] HohenadlerM,AichhornM, Schmidt S and Pollet L 2011Phys. Rev.A 84 041608
[49] Flottat T,Hébert F, RousseauV andBatrouniG 2016Eur. Phys. J.D 70 213
[50] Marshall GD et al 2009Opt. Express 17 12546
[51] Derntl C et al 2014Opt. Express 22 22111
[52] Potts CA et al 2016Appl. Phys. Lett. 108 041103
[53] Minár ̌ J, SöylerŞGand Lesanovsky I 2016New J. Phys. 18 053035
[54] GraßT et al 2016Nat. Commun. 7 11524
[55] MessiahA 1999QuantumMechanics (NewYork:Dover)
[56] Sauer J A et al 2004Phys. Rev.A 69 051804
[57] ColombeY et al 2007Nature 450 272
[58] BarredoD et al 2016 Science 354 1021
[59] EndresM, BernienH,Keesling A, LevineH, Anschuetz ER, KrajenbrinkA, SenkoC, Vuletic V, GreinerM and LukinMD2016 Science

354 1024–7
[60] GobanA et al 2014Nat. Comm. 5 3808
[61] LipkinH J,MeshkovN andGlick A 1965Nucl. Phys. 62 188
[62] Morrison S and Parkins A S 2008Phys. Rev. Lett. 100 040403
[63] Rotondo P, Cosentino LagomarsinoMandViolaG 2015Phys. Rev. Lett. 114 143601
[64] HeppK and Lieb EH1973Ann. Phys., NY 76 360
[65] WangYK andHioe F 1973Phys. Rev.A 7 831
[66] Prokof’evN, Svistunov BV andTupitsyn I S 1998Phys. Lett.A 238 253
[67] Prokof’evN, Svistunov BV andTupitsyn I S 1998 J. Exp. Theor. Phys. 87 310
[68] IshinoT, Saito R andKamimuraH1990 J. Phys. Soc. Japan. 59 3886
[69] HamermeshM1962Group Theory and its Application to Physical Problems (NewYork: Dover)
[70] MaZ-Q2007GroupTheory for Physicists (Singapore:World Scientific)
[71] BalasubramanianK1985Chem. Rev. 85 599
[72] KellerM andTrotterW2014AppliedCombinatorics Preliminary edn https://people.math.gatech.edu/~trotter/book.pdf
[73] Cameron P J 2008 Introduction to Algebra (Oxford:OxfordUniversity Press)
[74] Gallian J A 2006Contemporary Abstract Algebra (Belmont, CA: Brooks/Cole, Cengage Learning)
[75] Tannoudji CC,Dupont-Roc J andGrynbergG (ed) 1998Atom-Photon Interactions (Weinheim:Wiley)
[76] EmaryC andBrandes T 2003Phys. Rev.E 67 066203
[77] Dimer F, Estienne B, Parkins A S andCarmichaelH J 2007Phys. Rev.A 75 013804

18

New J. Phys. 19 (2017) 063033 JMinár ̌ et al

https://doi.org/10.1103/PhysRevLett.91.203001
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevB.79.205306
https://doi.org/10.1103/PhysRevLett.109.010501
https://doi.org/10.1002/lpor.200810046
https://doi.org/10.1364/JOSAB.27.00A130
https://doi.org/10.1002/andp.201200261
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1103/PhysRev.188.692
https://doi.org/10.1103/PhysRevLett.92.207901
https://doi.org/10.1103/PhysRevA.72.063407
https://doi.org/10.1103/PhysRevLett.103.120502
https://doi.org/10.1103/PhysRevLett.106.230402
https://doi.org/10.1038/nature08917
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevA.84.041608
https://doi.org/10.1140/epjd/e2016-70492-x
https://doi.org/10.1364/OE.17.012546
https://doi.org/10.1364/OE.22.022111
https://doi.org/10.1063/1.4940715
https://doi.org/10.1088/1367-2630/18/5/053035
https://doi.org/10.1038/ncomms11524
https://doi.org/10.1103/PhysRevA.69.051804
https://doi.org/10.1038/nature06331
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1038/ncomms4808
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1103/PhysRevLett.100.040403
https://doi.org/10.1103/PhysRevLett.114.143601
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1016/S0375-9601(97)00957-2
https://doi.org/10.1134/1.558661
https://doi.org/10.1143/JPSJ.59.3886
https://doi.org/10.1021/cr00070a005
https://people.math.gatech.edu/~trotter/book.pdf
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevA.75.013804

	1. Introduction
	2. Effective Hamiltonians
	2.1. Multimode TC Hamiltonian
	2.2. Spin Hamiltonian
	2.3. Validity of the approximations and frustrated versus non-frustrated regime
	2.4. Comment on experimental realizations

	3.1D: exact solution of the spin model
	4.2D: analytical study and QMC simulations
	4.1. Ground state structure
	4.2. Correlations

	5. Towards simulation of frustrated spin systems in cavity arrays
	5.1. Diagonalization of the spin Hamiltonian
	5.2. Diagonalization of the photonic Hamiltonian
	5.3. Validity and breakdown of the effective spin model

	6. Conclusions and outlook
	Acknowledgments
	Appendix A.
	Appendix B.
	References



