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Abstract

Streptococcus mutans is the most significant pathogenic bacterium implicated in the forma-

tion of dental caries and, both directly and indirectly, has been associated with severe condi-

tions such as multiple sclerosis, cerebrovascular and peripheral artery disease. Polymers

able to selectively bind S. mutans and/or inhibit its adhesion to oral tissue in a non-lethal

manner would offer possibilities for addressing pathogenicity without selecting for popula-

tions resistant against bactericidal agents. In the present work two libraries of 2-(dimethyla-

mino)ethyl methacrylate (pDMAEMA)-based polymers were synthesized with various

proportions of either N,N,N-trimethylethanaminium cationic- or sulfobetaine zwitterionic

groups. These copolymers where initially tested as potential macromolecular ligands for S.

mutans NCTC 10449, whilst Escherichia coli MG1655 was used as Gram-negative control

bacteria. pDMAEMA-derived materials with high proportions of zwitterionic repeating units

were found to be selective for S. mutans, in both isolated and S. mutans–E. coli mixed bac-

terial cultures. Fully sulfobetainized pDMAEMA was subsequently found to bind/cluster

preferentially Gram-positive S. mutans and S. aureus compared to Gram negative E. coli

and V. harveyi. A key initial stage of S. mutans pathogenesis involves a lectin-mediated

adhesion to the tooth surface, thus the range of potential macromolecular ligands was fur-

ther expanded by investigating two glycopolymers bearing α-mannopyranoside and β-

galactopyranoside pendant units. Results with these polymers indicated that preferential

binding to either S. mutans or E. coli can be obtained by modulating the glycosylation pattern

of the chosen multivalent ligands without incurring unacceptable cytotoxicity in a model gas-

trointestinal cell line. Overall, our results allowed to identify a structure–property relationship

for the potential antimicrobial polymers investigated, and suggest that preferential binding to

Gram-positive S. mutans could be achieved by fine-tuning of the recognition elements in the

polymer ligands.
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Introduction

The increasing development of resistance in bacteria to antibiotics is a universal threat to

humans and animals,[1] and the detection and inactivation of bacteria thus remains a signifi-

cant healthcare and societal challenge.[1–3] While much of the focus in addressing infections

has been for acute systemic conditions, there are also important healthcare considerations for

chronic bacterial diseases, for example those occurring in the oral cavity. The microorganisms

found in the human mouth—collectively known as the oral microbiome—include more than

700 bacterial species or phylotypes, a number of which have been associated with conditions

such as caries and periodontitis, and several systemic diseases, including bacterial endocarditis,

osteomyelitis in children, and cardiovascular disease.[4] Despite a decline in prevalence over

recent decades,[5] dental caries in western countries continues to be a significant concern,[1]

for example, in the USA dental caries in children are more prevalent than asthma.[6] Further-

more, effective management of dental caries has been shown to improve healthy weight gain,

growth rates and overall quality of life of children.[7]

The formation process is similar for all caries. Endogenous bacteria within the biofilm of the

tooth produce acids as a result of carbohydrate metabolism, leading to a local drop in pH and

demineralisation of the tooth. Current oral hygiene products mostly aim to kill bacteria as their

primary mechanism of action.[8, 9] Cariogenic bacteria include Streptococcus mutans, Streptococ-
cus sobrinus and Lactobacillus spp. Among these, Streptococcus mutans is the most important,

with significance figures of up to P> 0.0001 being quoted between caries and associated S.

mutans.[10] Accordingly, routes to target S. mutans are of obvious need, with an increasing

interest in methods by which the bacteria can be inactivated without invoking selection pressure.

Polymer technology for targeting pathogenic bacteria is being widely explored, and a num-

ber of scientific reports and several reviews,[11–14] have been published on this subject. It has

been shown that polycations can efficiently kill a variety of bacteria.[12, 15–20] Klibanov and

co-workers generated cationic surfaces based on alkylated poly(4-vinylpyridine) (PVP) both

by copolymerization of glass-supported acrylamide with 4-vinylpyridine followed by alkylation

with a range of 1-alkylbromides (from C3 to C16), and by grafting PVP to an alkylbromide-

grafted glass surface, followed by quantitative alkylation of pyridine repeating units with alkyl

bromides.[21] These surfaces were assessed for their ability to kill bacteria, which had been

sprayed on the surfaces as an aerosol in a manner aimed to replicate actions similar to sneezing

or coughing. Under these conditions both these surfaces showed> 90% killing of both Gram-

positive Staphylococcus aureus and> 99% of Staphylococcus epidermidis, and the Gram-nega-

tive bacteria Pseudomonas aeruginosa and Escherichia coli. Whilst these cationic materials are

often effective, in the context of oral healthcare indiscriminate sterilisation of the mouth is not

always desirable, as commensal bacteria are needed for health preservation by controlling

growth of pathogenic microbes.[22, 23] Thus, better prophylactic and therapeutic approaches

require selective targeting of harmful organisms while leaving more beneficial species intact.

Furthermore, non-lethal means for targeting specific bacteria would offer the additional

advantage of preventing the selection of populations resistant against bactericidal agents.[24]

Dental plaque formation and subsequent caries development require an initial step where

cariogenic bacteria adhere to the tooth surface. A prerequisite for this process is the adherence

of bacteria to the acquired pellicle and subsequent development of oral biofilm, which often

occurs through interaction between bacterial lectins and host glycosylated (macro)molecules.

[25] Host defence mechanisms include the production of soluble glycoconjugates in saliva,

which can offer a first line of defence by competitively blocking bacterial adhesion proteins.

Thus, biomimetic approaches which include analogous anti-adhesion glycosylated molecules

could be potentially utilized to modulate the virulence of oral pathogens.
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The ability of S. mutans to bind to glycans with galactosyl residues has been described in

several studies.[25–28] Reduction of salivary galactosylated O–glycans has been associated

with increased caries susceptibility in children,[29] whilst early work by Nagata et. al. showed

that daily mouth rinsing with 9% D-galactose solution could inhibit the formation of dental

plaque,[30] thus suggesting that appropriately designed galactose-containing ligands would

have potential to prevent adhesion of S. mutans to oral surfaces. Lectin binding affinities can

be significantly increased when multivalent sugar ligands are utilized,[31, 32] a phenomenon

known as cluster glycoside effect.[33] Thus, multivalent carbohydrate ligands could potentially

be utilized for binding /sequestration of S. mutans if suitable ligand architecture and sugar

motifs were identified.

Bacteria differ in their surface chemical and structural features, and species-selective bind-

ing has been demonstrated using a number of methods, for example utilizing charge interac-

tions,[3, 34] saccharide-based binding agents,[35–38] and cell structural mimics through

templating[39–41] and antibiotics.[42] We recently showed that multivalent polymeric ligands

can be engineered through a ‘bacteria-instructed synthesis’ where ligands are generated by

using bacterial cell surfaces as templates, hijacking bacterial metal-binding and redox pathways

to activate the required polymerization catalysts.[3] Polymer ligands are often used for bacte-

rial binding studies due to their potential to span over receptors and chemical functionalities

at the cell surface, and bind them in a multivalent fashion.[31, 32, 43, 44]

In this work we designed two libraries of synthetic polyvalent ligands—with either cationic/

zwitterion or carbohydrate binding units—and tested them for their ability to bind selectively

the pathogenic S. mutans oral bacteria. In this proof-of-principle study, readily available model

Gram-negative E. coli bacterium, which has also been found in the oral microflora of peri-

odontitis patients[45–47] and Vibrio harveyi were used for comparative experiments, while

Staphylococcus aureus, often found in the oral cavity and perioral region, and associated with a

range of pathological conditions,[48] was chosen as a model Gram-positive bacterium. Chem-

istries on the polymer ligands were varied to target both charged functionalities and adhesion

lectins at the bacterial surface. This initial study indicates that both approaches can lead to

preferential binding to specific pathogenic bacteria, and suggest that the chemistry of macro-

molecular synthetic ligands must be modulated on a case by case basis to optimise the interac-

tions between dynamic natural surfaces and synthetic materials.

Materials

Chemicals: 2-(Dimethylamino)ethyl methacrylate (DMAEMA, 97)%, 1, 3-propane sultone

(99%), 2-bromoethanol (97%), and ethylenediamine (99%) were purchased from Alfa Aesar.

Copper (I) Bromide (99.999%), α-bromoisobutyryl bromide (98%), 4-(dimethylamino)pyri-

dine (DMAP, 99%) and N-ethyl-N’-(dimethylaminopropyl)carbodiimide hydrochloride

(EDC, commercial grade), LB (Lysogeny Broth) medium, hydrogen chloride solution 2 M in

diethyl ether, alizarin red S (AR-S), 3-(trimethylsilyl)propargyl alcohol (97%), D-glucose, 2,4

dihydroxybenzaldehyde (98%) and N-acetyl glycine (99%) were obtained from Sigma Aldrich.

Benzyl alcohol (99%), iodomethane (99%), coumarin 343 (laser grade) and oxalyl chloride

(98%) were purchased from Acros Organics. All the chemicals were used as received without

further purification, unless otherwise stated. Dulbecco’s phosphate-buffered saline (PBS) with-

out Ca2+ and Mg2+ was purchased from Lonza. Caco2 Media was Dulbecco’s Modified Eagle

Medium supplemented with 2 mM L-glutamine, 1000 IU/mL penicillin, 10 μg/mL streptomy-

cin and 10% foetal bovine serum (FBS).

Bacteria: Escherichia coli (E. coli) MG1655, Staphylococcus aureus (S. aureus) SH1000, and

Vibrio harveyi (V. harveyi) BB170 were obtained from stocks held within the University of
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Nottingham and Streptococcus mutans (S. mutans) NCTC 10449 was provided by GlaxoS-

mithKline Consumer Healthcare. Streptococcus mutans was cultured in brain heart infusion

(BHI) while E. coli and S. aureus were grown in LB broth at 37˚C, and V. harveyi in LB broth

at 30˚C. Primary cultures were grown overnight without agitation and the main bacterial cul-

tures were grown by mixing at 200 rpm.

Instrumentation

Mass Spectra (MS) (TOF-ESI) were recorded on a Waters 2795 separation module/Micromass

LCT KC453 platform, under positive or negative scan mode where applicable. Purified com-

pounds were directly injected using OpenLynx software.

Nuclear magnetic resonance (NMR) spectroscopy was carried out on the Bruker DPX400

Ultra-Shield™. Chemical shifts are reported in ppm (units) downfield from internal tetra-

methylsilane (TMS) or from the signal of deuterated solvents used. Analysis of spectra was

done using MestReNova 6.0.2 copyright 2009 Mestrelab Research S. L.

Aqueous Size Exclusion Chromatography (SEC) was performed on a Polymer Labs GPC50

Plus fitted with differential refractometer (RI), capillary viscometer (DP) and dual angle laser

light-scattering (15 and 90) detectors. The eluent was Dulbecco’s PBS without Ca2+ and Mg2+,

at 30˚C and a flow rate of 1.0 mL min-1. The instrument was fitted with a Polymer Labs aqua-

gel-OH guard column (50 × 7.5 mm, 8 μm) followed by a pair of PL aquagel-OH columns (30

and 40, 300 × 7.5 mm, 8 μm). Calibration for detector response and inter-detector delays was

achieved using a single, narrow PEO standard (Polymer Labs, Mp 128 kDa, [η] 1.2968 dL g-1)

using a dn/dc value of 0.133 g mL-1.

Analysis of cationic polymers was carried out on a Shimadzu Prominence UPLC system fit-

ted with a differential refractive index detector. The mobile phase was 1 M acetic acid with 0.3

M NaH2PO4 (pH 3.0) at a flow rate of 1.0 mL min-1. The columns used were the same as used

for the aqueous SEC system and calibrated using single, narrow poly(2-vinylpyridine) stan-

dards (Polymer Standard Services, Germany) of known molecular weight (0.8–256 kDa).

Poly(2-(dimethylamino)ethyl) methacrylate was analyzed on the same GPC50 Plus system,

equipped with Resipore Mixed-D columns. The mobile phase was a 5% trimethylamine solu-

tion in choroform at a flow rate of 1.0 mL min-1. Molecular weight was calculated based on a

standard calibration method using polystyrene standards EasiVial PS-M, Agilent Tech. Glyco-

polymers were analyzed on GPC plus system equipped with Agilent PLgel 5 μm Mixed D col-

umns. The mobile phase was DMF + 0.1% w/w LiBr at flow rate of 1.0 mL min-1. Molecular

weights and polydispersity indices were calculated based on a standard calibration method

using PMMA narrow standards (505–1,810,000 g mol-1).

Infrared analysis was carried out using Thermo Scientific Nicolet IR 200 FT-IR. Analysis of

spectra was done using Omnic 8.0 (copyright 1992–2008 Thermo Fisher Scientific Inc).

Bacterial analysis and images were produced using a NIKON EFD3 microscope and a

NIKON DXM1200 digital camera. Software used was ACT-1 2.7 copyright NIKON. Image

analysis was carried out using ImageJ 1.49k. Bacterial cluster size was determined by laser dif-

fraction using a Coulter LS230 particle size analyser (Beckman Coulter, High Wycombe, UK).

Methods

Synthesis of benzyl-2-bromo-2-methylpropanoate: the ATRP initiator was produced accord-

ing to a method previously described in the literature.[43, 49] Benzyl alcohol (15.0 mL, 145

mmol) and triethylamine (16.3 mL, 117 mmol) were dissolved in dichloromethane (150 mL)

in a round-bottomed flask, and the resulting solution was cooled to 0˚C using an ice bath. To

this, α-bromoisobutyryl bromide (16.3 mL, 132 mmol) was added dropwise over a period of
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30 minutes and then left to stir at this temperature for two hours. The mixture was washed

with water (8 x 50 mL) and then with a saturated sodium bicarbonate aqueous solution (2 x 50

mL). The organic layer was dried over magnesium sulfate, filtered, and the volatiles were

removed under reduced pressure to yield a yellow oily residue which was purified by vacuum

distillation to yield analytically pure benzyl-2-bromo-2-methylpropanoate as a clear colourless

liquid (20.98 g, 81.59 mmol, 62% yield).
1H NMR (400 MHz, CDCl3) δ (ppm): 2.01 (s, 6H, CH3), 5.26 (s, 2H, CH2O), 7.51–7.30 (m,

5H, CHaryl).
13C {1H}-NMR (100 MHz, CDCl3) δ (ppm): 30.85 (2C, CH3), 55.86 (1C, CCH3),

67.55 (1C, CH2), 127.96, 128.40, 128.67 (5C, Caryl), 135.56 (1C, Caryl), 171.32 (1C, CO). FTIR

(neat): ν 2970 (broad), 1730, 1460, 1390, 1270, 1160, 1100, 735, 696 cm-1. Expected m/z for

(M-H)+: 257.0172. Found 257.1235.

Polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA): 2-(Dimethylamino)

ethyl methacrylate (DMAEMA; 20.0 g, 127 mmol), (E)-N–(pyridine-2-ylmethylene)propan-

1-amine (397 μL, 2.54 mmol) and benzyl-2-bromo-2-methylpropanoate (327 mg, 1.27 mmol)

were added into a Schlenk tube along with toluene (20 mL). The vessel was sealed with a rub-

ber septum and subjected to five freeze-pump-thaw cycles to degas the mixture. At the end the

mixture was left frozen and flushed with nitrogen before Cu(I)Br (182 mg, 1.27 mmol) was

added. The system was then subjected to three nitrogen/vacuum cycles, the reactor was filled

back with nitrogen and the temperature adjusted to 70˚C with constant stirring (t = 0). Ali-

quots were removed at regular time intervals for monitoring of conversion, which was calcu-

lated by 1H NMR by comparing the relative proportion of C(O)OCH2 protons at 4.19 and

4.36 ppm for the polymer and residual monomer, respectively. The polymerization was

stopped at 93% conversion by cooling the reaction mixture to room temperature and exposing

it to air. The mixture was then passed through two neutral alumina pads to remove the residual

Cu(II) salts, eluting with additional toluene. The solution volume was reduced under reduced

pressure, and the pDMAEMA polymer (1) was isolated as a colourless viscous oil by precipita-

tion into petroleum ether. The signals of the benzyl group at the polymer chain-end were

found to be too small to allow a reliable estimation of Mn by 1H NMR, hence in this work Mn,

SEC was utilized instead.

DPSEC = 107. Mn,SEC = 17.1 kDa, ÐSEC = 1.18; conversion 93%.

Polymer labelling. Synthesis of coumarin 343 2’-bromoethyl ester: coumarin 343 was

modified using a method previously described in the literature for an analogous compound.

[49]

A solution of coumarin 343 (0.285 g, 1.00 mmol) and bromoethanol (354 μL, 5.00 mmol) in

CH2Cl2 (10 mL) was cooled to 0˚C using an ice bath, and N-ethyl-N'-3-dimethylaminopropyl)

carbodiimide hydrochloride (EDC, 0.575 g, 3.00 mmol) and 4-(dimethylamino)pyridine

(DMAP, 0.006 g, 0.05 mmol) were sequentially added under stirring. The resulting mixture

was left to react overnight, then washed with water (4x50 mL) and dried over MgSO4. After fil-

tration the solvent was removed under reduced pressure and the resulting residue purified by

flash chromatography (CC, SiO2, dichloromethane/ethyl acetate 12:1 vol/vol). The relevant

fractions were combined and the solvent removed under reduced pressure to give coumarin

343 2’-bromoethyl ester as an orange crystalline solid (0.0972 g, 0.248 mmol, 25% yield).
1H NMR (400 MHz, CDCl3) δ (ppm) = 1.89–2.04 (m, 4H, 2CH2), 2.76 (t, J = 6.0 Hz, 2H,

CH2), 2.87 (t, J = 6.4 Hz, 2H, CH2), 3.28–3.37 (m, 4H, CH2N), 3.63 (t, J = 6.3 Hz, 2H, CH2Br),

4.58 (t, J = 6.3 Hz, 2H, CH2O), 6.95 (s, 1H, CHvinyl), 8.35 (s, 1H, CHaryl). FTIR (neat): ν 2960,

2920, 2852, 2356, 2341, 1725, 1444, 1409, 1257, 1085, 1010, 788, 698 cm-1.

Fluorescent labelling of poly(2-(dimethylamino)ethyl methacrylate: a suspension of

pDMAEMA (1) (3.19 g, 20.3 mmol of tertiary amine repeating units), coumarin 343 2’-bro-

moethyl ester (0.079 g, 0.20 mmol) and potassium iodide (0.337 g, 2.03 mmol) in acetone (70
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mL) was ultrasonicated for 30 minutes to aid dissolution of reagents. This mixture was then

allowed to stir at 45˚C for 2 days and at 55˚C for further 2 days, while monitoring the conver-

sion by thin layer chromatography (TLC) using chloroform as the mobile phase, following the

disappearance of the coumarin alkyl bromide, and the increase of fluorescence in the polymer

spot at the baseline. When coumarin 343 2’-bromoethyl ester could no longer be detected, the

solvent was removed under reduced pressure, and the mixture redissolved in CH2Cl2. After fil-

tration coumarin 343-tagged polymer (2) (2.44 g, 15.2 mmol, yield: 75%) was collected by pre-

cipitation into petroleum ether.

Alternatively, pDMAEMA (2) (250 mg, 1.59 mmol of tertiary amine repeating units) was

dissolved in dichloromethane (10 mL). Most of the solvent was removed under reduced pres-

sure (the residue had the consistence of a viscous oil), and acetone (10 mL) was added. To the

resulting solution, coumarin 343 2’-bromoethyl ester (0.0064 g, 0.016 mmol) and potassium

iodide (0.0072 g, 0.048 mmol) in acetone (10 mL) were added. The solvent was removed under

reduced pressure, and the resulting residue was heated in the dark without additional solvent

nor stirring, at 60˚C for 24 h. The resulting residue was utilised for the following steps without

further purification.

Modification of pDMAEMA: varying degrees of DMAEMA quaternization [50] and sulfo-

betainization [51] were obtained using methods previously reported in the literature.

Synthesis of N,N,N-trimethylethanaminium quaternized cationic polymers (3)25-100%: to

quaternize fluorescent pDMAEMA (2), four vessels were prepared containing polymer (2)

(0.200 g, 1.27 mmol of tertiary amine repeating units) in each, then tetrahydrofuran (8.2 mL)

was added. After dissolution, methyl iodide was added under stirring in varying amounts: for

25% target quaternization 19.8 μL (0.318 mmol); for 50% conversion 39.6 μL (0.636 mmol);

for 75% conversion 59.4 μL (0.954 mmol) and for 100% conversion 79.2 μL (1.27 mmol) were

added. The resulting mixtures were stirred for 48 hours to yield a precipitate of an amber col-

our. The solvent was removed under reduced pressure, and the residues were dissolved in

deionized water and precipitated in THF. The solid residue was collected by centrifugation,

dissolved in water, and the resulting yellow solutions were frozen and freeze-dried in the dark

for 7 days. The experimental degree of quaternization was estimated by 1H NMR, by compar-

ing the integral of the CH2N signal of the unmodified repeating units at 2.66 ppm, and that of

the analogous residue in the quaternized repeating units at 3.75 ppm. Results are summarized

in Table 1.

Synthesis of sulfobetaine zwitterionic polymers (4)25-100%: for the sulfobetaination reac-

tions, four vessels were prepared containing the fluorescent pDMAEMA (2) (0.200 g, 1.27

mmol) which was dissolved in tetrahydrofuran (8.2 mL for each flask). While stirring,

Table 1. Experimental degrees of quaternization and sulfobetainization of fluorescent pDMAEMA (2).

Polymer (code) Targeted modification (%) Calculated modificationa (%)

Quaternized (3) (3)25% 25 26

(3)50% 50 55

(3)75% 75 80

(3)100% 100 100

Sulfobetainized (4) (4)25% 25 30

(4)50% 50 56

(4)75% 75 68

(4)100% 100 100

aDegree of modification, defined as the percentage of polymer repeating units modified following quaternization with methyl iodide or 1,3-propane sultone

(sulfobetainization), was quantified by 1H NMR. Calculated modification percentages include 1% modification with coumarin 343 2’-bromoethyl ester.

https://doi.org/10.1371/journal.pone.0180087.t001
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1,3-propane sultone was added in varying amounts. For 25% conversion 27.9 μL (0.318

mmol), for 50% conversion 55.8 μL (0.636 mmol), for 75% conversion 83.7 μL (0.954 mmol),

and for 100% conversion 112 μL (1.27 mmol) were added. The resulting reaction mixtures

were stirred for 16 hours at room temperature, during which the formation of a waxy yellow

precipitate was observed. The solvent was removed under vacuum and the residues dissolved

in deionized water and precipitated in THF. The solid residue was collected by centrifugation,

dissolved in water, and the resulting yellow solutions were frozen and freeze-dried for 7 days.

The experimental degree of sulfobetaination was estimated by 1H NMR by comparing the inte-

gral of the CH2N signal of the unmodified repeating units at 2.66 ppm, and that of the analo-

gous residue in the sulfobetainated repeating units at 3.75 ppm. Results are summarised in

Table 1.

Synthesis of fluorescent mannosylated (5)Man and galactosylated (5)Gal glycopolymers: The

mannosylated (5)Man and galactosylated (5)Gal polymers used were synthesized following a

protocol adapted from Ladmiral et al. [49] as described in the S1 File.

Mannosylated glycopolymer (5)Man DP = 73 Mn,SEC = 26 kDa, ÐSEC = 1.31.

Galactosylated glycopolymer (5)Gal DP = 73 Mn,SEC = 22 kDa, ÐSEC = 1.28.

Colocalization analysis: colocalization of polymer and bacteria was analyzed with ImageJ

1.49k. Before processing, images were recorded for each light wavelength separately and after-

wards examined with the JACoP plug-in.[52] For each full image, background fluorescence

was subtracted using a rolling ball radius of 50 pixels. Pearson’s coefficients were calculated

using the plug-in and used to assess the co-localization.

Polymer binding experiments: the ability of the polymers produced in this study to bind E.

coli, S. mutans, S. aureus, and V. harveyi was assessed following a protocol described by Raw-

linson et al. [50] Briefly, a 1.00 mL aliquot of 1.0 mg mL-1 polymer solution was prepared in

sterile deionized water. This solution was incubated with bacteria with OD600 = 0.1 of for 30

minutes. After this the bacteria were pelleted and the pellet was washed three times with phos-

phate buffer solution (PBS) to remove unbound polymer. After washing, the pellet was resus-

pended in PBS and mounted on microscope slides to be viewed. The same procedure was

carried out with a water blank solution to serve as the control. Photographic images were gen-

erated using phase contrast and fluorescence microscopy (10,000x).

Size distributions of bacteria-polymer clusters: the analysis was carried out as described

previously by Magennis et. al.[3] 400 μL of a bacterial suspension with an OD600 of 1.3 were

added to the flow cell to obtain an obscuration of 8–12%, as per the manufacturer’s recom-

mendation. Samples were prepared by mixing 400 μL of bacterial suspension and 100 μL of a

10 mg/mL solution of (4)100%, the suspension was allowed to equilibrate for 30 minutes under

constant stirring. At this point the population distribution was recorded with constant mixing.

Control samples were prepared using bacteria only, with no added polymer.

Statistical analysis: statistical analysis was carried out by calculating a two way ANOVA in

Prism1 Version 6.05. Images were imported into ImageJ 1.49k then converted into an 8-bit

format. This image was threshold-adjusted and the intensities of fluorescence found as a per-

centage of the region of analysis. Means and standard deviations were calculated in Excel

for each sample type and the mean of the total sample set was used to calculate the two-way

ANOVA.

Cell viability tests. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

assay: into a 96 well plate, 0.100 mL of Caco-2 cells suspended in Dulbecco’s Modified Eagle

Medium was pipetted, such that each well contained 15,000 cells. Cells were incubated at 37˚C

for 20–24 hours to allow cell-surface attachment. Serial dilutions of each polymer solution

were performed with supplemented Dulbecco’s Modified Eagle Medium to obtain a final con-

centration range of 0.0050–10 mg mL-1 for quaternized and sulfobetainized DMAEMA based
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polymers and 0.010–5.0 mg mL-1 for glycopolymers (5)Man and (5)Gal. These solutions were

sterile filtered and incubated at 37˚C in media overnight to check for bacterial growth and

confirm sterility. Once the cells had attached, the media was removed from the wells and 0.100

mL of the polymer-media solution was added leaving one lane of untreated cells and a further

lane of cells treated with 1% Triton X-100 (TX) in media. The plate was incubated for a further

24 hours at 37˚C after which the media was removed and the cells were washed once with PBS.

Then, 0.100 mL of 1.0 mg mL-1 MTT reagent in media was added to each well, and the plate

protected from light by wrapping it in aluminium foil. The plate was incubated for 2 hours

at 37˚C and then the media was removed and 0.200 mL of isopropanol were added, and the

plate was agitated on an orbital shaker for 5 minutes. Using a Tecan plate reader, the absor-

bance at λ = 570 nm was recorded from each well, and the values averaged across the polymer

concentration replicates. The percentage of MTT metabolized was normalized according to

equation 1.

% MTTmetabolized ¼
ðtreatmentgroup avg: � TX avg:Þ � 100

Untreatedcells avg: � TX avg:

Results and discussion

Synthesis of bacteria-binding macromolecular ligands

Initial experiments focused on generating polymers able to interact with negatively charged

functionalities—e.g. teichoic acids for Gram-positive bacteria, and charged LPS and phos-

pholipids in the outer membranes of Gram-negative bacteria[34, 53] at the surface of the

pathogens.

To investigate the impact of charged macromolecular ligands on binding to Gram-positive

S. mutans and Gram-negative E. coli, initially a library of polymers possessing different degrees

of charged repeating units was generated by polymerization of 2-(dimethylamino)ethyl meth-

acrylate (DMAEMA) via conventional Atom Transfer Radical Polymerization (ATRP) fol-

lowed by post-polymerization modification of the resulting (DMAEMA)107 (1) polymer

precursor (Fig 1). The DMAEMA tertiary amino group possesses a pKa of 8.4, while com-

monly lower values are reported for its polymer.[54, 55] Therefore, pDMAEMA polymers are

expected to be mostly positively charged at physiological pH.

Post-polymerization modification of the precursor polymer pDMAEMA was carried out by

quaternization with either methyl iodide, to obtain cationic N,N,N-trimethylethanaminium

iodide groups, or 1,3-propane sultone, to generate zwitterionic sulfobetaine moieties (for clar-

ity this process is termed here simply as sulfobetainization). The resulting library of polymers

shared a common backbone—that is, all polymers in this library had the same number of

repeating units—whilst they differed for the nature of the functional pendant groups, their

proportion with respect of the total number of polymer repeating units, or both (Table 1 and

Fig 1). Having all potential macromolecular ligands with the same chain length was important

for this comparative study, as the extent by which multivalent ligands interact with functionali-

ties located at cell membrane is often dependent on the ligand macromolecular size.[32] Modi-

fication of pDMAEMA has previously been explored to modify its interaction with selected

bacteria, for example to generate non-fouling surfaces on poly(dimethylsiloxane).[56] Firstly,

pDMAEMA (1) was fluorescently tagged with coumarin 343 with 2’-bromoethyl ester (1%

with respect of DMAEMA repeating units) in acetone in the presence of NaI, to facilitate the

detection of polymer ligands in subsequent bacterial binding assays. The resulting coumarin

343-tagged pDMAEMA (2) (λex.max 441 nm, λem,max 480 nm) was utilized as a common pre-

cursor for cationic and zwitterionic ligands (3)25-100% and (4)25-100%, respectively. The degree
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of polymer functionalisation was tuned by simply varying the molar ratio between DMAEMA

tertiary amine repeating units, and either methyl iodide or 1,3-propane sultone, in the reaction

feed, resulting in percentages of targeted quaternization or sulfobetainization ranging from 25

to 100% (Table 1 and Fig 1). The final degree of modification was determined by 1H NMR

analysis of the obtained polymers (3)25-100% and (4)25-100%, by comparing the integral of signal

for the two protons adjacent to the tertiary amine (NCH2-, 2.66 ppm) with that of the same

two protons adjacent to the modified amine moieties (+NCH2-, 3.75 ppm). The experimental

degrees of modification were found to be in good agreement with the expected values, indicat-

ing the protocol optimised for these reactions allowed near-quantitative conversion of methyl

iodide and 1,3-propane sultone into the corresponding quaternized and sulfobetainizedsulfo-

betainized polymer repeating units, respectively (Fig 1).

To explore the possibility of selectively sequester S. mutans by targeting its carbohydrate-

recognizing machinery, a smaller sub-family of glycosylated ligands was also prepared. Syn-

thetic glycopolymers possessing specific sugar pendant units in recent years have received

increasing attention due to their ability to mimic a range of natural lectin-binding glycans.

[57–61] Accordingly, galactosylated glycopolymer (5)Gal (Fig 2) was synthesized and investi-

gated as a potential multivalent ligand for S. mutans Gal-binding adhesins.

S. mutans is known to be able to bind also to non Gal-based sugar ligands—e.g. a range of

glucans, via GbpA-D adhesins[62]–thus mannosylated glycopolymer (5)Man was also prepared

and tested. Polymers were synthsised following a procedure developed by us and Haddleton

[49] which involves first the assembly of a poly(propargyl methacrylate) reactive polymer

intermediate by ATRP, which was then functionalised with the required sugar motifs by cop-

per-catalysed azide-alkyne cycloladdition (CuAAC), using either 2’-azidoethyl-O-galactopyra-

noside or 2’-azidoethyl azidoethyl-O-mannopyranoside in DMF, at ambient temperature, for

Fig 1. Generation of fluorescent quaternized pDMAEMA libraries (3) and (4). Reagents and conditions: i) CuBr, (E)-N-(pyridine-2-ylmethylene)

propan-1-amine, 70˚C toluene; ii) Coumarin 343 2’-bromoethyl ester, potassium iodide, acetone, 45 to 55˚C. iii) THF, methyl iodide. Initial (polymer

tertiary amino groups): (methyl iodide): 1:0.25, 1:0.5, 1:0.75, 1:1 mol:mol, iv) THF, 1,3-propane sultone. Initial [polymer tertiary amino groups]0:

[1,3-propane sultone]0: 1:0.25, 1:0.5, 1:0.75, 1:1 mol:mol.

https://doi.org/10.1371/journal.pone.0180087.g001
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72 h (see S1 File). As for the synthesis of cationic and zwitterionic ligands (3)25-100% and (4)25-

100%, glycopolymers (5)Man and (5)Gal were prepared by functionalisation of a preformed poly-

mer precursor, which allowed to obtain two multivalent ligands featuring identical macromo-

lecular size and architecture, and only differed for the nature of the sugar binding units. An

Oregon Green fluorescent tag was inserted in the glycopolymer structure to facilitate detection

in subsequent bacteria binding studies.

Bacteria-polymer binding studies: Cationic vs. zwitterionic

macromolecular ligands

The binding of the polymer ligands (3)25-100% and (4)25-100% to target pathogenic bacteria S.

mutans NCTC 10449 was investigated using both fluorescence and phase contrast microscopy.

As a control, polymer binding to E. coli MG1655 under identical conditions was also tested,

and the results were compared with those obtained for the cariogenic S. mutans. E. coli was

selected as, although commonly associated with urogenital and gastrointestinal infections, it

has also been detected in high prevalence and levels in periodontal sites of chronic periodonti-

tis patients.[45–47]

In these initial tests, polymers (3)25-100% and (4)25-100% (1.0 mg mL-1 in deionized water)

were incubated with bacteria at OD600 = 0.1 of bacteria for 30 min and after removal of the

excess of fluorescent macroligands, polymer-bacteria interaction was assessed by phase con-

trast and fluorescence microscopy. Binding was expected to result in bacterial aggregation,

through cross-linking between charged polymer-covered regions on bacteria cell walls and

Fig 2. Mannosylated (5)Man and galactosylated (5)Gal glycopolymers used in this study.

https://doi.org/10.1371/journal.pone.0180087.g002
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other complementarily charged bacterial cells. Binding affinities were estimated from the abil-

ity of each polymer ligand to induce bacterial aggregation as has been previously reported to

estimate affinity of macromolecular ligands to bacterial cells.[3, 34, 37] However, it should be

noted that the correlation between binding affinity and aggregate formation is not always

quantitative, as it includes a kinetic component which can vary with cell concentration. To

overcome this potential limitation, the measurement of polymer fluorescence established a sec-

ond means for quantification of binding.

In this study N,N,N-trimethylethanaminium quaternized cationic materials (3)25-100%

showed efficient binding of both S. mutans and E. coli species, at all degrees of quaternizations

investigated (Fig 3a).

These results were expected, as positively charged polymers are known to bind different

bacterial species through electrostatic interactions with negatively charged bacterial cell walls

[63, 64] and they have been employed to bind a range of bacteria species which include Vibrio
harveyi,[65] Staphylococcus aureus,[34] Pseudomonas aeruginosa,[66] and E. coli.[67] However,

sulfobetaine-containing polymers (4)25-100% displayed remarkably different binding profiles.

Data showed that, whilst binding to E. coli dramatically decreased as the proportion of zwitter-

ionic sulfobetaine repeating groups increased, with almost no bacterial adhesion detected for

(4)100% (Fig 3b and 3e), that of S. mutans was high and essentially constant at all degrees of

functionalisation, (Fig 3b and 3f).

To further investigate the binding ability of zwitterionic polymethacrylates to a range of dif-

ferent bacterial strains, fully sulfobetainated (4)100% was selected. Gram-positive Staphylococ-
cus aureus, frequently isolated in the oral cavity and perioral region,[68, 69] where it can

contribute to a range of conditions which include angular cheilitis, parotitis, and staphylococ-

cal mucositis,[48] and Gram-negative Vibro harveyi were included in this study. While the lat-

ter is not a human pathogen per se, other species of the genus Vibrio such as Vibrio cholerae
and Vibrio parahaemolyticus are important human pathogens of immediate concern regarding

infection.[34]

Sulfobetaine zwitterionic polymer (4)100% were found to selectively bind for Gram-positive

S. mutans and S. aureus (Fig 4A) which was rather intriguing, as zwitterionic polymers are fre-

quently utilized as anti-fouling materials,[70–73] due to their ability to form tightly bound

water layers. This association of polyzwitterions with water occurs through strong ionic inter-

actions such that disruption of the water-polymer interfacial layer is entropically unfavourable.

In this way the polymers prevent protein deposition and subsequent biofilm development. S.

mutans produces most of the exopolysaccharides that are commonly found in dental biofilms.

[74] It has been recently demonstrated that extracellular polysaccharides can enable bacteria to

colonize zwitterionic surfaces which are resistant to protein conditioning.[75, 76] The utiliza-

tion of zwitterionic materials to prevent biofouling is well reported in the literature[70, 71, 77]

yet despite this, the nature of the interaction between soluble zwitterionic polymers with poly-

saccharide-encased bacteria has yet to be explored.

Evident bacterial clustering of S. mutans and S. aureus was observed upon treatment with

(4)100%, as observed with formation of large visible aggregates, whereas only individual bacte-

rial cells or small clusters (� 10 μm) could be observed for V. harveyi and E. coli, respectively

(Fig 4B and Figure E in S1 File). Within these settings, polymers mediate bacterial clustering

by first binding to the exterior surface of bacterial cells, then by promoting adhesion of poly-

mer-coated bacteria to non-polymer-coated surfaces of other bacteria.[3] Importantly, results

from these clustering experiments followed the same trends previously observed in the fluores-

cence experiments, showing that extensive polymer binding promotes subsequent bacterial

aggregation, thus further validating the results obtained in the initial fluorescence microscopy

experiments.
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These data showed that zwitterionic macromolecular ligands with high sulfobetaine content

might allow selective binding of S. mutans in specific mixed bacterial cultures (Fig 5a). Accord-

ingly, S. mutans and red fluorescence emitting E. coli MG1655 mCherry were mixed at equal

cell densities (OD600 = 0.1) and incubated with the fully betaine-modified fluorescent polymer

(4)100%, at a concentration of 1.0 mg mL-1 in deionized water. Selective binding to S. mutans
was indeed demonstrated, where green coumarin 343 (4)100%-S. mutans complexes were

clearly visible (bacteria were non-fluorescent, whilst the polymer ligand possessed a green fluo-

rescent tag), and minimal fluorescence cross-over was detected for the green polymer and red

fluorescent E. coli (Fig 5b and 5c).

Fig 3. Binding of coumarin 343-tagged a) cationic (3)25-100% and b) sulfobetaine (4)25-100% polymers at

different degrees of functionalization, to E. coli and S. mutans in bacterial suspensions of OD600 0.1, and 1.0

mg mL-1 polymer solutions. Area of fluorescence (%) was quantified using ImageJ. Error bars represent

standard deviations on independent experiments (N = 3). Fluorescence micrographs are shown for fully

functionalised (c, d) cationic and (e, f) sulfobetaine polymers, (3)100% and (4)100%, respectively using the 488

nm (green) channel.

https://doi.org/10.1371/journal.pone.0180087.g003
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Fig 4. (A) Binding of coumarin 343-tagged sulfobetaine polymer (4)100% to E. coli, S. mutans, V. Harveyi and

S. Aureus in bacterial suspensions of OD600 0.1, and 1.0 mg mL-1 polymer solutions (scale bars = 5 μm).

Representative fluorescence micrographs are shown using the green channel (488 nm excitation). Area of

fluorescence (%) was quantified using ImageJ. Error bars represent standard deviations of three equivalent

areas on three different micrographs. (B) Bacterial aggregation mediated by sulfobetaine polymer (4)100%, as

quantified via master sizer (Coulter counter) analysis of polymer—bacteria clusters.

https://doi.org/10.1371/journal.pone.0180087.g004

Polymers for binding of the gram-positive oral pathogen Streptococcus mutans

PLOS ONE | https://doi.org/10.1371/journal.pone.0180087 July 3, 2017 13 / 23

https://doi.org/10.1371/journal.pone.0180087.g004
https://doi.org/10.1371/journal.pone.0180087


To validate this visual observation a co-localization analysis was carried to determine the

overlap of red fluorescence emitted by mCherry and green fluorescence emitted by the poly-

mer coumarin 343 label. The Pearson’s Coefficient values calculated (Fig 3b and 3c) were

r = 0.190 and 0.122, respectively. The Pearson correlation coefficient is a measure of the degree

of co-localization or correlation of fluorescence between fluorophores within a micrograph.

[78] A value close to zero indicates no correlation and a value ± 1.0 indicates a positive or neg-

ative correlation.[52] The analyses of the mixed culture experiments demonstrate that there

were negligible areas of fluorescence cross-over, which could be explained in terms of either

non-specific binding of the polymer to E. coli or spatial proximity between red mCherry E. coli
bacterial cells and green coumarin 343 (4)100%-S. mutans complexes. Taken together, these

results indicated that zwitterionic polymers were able to act as partially selective ligands for

Gram-positive for S. mutans and S. aureus bacteria.

S. mutans and E. coli polymer binding studies: Gal vs. Man glycopolymer

ligands

The ability for E. coli to bind mannosylated glycans via FimH sub-units in Type 1 fimbriae is

well documented[79] and mannosylated glycopolymers have been utilized for its detection or

sequestration.[37, 80, 81] However, E. coli is also known for binding other sugar molecules—

e.g. Gal-containing residues through P-fimbriae specific for galabiose (α-D-Gal-(1!4)-β-

D-Gal) disaccharide in glycosphingolipids.[80] In this study the potential for preferential bind-

ing and sequestration of E. coli was therefore again investigated using mannosylated (5)Man

and galactosylated (5)Gal glycopolymer ligands.

Accordingly, solutions of Oregon Green-tagged (5)Gal and (5)Man (1.00 mg mL-1 in deion-

ized water) were incubated with E. coli and S. mutans (109 colony forming units (CFU) of bac-

teria) for 30 minutes, and after removal of the excess of fluorescent glycopolymers, binding

was probed using microscopy (Fig 6).

Fig 5. Selective polymer binding in mixed bacterial cultures: schematic representation of bacteria

cross-over experiment. a) Bacteria with an OD600 = 0.1 were mixed with 1.0 mg mL-1 of polymer in

deionized water and incubated for 30 minutes before washing with PBS three times, re-suspending in PBS

and mounting 10 μL for microscopic imaging. b) and c) Overlapped fluorescence microscopy images of mixed

culture experiment. Images recorded sequentially, then overlapped. Experiments were performed in duplicate

(b) and c)).

https://doi.org/10.1371/journal.pone.0180087.g005
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As expected from previous studies which utilized mannose-containing polymers[44, 82],

polymer (5)Man strongly bound E. coli, thus resulting in a relevant fluorescence signal detected

(Fig 6a, left image) whereas significantly less binding was observed for galactose glycopolymer

(5)Gal (Fig 6a, right image). Binding of Gal-presenting polymers to E. coli has been described

Fig 6. Top) Micrographs of E. coli and S. mutans after incubation with mannose (5)Man and galactose (5)Gal

fluorescent glycopolymers, a) E. coli and b) S. mutans after incubation with Oregon Green-tagged

glycopolymers (5)Man (left) and (5)Gal (right) at a concentration of 1.0 mg mL-1. Experiments were run in

triplicate. c) Percentage of fluorescence per microscope image, at an OD600 of 0.1. Fluorescence was

determined using ImageJ by converting into 8-bit then thresholding the images and quantifying percentage

area of fluorescence.

https://doi.org/10.1371/journal.pone.0180087.g006
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before,[38] although in some cases expression of bacterial lectins can be strain-specific. The

opposite trend was observed for S. mutans, where higher avidity was observed for galactose

glycopolymer (5)Gal (Fig 6b, right image) compared to its mannosylated analogue (Fig 6b, left

image). This is in line with previous work by Schüler et al., which described specificity of S.

mutans strains for glycans presenting terminal galactose residues.[25]

Similarly to the charged polymers, the significance between differences in binding were

tested using a two way ANOVA incorporating Tukey’s multiple comparison statistical test. P

values were calculated for both inter-species and inter-saccharide analysis. Significant differ-

ences were found for E. coli binding to mannosylated and galactosylated polymers (P = 0.026),

whereas the difference for S. mutans lay just beyond significance with a P value of 0.064, sug-

gesting that a degree of preferential binding to S. mutans using the galactosylated ligand (5)Gal

could be achieved.

Cytocompatibility assays

To assess how the degree of substitution to pDMAEMA, either as trimethyl-alkyl ammonium

salts or sulfobetain zwitterions, affects the cytotoxicity of the resulting materials, polymers

(3)25-100% and (4)25-100%, were incubated with the Caco-2 human epithelial cell line for 24 h,

and an MTT assay was then performed. This cell line was chosen as it is well characterised and

frequently used to assess toxicity of compounds in the gastrointestinal tract.[83] Toxicity was

assessed in a 0.050–10.0 mg mL-1 polymer concentration range (Fig 7).

In agreement with previous studies,[84–87] cationic polymers displayed a considerable and

concentration-dependent toxicity against human cells. It has also been noted that even at low

doses the polymers exert a stress response upon the cells, causing increased MTT metabolism.

[88, 89] Indeed, the toxicity associated with positively charged polymers is one of the major

limitation which prevents their clinical applications.[85] Conversely, sulfobetaine-derivatised

pDMAEMA (4)25-100% polymers showed a significantly lower toxicity levels against human

epithelial cells, especially at high content in zwitterionic repeating units. Zwitterionic polymers

are typically characterised by low toxicity[77, 90] and have been employed in hydrogel formu-

lations, demonstrating excellent biocompatibility.[91] As already discussed, free tertiary

amines of pDMAEMA are mostly protonated at physiological pH, thus for the zwitterionic

Fig 7. MTT assay results performed on Caco-2 cell line for a) quaternized and b) sulfobetaine based pDMAEMA polymers (green

circle●) 25% modified, (red squares■) 50% modified, (blue triangles▲) 75% modified and (black triangles▼) 100% modified in a

concentration range 0.050–10 mg mL-1 for 24 h. Cell viability is expressed as a percentage of MTT metabolized compared to control

untreated cells. Experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0180087.g007
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pDMAEMA (4)25-100%polymer sub-library, lower degrees of modification result in higher pro-

portions of protonated free tertiary amines, which confer a partially polycationic character to

the polymers, which resulted in increased cytotoxicity as evident for polymer (4)25%. Impor-

tantly, for the other zwitterionic polymers, no significant cytotoxicity was observed even at

very high polymer concentrations (10 mg mL-1).

Cytocompatibility of the glycopolymers (5)Man and (5)Gal were assessed in the same man-

ner as for the charged polymers. The metabolism of MTT was measured as concentration of

the polymers was increased over a concentration range of 0.010–5.0 mg mL-1 (Fig 8).

At low concentrations cell viability was unaffected and metabolism of MTT was similar to

that of the negative control group. At the highest concentration tested (5.0 mg mL-1) the toxic-

ity increased for both polymers in an analogous manner irrespective of the nature of the sugar

pendant moieties, a phenomenon that has been also described for other glycopolymers.[92,

93] No cytotoxicity was observed up to a relatively high polymer concentration (1.0 mg mL-1)

for both galactosylated (5)Gal or mannosylated (5)Man glycopolymers.

Conclusions

In this study a range of cationic, zwitterionic, and glycosylated polymers were investigated as

potential ligands for the preferential sequestration of Gram-positive oral pathogen S. mutans.
Using Gram-negative E. coli as control, initial bacterial binding experiments showed that,

unlike cationic copolymers containing N,N,N-trimethylethanaminium groups, the ability of

sulfobetaine-containing materials to bind E. coli decreased dramatically as the proportion of

zwitterionic repeating units increased. However, binding to S. mutans target bacteria using

these polymer ligands was retained, suggesting that preferential binding of this oral pathogen

could be achieved. Subsequent experiments with fully sulfobetainized that included a wider

range of bacterial strains, showed preferential binding towards Gram-positive S. mutans and S.

Fig 8. Metabolic activity of Caco-2 cell line incubated with (red squares■) galactosylated (5)Gal or

(green circles●) mannosylated (5)Man glycopolymers for 24 hours in a concentration range 0.010–5.0

mg mL-1 for 24 h. Cell viability is expressed as a percentage of MTT metabolized by a control group of

untreated cells. Experiments were performed in triplicate.

https://doi.org/10.1371/journal.pone.0180087.g008
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aureus, compared to Gram-negative E. coli and V. harveyi. Importantly, subsequent binding

experiments using coumarin 343-labelled zwitterionic polymers (4)100% in the presence of

both S. mutans and red fluorescence emitting Escherichia coli MG1655 mCherry, exhibited

preferential/exclusive binding to the former, thus showing the ability of (4)100% to give selec-

tive bacterial recognition in mixed bacterial cultures. More synthetically complex glycopoly-

mer-based ligands were evaluated as an additional class of potential sequestrants, and results

showed preferential interaction of mannosylated and galactosylated macromolecules for E. coli
and S. mutans, respectively.

Taken together these results suggest that polymeric materials could be developed as poten-

tial non-antibiotic antimicrobials for cariogenic S. mutans when chemistries on the polymer

ligands are further developed to optimise bacterial binding.

Supporting information

S1 File. Describes the synthesis and characterization of glycopolymers (5)Gal and (5)Man,

and corresponding intermediates, and additional polymer-mediated bacterial aggregation
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