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Abstract

We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We
formulate a multimode Tavis—Cummings (TC) Hamiltonian for two-level atoms coupled to cavity
modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the
dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we
perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the
effective spin models. We discuss the phase diagram and the parameter regime which gives rise to
frustrated interactions between the spins. We provide a quantitative description of the phase
transitions and correlation properties featured by the system and we discuss graph-theoretical
properties of the ground states in terms of graph colourings using Pélya’s enumeration theorem.

1. Introduction

Strongly coupled light-matter systems are at the heart of much of the effort in modern atomic and optical
physics with applications ranging from quantum information processing to quantum simulations.

In this context, the use of cavities plays a prominent role as the strong confinement of the electromagnetic
field implies strong interaction with matter coupled to the cavity modes. In particular, it offers possibilities to
realize and study a plethora of quantum light-matter many-body Hamiltonians such as the so-called Jaynes—
Cummings—Hubbard or Rabi-Hubbard models [1-11], or quantum fluids of light, where the effective
interaction between light fields is mediated by a nonlinear medium [12-14]. This offers ways to study various
physical phenomena such as excitation propagation in chiral networks [15—17], the physics of spin glasses
[18-20] and quantum Hopfield networks [21, 22], self-organization of the atomic motion in optical cavities
[23-27] or quantum phase transitions in arrays of nanocavity quantum dots [28] and in Coulomb crystals [29].
Furthermore, modern implementations of optical and microwave cavities allow for the creation of lattices with
tunable geometries and dimensionality [30-32].

The paradigmatic description of cavity and circuit QED systems is typically in terms of the famous Dicke
[33], Jaynes—Cummings [34] or Tavis—Cummings (TC) [35, 36] models, which describe the interaction between
the modes of the light field and the matter constituents, typically spin or phononic degrees of freedom of atoms
or ions. Importantly, effective spin models emerge in the dispersive limit of the TC or Dicke models [37, 38].
Under some circumstances this leads to spin Hamiltonians with frustrated or long-range interactions
[19, 39, 40], thus offering ways to study rich physics of quantum magnetism. This is a particularly interesting
direction allowing e.g. for studies of spin liquids [41-43] with optical quantum simulators.

While advanced numerical techniques, such as tensor networks, have been developed for spin Hamiltonians
[44-47], the use of similarly efficient techniques for quantum optical systems, where a system of spins is coupled
to the bosonic modes of an electromagnetic field remains limited. In this work we use mean-field (MF)
description, exact diagonalization and large-scale quantum Monte Carlo (QMC) algorithm to study arrays
of waveguide cavities (we note that in the context of cavity QED, QMC was implemented to study both the

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Sketch of the considered coupled light-matter system. (a) Horizontal (vertical) cavity modes a (b) couple to three-level
systems located at the nodes of the array and represented by the grey spheres. (b) The atomic level scheme. The |1) — |e) transition is
driven by a classical field with Rabi frequency €2 and the excited state |e) is adiabatically eliminated, see text for details. (c) Schematic of
the emergent spin system after the dispersive transformation of the cavity modes. (d) Graphical representation of the parameter
regime of the emergent spin Hamiltonian (5). Considering identical couplings along rows (\,) and columns (), the sign of the
effective spin—spin interaction \,;) determines the nature of the spin—spin interaction: non-frustrated ifall A < 0, frustrated
otherwise. As | A| is increased, a transition to a superradiant (SR) phase occurs, corresponding to a non-zero spin excitations of the
system. While arbitrary rectangular arrays can be considered in the non-frustrated regime, only elongated geometries give rise to a
non-trivial spin physics in the frustrated regime, see section 5 for details.

non-frustrated

Jaynes—Cummings—Hubbard [48] and the Rabi—-Hubbard [49] models). This gives us rigorous tools to
investigate the emergence of the effective spin physics as a limiting case of the parent TC Hamiltonian for
arbitrary lattice geometries and dimensions. Specifically, in this work we focus on square lattice geometry and we
study the ground state properties of the TC and the effective spin models for various parameter regimes. We then
show, that depending on the parameter regime and the array geometry, spin models with both non-frustrated
and frustrated interactions can be engineered.

The paper is organized as follows. In section 2 we introduce the system and derive the effective spin model
from the parent TC Hamiltonian. In section 3 we present exact analytical solution of the spin model in one-
dimension. In section 4 we present the results of the QMC simulation and MF analysis and discuss different
regimes provided by the investigated model. We explain how the present work opens possibilities for simulating
frustrated systems in section 5 and conclude in section 6.

2. Effective Hamiltonians

2.1. Multimode TC Hamiltonian

Recent advances in integrated optical circuits, where in principle arbitrary waveguide geometries can be created
with high precision by laser engraving in the silica substrate [50] and an active experimental effort to combine
the waveguides with atomic microtraps on a single device [51, 52] motivate us to investigate a system of three-
level atoms embeded in waveguide cavities.

We consider a square cavity array, where we denote by g; (b,) the modes in the ith row (vth column) of the
array, as shown in figure 1(a). We use the latin (greek) indices to denote the rows (columns) throughout the
article. All sites of the array are occupied by identical three-level systems in a A configuration, where |0}, |1)
denote the ground states and |e) the excited state, see figure 1(b). The cavity modes are coupled with strength g,
tothe|0) — |e) transition, while the |1) — |e) transition couples to a classical field 2 with frequency wr which
propagates perpendicularly to the plane of the array and which is detuned by A, = w; — wr with respect to the
[1) — |e)transition. In the limit A, > Lo () one can eliminate the excited state, which we described in detail in
our previous publication [53]. Furthermore, under the condition of strong driving

0> g 6))

the resulting Hamiltonian is of the TC type and reads (see appendix A for the details of the derivation and of the
full Hamiltonian)

Hic=) Aafa; +> Ablb, + %Z ol +g> (dhai +aloy) +g> (ahb, + bio). 2)

i,V i,V
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with the effective atomic transition frequency and the effective coupling strength

02
Wat = — Ke > (3a)
gOQ
= = (3b)
g A,
Here, of,;i are the usual Pauli matrices written in the {|1), |0)} basis, A, the effective cavity frequencies, w,;

the effective frequency of the [0) — |1) transitionand i = 1..L,, v = 1..L,, where L,(L,) is the number of
rows (columns) of the array.

2.2. Spin Hamiltonian
In the large detuning (dispersive) limit

g < |Wat - Ai(l/)ly (4)

one can further perform a unitary transformation to perturbatively eliminate the cavity fields in order to obtain
an effective spin Hamiltonian, where a given spin is coupled to all other spins belonging to the same cavity mode
(see figure 1(c) and appendix A),

Hspin = Hspin,O + 6H + Hspin,int> %)
where
mo= [+ N+ Ao
Hspm,O — Z — + 1 + v in (60)
[R% 2
6H = bwain 05 (6b)
i,V
Hspin,int = Z Ai(U:yU;; + O—;U;l) =+ Z AV(U;U;; + U?;O—;/)a (6C)
[NZI) i=j,v
where
2
N=—— i (7a)
Z(Az - wat)
2
N=——8 (7b)
Z(Au - Wat)

are the effective spin—spin couplings along the rows (columns) and

OWat iy = )\i(Za;ai + afbl, + b,fai) + )\V(Zb:b,, + a:b,, + bjai). 8)

2.3. Validity of the approximations and frustrated versus non-frustrated regime

Dispersively eliminating photonic or phononic fields leading to an effective spin physics is a known technique
often used in the design of various quantum optical simulators. It can lead to interesting frustrated spin
Hamiltonians, e.g. in the context of trapped ions [39, 40, 54].

In order to simplify the parameter space, in what follows we choose all the couplings to be the same along
rows (columns): A, = \;, Vi (A, = A,, Vv).Schematically, the parameter regime of the spin Hamiltonian (5)
is summarized in figure 1(d).

First we note, that the parameters w,; /2, A and éw,; of the Hamiltonian (5) given by (3a), (7) and (8) can take
both positive or negative sign. In particular the sign of A determines the kind of physical situation provided by
the interaction Hamiltonian (6¢): non-frustrated if both couplings are negative, A\, ;) < 0 and frustrated
otherwise. This is apparent from the form of the interaction which tends to align each pair of spins antiparallel
whenever the corresponding coupling is positive. This then leads to frustration as the antiparallel alignment
cannot be satisfied simultaneously for all the spins. Note that while we consider square lattice for concreteness,
the presence of frustration in cavity arrays stems from all-to-all interaction between spins belonging to the same
cavity mode and, hence, is independent of the lattice geometry.

Next, we discuss the parameter regimes of the Hamiltonian (5). We recall that the only requirement used in
the derivation of (5) from the parent TC Hamiltonian (2) is the condition (4), g < |wat — Aay -

(i) Weakly interacting regime. We refer to the weakly interacting regime as the regime where (we drop the a, b
indices for simplicity)
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[Nay| < |wal- )

Here, we have neglected the dw,, term contributing to the atomic transition frequency since dw,, oc A*. One
should verify that reaching the weakly interacting regime is compatible with the conditions (1) and (4) used in
the derivation of the Hamiltonians (2) and (5). It is easy to show that it is indeed the case: substituting (7) for A in
(9), we get|g2/wa| < |A — wyl. This implies, together with (4), that |g| < |wy|- Finally, substituting for g from
(3b), weget |g,| < €. Thisis enforced by the stronger condition (1), which completes our consistency check.
(ii) Strongly interacting regime. We refer to the strongly interacting regime as the regime where
[Aay| 2 |wat/2 + (éway) | Here, the cavity fields dependence of the 6wy, term plays an essential role. We leave
this interesting possibility for section 5 and focus first on the scenario where the dynamics of the cavity fields
decouples from the spins leading to a pure spin Hamiltonian.

2.4. Comment on experimental realizations

While cavity QED has become a well established experimental research direction, a brief discussion of whether
the ground state physics studied in this paper can be accessed in a realistic experiment is in order. We note that
since the excited state |e) has been eliminated, the atoms are assumed to be trapped at the positions of the lattice
sites and thelevels |0), |1) correspond to the long-lived hyperfine states, the main decoherence mechanism is
due to the decay  of the cavity modes (we consider the same decay rate for all modes). In order to estimate
whether one can reach the ground state of the spin Hamiltonian (5), we consider an adiabatic preparation
scheme, i.e. a situation where the parameters of the Hamiltonian are tuned sufficiently slowly so that the state of
the system at a given time is also its ground state [55]. Specifically, the rate of change of the Hamiltonian
parameters r should be much smaller than the energy gap AE between the ground and the first excited state in
order to avoid level mixing, r < AE. Provided w,, is the largest energy scale in (5), the gap corresponds to the
energy cost of exciting a single spin, i.e. AE & w,;. At the same time, r should be much faster than the cavity
decay in order to be able to reach the desired ground state without being affected by the decay, which yields the
following condition for the timescales

|Watl > 7> Kk = |wal > k. (10)

Using (3a) and the fact that A, >> ) >> g (see equation (1) and the discussion above it) we arrive at [wy| > g,
provided €2/g, > A, /€. Therefore one can see, that the condition (10) is automatically fulfilled in the strong
coupling regime, where g, 2 . This regime has been realized in a number of platforms, such as optical
microcavities [56], fibre-based cavity on atomic chip [57] or open-access on-chip microcavities [52] all
combined with #Rb atoms with (g ®) & 2w X (25, 2.5) MHz, 27 x (250, 50) MHzand 27 x (1, 6.5) GHz
for [56, 57] and [52] respectively.

Other elements required to realize the proposed setup have been also achieved experimentally, such as a
creation of optical lattices with unit filling using optical tweezer arrays [58, 59] or in principal arbitrary
geometries of silica-engraved waveguide arrays [30-32]. While those elements, together with the condition (10),
are within reach of current technology, their combination on a single device remains a challenge. Fortunately,
there are active experimental efforts to achieve this goal, for example to combine the waveguide arrays with
atomic microtraps [51] or atoms with photonic-crystal nanocavities [60].

3. 1D: exact solution of the spin model

Itis illustrative to clarify on a simple example some of the basic properties of the Hamiltonian (5). Specifically,
we are interested in the nature of phase transitions featured by (5) and the scalings of critical couplings. To this
end we consider a one-dimensional limit of (5) by taking a single cavity mode a. The Hamiltonian simplifies to

Hiy = Ad'a + [wy + 4Ma'a]]? + 2MFT (11)
Here, J are the total angular momentum operators
1 N
ﬂ=5205> I=x7 2 (12a)
i=1
N
JE=3"0r (12b)

We note that in the absence of the cavity fields, (11) is the well-known Lipkin—-Meshkov—Glick model [61], which
has been recently studied also in the context of cavity QED [62]. The advantage of the model (11) is that it is
exactly solvable providing us with useful analytical insights. Using the usual angular momentum algebra

4 One should verify the self-consistency of the condition (9) when performing the simulation of the parent TC model, i.e. to check, whether
the resulting cavity occupation is such that | (Swa) | < |wal-

4
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Table 1. Summary of phase transitions as the coupling g () is varied in the 1D effective spin model (11) based on the analysis of (14). 4 (—)
stand for positive (negative) values respectively. The ‘(n = o0)’ description in the second and fifth line indicates that in these cases, the
ground state corresponds to the infinite photon number independently of the value of A, see (15) and text for details.

Wat Ground state configuration (for A = 0) A A — wy A Spin transition
+ [0..0) + - + no
+ — — no (f’l = OO)
- + + yes
— [1..1) — + - yes
— + + no (n = o0)
+ — — no
JAT, m) = m|], m), (13a)
T, my =TT + 1) = m(m £ D, m + 1), (13b)

where J is the half-integer total angular momentum (J = N/2 for Nspins)and m = —J, —] + 1,...,/,it
follows that |J, m, n), where nis the photon number, are the eigenstates of the Hamiltonian (11). The
eigenenergies are

Ejmn=An + [wa + 4 n]lm + 2AJJ + 1) — m(m — 1)]
=[A+ 4 mln + 2200 + 1) — m(m — D] + wam, (14)

where in the second line we have regrouped the terms in order to emphasise the dependence on the photon
number #.
The implications of the first bracket in the second line of (14) are the following. For

E,.=A+4\m>0 (15)

the ground state photon number is 0. On the other hand, for E,, < 0 the ground state photon numberis #n = oo,
which invalidates the approximate description in terms of the effective Hamiltonian (11). At this point it is
important to note that since both A — w,; in the denominator of A and m can take positive or negative values,
there is always a combination of mand A — w,; where the transition n = 0 <> n = oo occursas A is varied.
The situation is summarized in table 1. The main message contained in the table 1 is that it is not possible to
simulate the frustrated spin system using (2) in one-dimension (see also [63]). In section 5 we will show, how this
limitation can be circumvented in two-dimensions by exploiting the properties of the w,, term (8).

In what follows we shall investigate this transition and its relation to the parent TC Hamiltonian (2) further.
Then = 0 <> n = oo transition occurs when E,, changes sign. From (7) and (15) we get the expression for a

critical coupling g,
gc _ A(A - wat) . (16)
2m

Lets first consider wy > 0.In the non-frustrated case (A < 0, A > w,,), the minimal possible value of g,
corresponds to m = N /2 (i.e. all spins excited). On the other hand, for A > 0 and positive w, assumed here, we
can have either A > 0or A < 0.For A < 0, we can see immediately from (15) that E,, can be made always
negative by a suitable choice of m. Specifically, considering the spin ground state m = — N /2, the global ground
state would correspond to n = oo invalidating the description in terms of (11). On the other hand, for A > 0
the system undergoes the n = 0 <> n = oo transition as Ais increased. However, it occurs for m = —N /2, i.e.
before any spin transition could possibly take place. One could now proceed analogously for w,, < 0°.

In summary, the critical coupling at which the n = 0 «» n = oo transition occurs is given by

g = % AB — ww, (17)
where we have emphasised by the label ‘ph’, that the transition is in the photon number.

In one-dimension, the only non-trivial situation is thus the non-frustrated case, A < 0, wheren =0. Here, a
series of transitions between phases with Ny (m) and Ny (m + 1) = N (m) + 1excited spins takes place as
|Alis increased (here Ny (m) = (2m + N)/2). The corresponding coupling strengths at which these
transitions occur are obtained from (14) by solving for Ej .0 = Ej, 5141,

For instance, considering wy; > 0and A > wy, third line in table 1, the first spin transition from
m=—N/2tom = —N/2 + 1occursat

5 . . . .

We note that (11) does not inherit the simple Z, symmetry of the parent TC model, namely the symmetry under simultaneous exchange
0% — —0%, 0"a — a'o~ and wy — —wy, due to the nonlinear nature of the transformation yielding the effective spin model, see
appendix A.
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8= %«/wn(A — War) - (18)

One can also read off from the expression (18) the scaling properties of the critical point of the spin transition
with the system size, g. oc 1 / VN and correspondingly for the critical coupling A, |\.| & 1/N.

4.2D: analytical study and QMC simulations

After having analysed the situation in 1D, we now turn our attention to 2D. It is well known that the Dicke model
features second order superradiant phase transition as the coupling strength is varied [33, 64, 65]. We will
analyse the scaling properties at this superradiant phase transition and evaluate the two-point spin correlation
functions of the cavity array. In order to do so, we employ large scale QMC simulations using the worm
algorithm [66, 67]. In the following we compare the QMC results with the MF solutions. We emphasise that in
the considered square lattice geometry the spins are not all-to-all connected (they are connected only if they
belong to the same row/column), i.e. it is not apriori obvious whether the MF solutions provide an accurate
quantitative description.

In order to simplify the discussion, in this section we consider equal couplings along all rows and columns,
A=A = M (Ge A=A, = A, Vi, v). Motivated by the findings in the one-dimensional case, we focus
only on the non-frustrated case with w,; > 0and A > w,;. We will address the frustrated case in section 5.

MEF solutions.In the thermodynamic limit, one can find MF solutions of the TC model (2) which we describe
in detail in appendix B and which we use for the sake of comparison with the QMC data. In particular, for an
array of size N = L, x L, one can find expressions for the critical strength gCMF of the coupling at which the
superradiant transition occurs and the number of spin excitations Ny in the superradiant phase, which read

L.+ L

MF x y
= [Aw,| = 19
8. t( iL,L, (19)

and

MEF \2

v N8 (20)
2 g

respectively. In the specific case of asquare array L = L, = L, andin thelimit A — oo, where the descriptions
in terms of (2) and (5) should coincide, we get with the help of (7)°

AMEoe = 7% @1
and

The spin model (5) is an effective description of the parent TC model (2) in the limit of large detuning (4).
Therefore, the excitations of the TC model in the superradiant phase result in spin excitations in the effective
spin model. Here, QMC provides an efficient numerical tool to study this limit behaviour of the TC model and
how well itis described by the effective spin model. The results of the simulations are presented in figure 2. Here
we show the critical couplings of the superradiant phase transition g. determined using QMC (using the total
number of photonic and spin excitations as order parameter, where the transition separates the normal and
superradiant phases characterised by zero (non-zero) value of the order parameter; square and circle data points)
and the MF prediction (19), solid and dashed lines. The red (blue) data correspond to two different system sizes
N =18 x 18 (N = 28 x 28)respectively and the horizontal black lines are the values of the critical couplings
A obtained from the QMC simulation of the effective spin model (5). As expected, we find that the values of the
critical couplings approach asymptotically in the limit A > w,, where the two models (2) and (5) coincide. In
the insets we show the finite size scaling of the critical couplings for the TC (left inset) and effective spin (right
inset) models. As in the main plot, the squares represent the QMC data and the solid lines are the MF predictions
(19) and (21). The slight departure of the scaling for the spin model for small system sizes is indeed a finite size
effect on which we will comment momentarily. We also note, that the couplings for the present 2D model scale
in the same way as the 1D predictions (18), i.e. in the linear extent of the system, g_ oc 1/+/L. Thisis due to the
fact that the scaling is determined by the number of cavity modes to which the atoms couple rather than by the
system size N (see also appendix B).

®we note that for the square array, g[MF o1 / VI and |a? o (g — gCMF) in the vicinity of the critical point, see (B5), i.e. we recover the same
scaling behaviour as given by the single-mode Dicke model undergoing the superradiant phase transition [65, 76, 77].

6



I0OP Publishing NewJ. Phys. 19 (2017) 063033 ] Minéf et al
-1 Fel o
i B T B
3-2
S| /
~ | '
& -3 ;
—4: .: 0.05 0.1
| H WL 1/L
0 5 10 15 20

Afwy

Figure 2. Reaching the effective spin model as the limiting case of the TC Hamiltonian. The main plot shows critical coupling A, of the
superradiant phase transition as a function of the photon detuning. The squares and circles are the data obtained from the QMC
simulation of the TC model (2). The solid lines are the MF predictions (19). The red solid line and squares (blue dashed line and
circles) correspond to systemsizes N = L x L = 18 x 18 (N = 28 x 28)respectively. The solid black lines are the critical coupling
values obtained from the QMC simulation of the spin model (5) for a given system size. Left inset: finite size scaling of the critical
coupling of the TC model. Right inset: finite size scaling of the critical coupling of the spin model. We note that the coupling goes to
zero in the thermodynamics limit as expected, see equation (19). We have used A /w,; = 30 in the insets.
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Figure 3. Number of spin excitations of the spin model (5) on N = 20 x 20 array versus the interaction strength A. The squares
represent the QMC data, the solid line is the MF prediction (22). The dashed line is the MF prediction corrected for the finite size offset

(see text for details). The inset shows the magnification of the region in the vicinity of the critical coupling.

After we have verified that the critical couplings of the TC model coincide with those of the spin model, we
now study the number of excitations of the spin model as the coupling strength is varied. This is shown in
figure 3. The solid line corresponds to the MF prediction (22). The squares correspond to the QMC simulation
ofthe spin model (5)ona N = 20 X 20 array, where we have neglected \,, A, in (6a)as |\| < wy in the
studied regime. The discrepancy between the MF prediction and the QMC simulation is precisely the
consequence of neglecting \,, \p in (6a) and results in an offset —1/(4L?) in the values of A—the dashed line

corresponds to the MF solution corrected for this offset”.
So far, we concentrated only on one-point observables in our QMC simulations and found a good agreement

with the MF predictions. In order to go beyond the MF picture we next consider the correlation functions.
Before presenting the results and in order to get a deeper insight in the structure of the spin Hamiltonians
emergent in cavity arrays, in the following section we study the properties of the ground states from the group

and graph theory perspective.

4.1. Ground state structure
Symmetry constdemtzons We start our analysis in this section by noting that the total number of spin excitations,

N = > V3 (a”, + 1), is the constant of motion of the Hamiltonian (5). This significantly simplifies the
problem in that in order to find the ground states of (5), one only needs to solve for the eigenstates of the

interaction Hamiltonian (6¢)

7 Inthe spin model, the transition point is obtained from E*¢ = El*¢, where E%*¢ = — “2N is the ground state energy with no spin
excitation and E'® = “'2“‘( N + 2) + 4X(L — 1) the energy with a single excitation (here we have used (40)). Solving for A we find
Ae = —=2 which coincides with the MF result (21). Neglecting the A terms in w!, (46) amounts to replacing w’, by wy in E*¢ = Flexc

above, yielding the solution A. = — @ = N 7% — %, where the last term is the offset used in figure 3.
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Figure 4. Top row: all possible colourings of a plaquette with Ny = 2 excitations, which can be divided in two equivalence classes 6;
(first four configurations) and 6, (last two configurations). Bottom row: five equivalence classes 6;,i=1..5 for Nyyc = 4 of 3 x 3 array.
Only one representative of each class is shown. At the beginning of each row, we display the numbering of the array. Excitations are in
red, ground state atoms in black.

Hepininlas) = Ecslts) (23)

in the given excitation number sector Ny..

The problem can be further simplified by exploiting the real space symmetries of the Hamiltonian (5),
similarly to the analysis carried out e.g. for the antiferromagnetic Heisenberg chain [68]. Considering the most
symmetric situation, i.e. a square array with equal couplings (L, =L,, A\, = \), the discrete symmetry group of
the Hamiltonian (5)is G« = {R, €} U Dy, where 2R, € and D, stand for permutation of rows, permutation
of columns and the dihedral group of the square array (i.e. successive rotations 7, /2, 7y, 137/2 by 7/2 and
reflections about the horizontal (h), vertical (v) and the two diagonal (p, 1) axes of the array) respectively. In
order to get use of the symmetries, one has to find the irreducible representations (irreps) of G. While a
systematic approach exists for finding irreps of the full symmetric group Sy — 1,1, [69], the subduced
representations of the subgroup G C Sy are in general reducible [70, chapter 3]. Motivated by exact
diagonalization results, instead of finding the irreps of G, we focus on the graph-theoretical properties of the
ground states in what follows.

Let us start with the following observation based on the exact diagonalization results of (6¢) in the non-
frustrated case A < 0 in the simplest non-trivial example, a plaquette (i.e. 2 x 2 array) with Ny, = 2
excitations. The vertices of the plaquette are labeled 14, see figure 4. The ground state can be written as

1

[vs) = ﬁ(|91> +102)), (24)
where
1
= —(|11 101 101 11)), 2
101) ﬁ(l 00) + [1010) + [0101) + |0011)) (25)
1
0,) = —(|1001 0110)), 26
102) 7 ) + 10110)) (26)
which we symbolically write as
1
10;) = —=>_ls) (27)

\/m j€b;

where [s;) is a specific spin configuration and |6 the number of such configurations belonging to a given set 6.
This seemingly artificial decomposition of the ground state into |0;) and |6,) is in fact directly related to the
colouring of a graph as we now discuss.

Let us start by introducing the notions necessary for our considerations which we then demonstrate on
specific examples of the ground state construction. To this end we follow closely the treatment presented in [71].

+ Lets consider aset S and a group G acting on S with ranks |S| and |G| respectively.

* For Gadiscrete group, each element ¢ € G can be written as a product of j-cycles xj, g — (ixle . x@ls De>

where b; counts how many j-cycles appear in the decomposition of g. The product (xlb‘xzb 2. x@f‘ )¢ isthusa
monomial representing the cycle structure of the element g

* Lets consider m colours g;...,c,, such that a specific colour ¢;is assigned to each element of S

8
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Definition 1. A colouring Cis a specific configuration of colours on S.

For example, considering two colours (black and red), : {is a possible colouring of a plaquette.

Definition 2. An orbit of a colouring Cis a set of all colourings produced by the action of the group G on
G, orbg(C) = {g(C), g € G}

An orbit is thus an equivalence class of all colourings belonging to the orbit.

Definition 3. A stabilizer of a colouring Cis a set of all group elements g which leave C
invariant, stabg(C) = {g € G, g(C) = C}

Definition 4. A generating function (or pattern inventory or cycle index) is a polynomial given by the sum of all
monomials of elements of G actingon S

1 b
PG(xb-~-x|S|) = — Z (xlhlez...xls'ls')g. (28)
|G| geG

With the definitions above we now introduce two theorems:

Theorem 1. Polya’s enumeration theorem [72]. Let C = {C} be aset of all colourings of S using colours g,. ..,
Let G induce an equivalence relation on C Then

m m m
Ps|> cis Zc,—z,...,Zc}ﬂ] (29)
i-1

i=1 =1
is the generating function for the number of non-equivalent colourings of Sin C.

Theorem 2. Orbit-stabilizer theorem [73, 74, chapter 7].
L€}

lorbg(C)| = m-

(30)
Equipped with the necessary notions, we return back to the example of the ground state (24)°. In order to find
the structure of the ground state corresponding to a given excitation number sector Ny, we need to enumerate
the number of the sets § and how many elements belong to each of the set. Here, we are concerned only with two
colours, say black and red, which correspond to spins in ground and excited state respectively. In other words,
is precisely an orbit and |0] is thus given by the orbit-stabilizer theorem. We now demonstrate the use of the
above theorems on our example of (24). The generating functional (28) of the G, = {R, €} U D, = Dy
group of the plaquette reads (see footnote 7)

1
Pg, . ,= g(xl4 + 2x12x2 + 3x22 + 2x4)
=b* 4+ bPr + 2% + br? + 14 (31)

In the second line, we have used the Pélya’s theorem, where we have substituted the black (b) and red (r) colours,
xj = b/ + rifor j = 1, 2, 4.In our example of two excitations, i.e. the term with in (31), the numerical
prefactor 2 means there are two equivalence classes ), 6, of the colourings. These can be found explicitly and
read

61 = orbg,,, (3 ={1s o, 01 0s

stabg,,, (13) = {e,h}, (32)
B2 =orbg,,, (¢0)={:3 23}

stabgy,, (o o) = {e,7x,p,n}

where e stands for the identity element of the group G. Finally, one can verify that the above relations obey the
orbit-stabilizer theorem (30) so that |#;| = 4 and |#,] = 2 with the states written explicitly in (26).

The above results can be generalised straightforwardly to larger arrays. In that case the ground state can be
written as

[Ygs) = Z Vil6;), (33)

The example of colouring of a plaquette is carried out in great detail in [72] and we refer the reader to this reference for further information.

9
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where the orbit states |¢;) are orthonormal, (£0;) = ;. To give an explicit example going beyond the plaquette,
we consider a3 x 3 array and we choose Ny = 4 sector. We find that the total of (Z) = 126 spin basis states

form five equivalence classes depicted in figure 4.
The Hamiltonian in the orbit states basis {|0,), |6,) 165), |64), |65)} reads

30222
00400

Hypinine =12 4 2 4 0 (34)
20 4 4 4
20040

We note that (65| Hypin,inl02) = (65|Hpin,indl5) = 0. This can be easily understood when inspecting the structure
of 8,, 05 and realizing that the action of the Hamiltonian (6¢) is to anihilate an excitation at a given site and create
an excitation at another site. It can be seen from figure 4 that such operations necessarily take a state belonging to
0, or 05 out of its equivalence class. For instance for the example of 6, in figure 4, anihilating the excitation at
position 5 and creating an excitation at position 6 results in the state 6; shown and the corresponding non-zero
matrix element (65| Hypin,in|3) in (34) (in fact an operation displacing two excitations at once would be required
for the state to remain in 6,).

The main result of the present discussion is that the set of states (27), which has a clear group-theoretical
interpretation in terms of equivalence classes of a coloured graph, constitutes a natural basis for the ground state
of the system. While it provides a useful insight into the structure of the ground state, it does not represent a clear
computational advantage as we did not provide a prescription for obtaining the Hamiltonian (6¢) in the {|6;) }
basis. Such prescription is likely to be equivalent to finding the irreps of G as discussed at the beginning of this
section. We leave this investigation for future work and restrict ourselves only to exact diagonalization in the
comparative QMC study of the correlations presented in the following section.

4.2. Correlations

We are now in position to study the correlation functions of the spin model. To this end we consider (connected)
two-point correlations of the type (c;,07,). Due to long (infinite) range connectivity along the rows and the
columns, the system features only two length scales corresponding to spins belonging to the same cavity mode
(intra-cavity spins, IC) and to different cavity modes (extra-cavity spins, EC) respectively as there are at most two
different cavity modes connecting any two spins of the array. We thus define two types of correlation functions,
Yic = {{d05,), v = p} U {{60},), i = jland S = {(0},07,), i # j, v = p}, where we have excluded
self-correlations of the type (oo ~) = (|1) (1|). This situation is schematically depicted in the inset of figure 5(a).
Here, ;¢ corresponds to correlations between the spin in the green box and the spins belonging to the same row
and column (red-shaded region). Similarly, 3¢ corresponds to correlations between the spin in the green box
and the spins belonging to the blue-shaded region. In figure 5 we plot the ratio X5 /3¢ as a function of the
number of spin excitations Ny, inan N = 3 x 3 (figure 5(a)) and N = 5 X 5array (figure 5(b)). For the 3 x 3
array we find perfect agreement between the exact results obtained by exact diagonalization of the spin
Hamiltonian (6¢) in each excitation sector and the QMC simulation of that hamiltonian’. Moreover we find a
good agreement also with the QMC simulation of the TC model (2), which is improving with increasing value of
A /wy asitshould. Similar agreement between the QMC simulations of the spin and the TC model is observed
forthe 5 x 5 array.

5. Towards simulation of frustrated spin systems in cavity arrays

In section 3 we have shown, that in one-dimension it is not possible to obtain the effective spin Hamiltonian (5)
with frustrated interactions A > 0. The aim of this section is to show that this limitation can be circumvented in
two-dimensions by exploiting the properties of the dw term (8).

In order to see this, we first perform a back-of-the-envelope estimation. The reason of the breakdown of the
effective model in the frustrated case in one-dimension is that as \ is decreased, the term Aa’ain (11) is
decreasing in a way thatthe n = 0 «<» n = oo transition occurs before any spin excitation can appear.

In order to simplify the analytical treatment, from now on we assume all the couplings along rows to be the
same, A\, = J\;, Viandsimilarly for the columns, A\, = \,, Vv.Assuming further that the row (column) cavity
photon occupation numbers are 1, (1), the expectation value of the éw term (8) becomes

The QMC simulation is by construction performed in grand-canonical ensemble. The values of ¥ /¥ were obtained by post-selecting
on the results with integer number of excitations, Z,‘,,K”iu) = Nixe-

10
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Figure 5. Correlations of the ground state of the spin model (5)in (a)a N = 3 x 3and(b) N = 5 x 5array. The extra to intra-cavity
ratio Xgc /¢ of the connected correlation functions is plotted as a function of the number of spin excitations Neyc. In (a) we find
good agreement between the exact diagonalization results of the spin model (blue circles), the QMC simulation of the spin model (red
squares) and the QMC simulation of the TC model (green and magenta triangles for A /w,, = 20 and 40 respectively). (b) Similar
agreement is obtained for the 5 x 5 array. The inset in (a) is a schematic representation of the connectivity in the cavity array: IC is
represented by the red-shaded (EC by the blue-shaded) regions, see text for details.

(Ow) = 2(Xana + Xpmp) + J1any (Ao + Xp) + (N + Ap). (35)

Itis apparent from the above expression that the magnitude of (§w) can be made small when the couplings along
rows and columns have opposite signs, A\, = — A, so that the amplitude of each bracket in (35) becomes
significantly smaller than if we take both A with the same sign. We will thus consider a scenario with frustrated
interactions along one direction (we choose the a cavity modes) and non-frustrated one along the other (b
modes) and we paramterize the couplings as

Aa>0, Ay <0, Ap=nA, (36)

In order to show that one can get a non-trivial frustrated—non-frustrated situation without breaking the
effective spin description, we will use a self-consistency argument as follows. First we restore the free cavity fields
terms we omitted in (5) so that the effective spin Hamiltonian can be written as (see appendix A)

H = th + Hspin,int) (37)

where

L L

X 4
Hpn=Ag) “J‘T“J' + A bl + D0 OWatju 0y (38)
j

m j=1p=1

is now the photonic part (note that we have absorbed the 6H term (6b) in Hyp,) and Hyin,ine is given by (6¢).
Exploiting the fact that the o# term is diagonal in eigenstate basis in all excitation sectors N of the spin
Hamiltonian (5), we substitute the spin expectation values (%) in (38) and subsequently diagonalize the
photonic Hamiltonian, which is a straightforward exercise as it is quadratic in the photonic degrees of freedom.
We then compare the values of the critical couplings at which a transition Ny — Nexc + 1 occurs with that of
0 — oo photon number in analogy to the analysis in section 3. We anticipate that a non-trivial frustrated regime
can be always obtained by appropriate tuning of the system parameters and in particular its geometry. This is
also the regime which fulfills the self-consistency criterion, namely taking (6w) = 0 in the spin model, using the
corresponding solutions in the photonic Hamiltonian (38) and finding that its solutions again yield (éw) = 0.

11
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5.1. Diagonalization of the spin Hamiltonian
In analogy to section 4 we seek to diagonalize the interaction part of the spin Hamiltonian (6¢)

Ly

Ly L L,
H= )\“ Z Z O—]J'L,o';/ + )\b Z Z 0'2;10';1 + h.C.,

j=1 p=r=1 a=1k=l=1

where we have now explicitly written the summation limits.

0-excitation sector. Here the situation is trivial, the unique ground state being simply [¢/°) = |00..0), i.e. all
spins down and correspondingly s;, = (¢°|of |9°) = —1, VI, u

I-excitation sector. In the basis {[100 .. 0), |010..0),...,]000 .. 1)} of single particle states, the interaction
Hamiltonian (6¢) takes a simple form

Hiexe = 2/\aMa ® Iy + 2/\blla & My, (39)

where the a (b) matrices have dimensions L, x L.(L, x L,) respectively and the prefactor 2 comes from
accounting twice for each spin configuration in (6¢). M are matrices with 1 everywhere except the diagonal,
whereitis 0, Mj; = 1 — §;. The corresponding eigenvalues and multiplicities are

Matrix | Eigenvalue | Multiplicity
M, -1 L,—1
L, — 1 1 (40)
M, -1 L,—1
L,—1 1

Since A\, > 0and )\, < 0, the minimum energy is

Epx = —2X, + (L, — D)2\, (41)
with multiplicity L, — 1. The corresponding eigenvectors are
; 1
E,=—-1-v))=—(L) — 11})), j=2.Ls 42
[va) NG (L) = 11)), j (42)
1 &
Ey=L,—1—|v) = —> 1), (43)

=

where [1;) = [0..01;0..0). The ground state eigenvectors of Hi. are then |¢?> = |v/) ® |v)and the spin
expectation values become

1 1 1
(Wloflvh) = — - (1 - —) =1+ (44)
2L, 2L, L
if |w?> contains an excitation at site [y or —1 otherwise. We note that s;;, — —1in the thermodynamic limitas
one would expect.
In summary, we have for the ground state energies

/
EGSC = Cu;t(—N), (45a)
/
B = %H\r +2) = 20 + (L, — 2N, (45b)
where
w/at = war + 2(Ag + Ap). (46)

5.2. Diagonalization of the photonic Hamiltonian
We are now in position to diagonalize the photonic quadratic form (38). In analogy to the previous paragraph,
we start our examination in the 0-excitation sector. Here the expectation values of the spin operator is simply

s* = s, = —1, VI, u,sothatthe photonic Hamiltonian becomes
Hyn = p'Mphp, (47)
where we have introduced p = (a;,..,ar, bi,.., by, )T The matrix M, can be written as
Mpn = (Wu © ) (48)
G W,
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with
LX
(‘/Va)ij = 61’]‘|:Au +2A, Zsii]’ i j= 1..Ly, (49)
v=1
Ly
(Wy)ij = 517[Ab + 2N Zslj}, ij=1.Ly, (50)
=1
G,‘j =\s + )\b)Sé, i= 1..L},,j =1.1L,. (51)

M}, has the following eigenvalues and multiplicities

Eigenvalue Multiplicity
EM= A, + 2\ Les*| L, — 1

Ebph = Ay +2NLys* | Ly — 1 (52)

B = e+ §) 1

EP" = 2(c - §) 1

where

€= Dy + Ay + 257 (NoLy + ML), (53a)
§= Dy — Ay + 25 (NaLy — AoLy))? + 4L Ly(s%)2(Ng + Ap)2. (53b)

5.3. Validity and breakdown of the effective spin model

First we note, that due to (36), A, is not independent and can be expressed as
A
Ap= =22 4wy (54)
n

(here w, is the bare atomic frequency, not w’,). Motivated by the condition (4) needed for the spin model (5) to
be valid, we define what we call the quality factor of the approximation as

|Aa — Watl |Ab — watl

Q = min gspin gspin > (55)
where g*P i is given by the critical value of \,, gfpin = \/ —2X5.c(A; — wy), seebelow.

We start by determining the critical value of A, at which a transition from 0- to 1-excitation sector occurs in

the spin model. This can be simply obtained from the condition EZ& = EL2° and with the help of (45) we get
- w
A%:—;%- (56)
ky

Next, the breakdown of the effective model is indicated when any of the photonic eigenvalues (52) becomes
negative, corresponding to infinitely many photons in the ground state. Substituting s* = —1in (52), the only
two candidates for the minimum eigenvalue are Eg’h and EP" (werecall that A, > 0, Ay < 0). The value of \,
where EP" becomes negative is determined as

AR = min(\,: EPP(\,) = 0, EPP()\,) = 0), (57)

a,c —

where only the positive branch of A, in the solutions of EPP(\,) = 0isconsidered.
The criterion of having a valid and non-trivial regime in the effective spin Hamiltonian (i.e. finite number of
photons and non-zero spin excitations) thus translates into
ph

)\ﬂC
R= g =1 A Q> (58)

In figure 6 we plot the contours of constant R (a) and Q (b) respectively in the n — L, /L, plane. Itis apparent
from the figure that increasing both L, /L, and || leads to alarger critical ratio R, i.e. we can ensure the presence
of the non-trivial region by tuning these parameters. Additionally, one can show analytically that

lim R = oo, (59)
Ly—o0
lim R = Rasymptotic (60)
n——00
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1.0 —0.8 0.6 —0.4 —0.2
n n

+0—1ltr,np=-1

—0 <1 tr, n=—1 (exact)
Ole2tr,np=-1
5 #%0e1tr,np=-05

—0 < 1tr, n=-0.5 (exact)
4 Ole2tr,n=-05

2 4 68 10 12 2 4 68 10 12
L,/L, Ly [ Ly

Figure 6. Region of validity of the effective spin Hamiltonian in the single excitation sector showing the contour plot of the parameter
R(a)and Q(b)inthe L, /L, — 7 plane. The effective spin model is valid provided R > land Q >> 1, see condition (58). The solid red
(dashed black) contour lines correspond to A, /wy; = 0.4 (0.6) respectively. (c) and (d) show Rand Qversus L, /L, for different
values of nfor 0 «<» land 1 «> 2 spin transition, see text for details. Parameters used: L, = 10 (a), (b) and L, =3, A, /w, = 0.4 (c),

(d).

when keeping all the other parameters fixed, as expected from the contours in figures 6(a) and (b) (here
Rasymptotic is some finite asymptotic value).

So far we have concentrated only on the simple 0 and 1-excitation sectors of the spin Hamiltonian. Clearly,
for the interactions to become relevant one is interested in sectors with larger number of excitations.

To this end it is possible to extend the above analysis to the Neye — Nexe + 1spin transitions for Ny > 1
and for each of the transitions evaluate the critical ratio R. We note that the fully analytical approach is
unfortunately obscured by the fact that for excitation sectors Ny, > 1, the spin interaction matrix (6¢) does not
take the simple structure of (39) and the evaluation of eigenvalues in principle amounts to solving higher order
polynomials. Specifically, fora Noyxc — N + 1spin transition, the critical value of the coupling A, can be

obtained from the condition EQe = ES><*!, where Elb = WT“‘(—N + 2Nugo) + OENec, Here, 6ENexc is
obtained from exact diagonalization of (6¢). Furthermore, in order to evaluate the critical value of A, for the
photonic transition (57) (needed for the evaluation of R, (58)), we assume s;;, = s%, VI, v in (48), where we

take s*(Nyye) = —1 + %
In practice, the restriction of the Hamiltonian to a given N, sector clearly simplifies the analysis, however

the number of basis states still grows rapidly as (;’ ) and an extensive numerical investigation of higher

excitation number sectors goes beyond the scope of the present article. For that reason, and in order to
unambiguously show that the frustrated regime can be reached in the relevant N, > 1 sector, we focus on the
simpliest such situation, namely the 1 — 2 spin transition. In figure 6 we plot R (¢) and Q (d) for two distinct
valuesofn (n = —land n = —0.5)for 0 «<» land 1 «+ 2 spin transition. The solid lines correspond to the
analytical result (56) and coincide with the exact diagonalization results for the 0 < 1 (black crosses and red
stars for ) = —land 7 = —0.5 respectively)'’. It is apparent from figures 6(c) and (d) that the desired
parameter range R > 1, Q > 1canbe achieved also for the 1 « 2 spin transition and therefore the frustrated
regime can be indeed reached (this is also a confirmation of the intuitive expectation based on the analysis of the
0 — 1transition alone, namely that the arbitrarily large values of R are a strong indication that higher excitation

10 The difference in numerical values of R and Q between figures 6(a)—(d) for a given 1) is a consequence of the fact that they depend not only
on theratio L, /L, butalso on the value of L, which is different for (a), (b) [L; = 10]and (c), (d) [L, = 3]. Importantly, the change in the
behaviour is not qualitative, but only quantitative.
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number sectors can be reached without breaking the validity of the spin Hamiltonian). The smallness of the
change of Rand Qbetweenthe 0 «» land 1 «+ 2 transitions is a consequence of the fact that the difference
between the critical values of A, for two adjacent excitation numbers spin transitions (Nexc — Nexe + land
Nexe + 1 — Nexc + 2) decreases rapidly with the system size (another manifestation of this is the finite size
scaling of the superradiant phase transition, see the insets of figure 2, where the critical coupling tends to 0 in the
thermodynamic limit.)

To recap, we have shown that the spin model (5) with both frustrated and non-frustrated interactions can
emerge as an effective description of the parent TC Hamiltonian (2). This can be achieved when considering an
elongated geometry of the square array, L, > L. On one hand this circumvents the limitations related to
realizing effective spin Hamiltonians with frustrated interactions using optical setups governed by TC
Hamiltonians [63]. Finally, we note that one can simulate the parent TC model in the regime where it yields the
effective spin model using QMC avoiding thus a sign problem of the spin model which opens up an interesting
perspective on the QMC simulations of Hamiltonians with sign problem.

6. Conclusions and outlook

In this work we have analysed the ground states of a cavity array where each intersection of cavity modes is occupied by
asingle atom. We have shown that the system’s description in terms of the TC model leads to an effective description—
in a suitable parameter regime, where the cavity modes can be dispersively eliminated to first order in the perturbation
—in terms of a two-component spin model. In one-dimension, we have provided exact solution of the spin model
demonstrating explicitly the need of higher dimensions in order to obtain frustrated spin—spin interactions. Using
large-scale QMC simulation of the TC model we have performed a quantitative comparison between the parent TC
and the emerging spin model. Specifically, in two-dimensions, we have studied the superradiant phase transition and
the properties of two-point correlation functions in the cavity array and we have described the graph-theoretical
structure of the ground states of the spin model. In all cases we found a firm agreement between the two models in the
regime of validity of the approximations used. Finally, we have outlined the possibility, by exploiting the nonlinearities
of the effective spin model, of studying frustrated spin Hamiltonians using two-dimensional cavity arrays.

In conclusion, the theoretical framework and numerical tools established in this work open ways to address
the cavity QED physics in a quantitative way beyond the traditional MF or perturbative treatments. The present
developments can be exploited in various scenarios, such as the study of the ground state properties in different
lattice geometries and dimensions.
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Appendix A. Effective spin Hamiltonian in the dispersive regime

We provide the details of the adiabatic elimination of the excited state |e) in our previous publication [53] (note
that here we use the basis {|e), |1), |0)}instead of {|e), |s), |g) } in [53]). The resulting Hamiltonian reads

H= Z Aia;ai + Z Aub;rbu + Z(% + &Uat,iu)o—fy + g(o';l;/(ai + bu) + hC) + Fiw (Al)
where
QZ
Wativ = ———>
A,
g (a] + b)) (ai + b))
6wat,iy = - >
2A,
__ &%
A,
1 .
Fy=— (€ + gl(a] + b))(a; + b)) (A2)
2A,
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with A, = w, — (w; + wr), x = i, v, e and g, the coupling strength of the |1) — |e) transition. We take 2 and
go to be real and positive throughout the article. Here we have set w,,x = w; + wr in[53] and carried out the
adiabatic elimination under the usual condition |A,| > [, |g,|.

In this article we focus on the regime, where |w, >> |(éw) |. This can be in principle always achieved in the
limit

Q> g, (A3)
Neglecting the dw term (and consequently the F term), the Hamiltonian (A1) simplifies to (2),
Hrc =Y Nafa; + > Abib, + ”azt”'” 0%, + g> (g + b)) + (af + b)yoy), (A4)
i v LV i,v

which is the usual TC Hamiltonian.

Next we proceed with the derivation of the Hamiltonian (5). From here on we take the bare atomic
frequencies to be equal for all atoms, wy j, = wy, Vi, v. We find the form of the effective spin Hamiltonian
after further transformation of the cavity fields. Working in the perturbative dispersive regime

€y = |g/(wat - Ai(l/))' < 1) vl, v, (AS)

one can eliminate the cavity fields iteratively by means of unitary transformation to arbitrary order in ¢;, [75]
nt nt

1
Hgpin = eSHrce™ = Hy© + Hyy + [S, Hy©1 + [S, Hin'l + E[S’ [S, Hy “11 + ...r (A6)

where Hy©, H.C stand for the free and interaction part of the TC Hamiltonian respectively. To first order in €;,,

the antihermitian matrix S reads

5= Lafor, — ojan + £loy - alb, (47

v

where i,y = Aj() — wa. The effective spin Hamiltonian becomes
1
Hypin = Hy © + SIS, Hiy'l
w ' _ _ _ _
= Al + Abb + (2 8T Jor, + Mgl + o) + Mg, + ol (A9

where

S — NiQ2ala; +1+alb, + bla) + \Qbb, + 1 + alb, + bla;)

at,iv
N
' 26;
g2
)\l/ = —— A9
2%, (A9)

Appendix B. MF solution of the TC model

The Hamiltonian of the 2D system considered in section 4 is the following:

Hpc = A[Z a:ai + Z b:bl,) + %Z s, + gZ([l;O'E, + a;o)) + gZ(b,fJ{,, + b,0b). (B1)

[z v v

We notice that the number of two-level atomsis N = L, x L, whereas the number of electromagnetic
modesis Ny, = Ly + L. This means that for alarge 2D array N >> Ny, and we can apply the standard mean
field techniques originally introduced in [64, 65]. Since we are interested in the zero temperature limit, we
restrict our analysis to this particular case, where the calculation amounts to average the full Hamiltonian over a
set of photonic coherent states:

3, |2

1B), = e %

and to minimize the resulting non-interacting problem with respect to the set of variational complex variables
(o, B,). By symmetry, the ground state solutions must be of the form «; = 3, = « and thus the partial

o

iy
2 ea,a,~|0>,

la) = e e bl|0) (B2)
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integration over the photonic degrees of freedom gives the following function of the spins only:

HYE = ALy + Lol + %Z oi, + 2g[a2 g, + Ay o;], (B3)

v v

which can be easily diagonalized in each single-atomic subspace, giving as a result for the energy of the ground

state:
2 wat ) 2112
Egs = AL, + L)|al* — LL, —2 + 4g%al*. (B4)

The minimization of Egg allows us to appreciate two different phases of the system: (i) a phase where the stable
solution s |a> = 0, which physically corresponds to a zero macroscopic number of atomic excitations in the
system (and also to a zero macroscopic number of photons in the cavities, since this number is proportional to
|a?). (ii) A superradiant phase where the stable solution is:

2 2
L.L
|a5|2 = 7)@ — ﬁ . (B5)
A(Lx + Ly) g
This solution is stable above a critical coupling which is given by:
Ly + Ly) watA
4L.L,

; (B6)

and physically represents the macroscopic number of photons in each cavity mode. In the superradiant phase
the atomic ground state reads:
L.L,

|GS> = ® |GS>ill) |GS>IV =

1
iv=1 Jri+1

where | +);, are the eigenstates of ¢, with eigenvalues +1 and

% - (%)2 + 4g2|ayl?

('V|+>iu + |_>i1/)) (B7)

Y 2l . (B3)
This expression can be used to obtain the total number of atomic excitations:
2
(GSl%(LXLy + 3 Uf,,)lGS) - %LxLy - (%) . (B9)
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