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Abstract Metrics of brain morphology are increasingly

being used to examine inter-individual differences, making

it important to evaluate the reliability of these structural

measures. Here we used two open-access datasets to assess

the intersession reliability of three cortical measures

(thickness, gyrification, and fractal dimensionality) and

two subcortical measures (volume and fractal dimension-

ality). Reliability was generally good, particularly with the

gyrification and fractal dimensionality measures. One

dataset used a sequence previously optimized for brain

morphology analyses and had particularly high reliability.

Examining the reliability of morphological measures is

critical before the measures can be validly used to inves-

tigate inter-individual differences.

Keywords Cortical structure � Subcortical � Reliability �
Fractal dimensionality � Cortical thickness � Gyrification �
Structural complexity

1 Introduction

A growing number of studies have investigated relation-

ships between brain morphology and inter-individual dif-

ferences. An important assumption that underlies these

studies is that estimates of brain morphology are reliable.

While numerous studies have investigated the test–retest

reliability for estimates of cortical thickness (e.g., [1–7])

and subcortical volume (e.g., [7–12]), the reliability of

other measures of brain morphology has been less

established and is an important topic of future research

[13]. Here we measured the reliability of several measures

of cortical and subcortical structures; in addition to cortical

thickness and subcortical volume, we examined the relia-

bility of estimates of cortical gyrification and fractal

dimensionality.

Gyrification index is a measure of the ratio between the

surface area of the cortex, relative to a simulated enclosing

surface that surrounds the cortex (e.g., [14–18]). Generally,

gyrification has been suggested to be an important char-

acteristic of the human brain [15–19]. In addition to the

well-known differences in cortical thickness associated

with age, gyrification also differs with age [20–22]; how-

ever, age-related differences in gyrification appear to have

a distinct topological distribution than thickness [20, 21].

Gyrification has also been associated with a myriad of

other inter-individual measures, as reviewed by Mietchen

and Gaser [14].

Structural complexity is measured as fractal dimen-

sionality, which uses fractal geometry principles [23] to

measure the complexity of brain structures (see [21]). We

recently demonstrated robust age differences in the struc-

tural complexity of cortical [21] and subcortical structures

[24]. Less work has been done examining the relationship

between inter-individual differences and variance in com-

plexity of cortical and subcortical regions; however, these

approaches have been found to be useful in a variety of

disciplines within neuroscience [25, 26].

Here we examined the test–retest reliability of several

measures of brain morphology. While volumetric mea-

sures—cortical thickness and subcortical volume—have

been evaluated previously, we additionally evaluated the

reliability of shape-related measures, specifically gyrifica-

tion and fractal dimensionality. We evaluated the
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FreeSurfer implementation of gyrification, as implemented

by Schaer et al. [27]. This approach generates an enclosing

surface around each hemisphere and computes the ‘local’

difference in surface between this surface and the pial

surface of the cortex. As such, gyrification is highest over

the insula and lowest over medial cortical regions. Fractal

dimensionality was evaluated based on the calcFD toolbox

[21], which computes fractal dimensionality using inter-

mediate files generated as part of the standard FreeSurfer

pipeline. Madan and Kensinger [21] previously compared

different algorithms for calculating fractal dimensionality

using simulated 3D structures, but here we instead used

multiple anatomical volumes acquired from the same par-

ticipant (i.e., test–retest reliability).

Structural measurements are often used to assess lon-

gitudinal changes or inter-individual differences. For

instance, advancements in measuring relationships between

brain morphology and inter-individual differences have

become increasingly relevant as a complementary

approach to fMRI, due to aging-related confounds in group

comparisons [28]. More recently, age-related differences

have been identified in BOLD signal variability [29, 30],

which may be related to differences in cerebrovascular

reactivity [31, 32]. As brain morphology research advan-

ces, it is critical to measure the reliability of these metrics

using multiple volume acquisitions. For instance, if the

effect of age on a morphological measure is small, poorer

reliability may make the effect difficult to detect due to

noise in the measure. A number of open-access databases

include multiple scans on the same participants, enabling

such reliability to be calculated. Appendix 1 summarizes a

number of additional open-access datasets—in addition to

those we consider here—that also include intersession test–

retest reliability data.

Here we examined test–retest reliability from two open-

access datasets in which participants were scanned several

times over a short interval (i.e., intersession, intrascanner).

In the first dataset, 30 participants were scanned 10 times

within a 1-month period [33]. In the original work, Chen

et al. sought to estimate test–retest reliability of resting-

state networks across intra- and inter-individual variability

of six rs-fMRI measures (CCBD [Center for Cognition and

Brain Disorders] dataset). In the second dataset, 69 par-

ticipants were scanned twice within a 6-month period [34].

Holmes et al. collected data for a large-scale exploration

(N = 1570) of the relations among brain function, behav-

ior, and genetics (GSP [Brain Genomics Superstruct Pro-

ject] dataset). As one demonstration of the uses of this

dataset, Holmes et al. [3] examined the relationship

between cortical thickness and several measures of cogni-

tive control.

In each of these datasets, we examined the reliability of

three cortical measures: cortical thickness, gyrification, and

fractal dimensionality—both of the entire cortical ribbon

and across regional measures of parcellated cortex (62

regions, based on the DKT atlas; [35]). We additionally

evaluated different approaches to calculating fractal

dimensionality to establish the reliability of each of these

approaches. Finally, reliability of volume and fractal

dimensionality of segmented subcortical and ventricular

structures also was evaluated. We consider each dataset

separately, as would be the typical approach for examining

test–retest reliability, and then discuss the conclusions

reached using both datasets in the general discussion.

2 Study 1: CCBD

2.1 Procedure

2.1.1 Dataset

MR images were acquired using a GE MR750 3 T scanner

at the Centre for Cognition and Brain Disorders (CCBD) at

Hangzhou Normal University [33]. Thirty participants

aged 20–30 years old were each scanned for 10 sessions,

occurring 2–3 days apart over a 1-month period.

T1-weighted data were acquired using a FSPGR sequence

(TR: 8.06 s; TE: 3.1 ms; flip angle: 8�; voxel size:

1.0 9 1.0 9 1.0 mm). This dataset is included as part of

the Consortium for Reliability and Reproducibility (CoRR;

[36]) as HNU1.

2.1.2 Preprocessing of the structural data

Data were analyzed using FreeSurfer 5.3.0 (https://surfer.

nmr.mgh.harvard.edu) on a machine running CentOS 6.6.

FreeSurfer was used to automatically volumetrically seg-

ment and parcellate cortical and subcortical structures from

the T1-weighted images [37–40]. FreeSurfer’s standard

pipeline was used (i.e., recon-all). No manual edits

were made to the surface meshes, but surfaces were visu-

ally inspected.

Cortical thickness is calculated as the distance between

the white matter surface (white–gray interface) and pial

surface (gray–CSF interface) [38]. Thickness estimates

have previously been found to be in agreement with

manual measurements from MRI images [41, 42], as well

as ex vivo tissue measurements [43, 44]. Subcortical vol-

ume estimates have also been found to correspond well

with manual segmentation protocols, particularly in young

adults [45–52].

Gyrification was also calculated using FreeSurfer, as

described in Schaer et al. [27]. Cortical regions were

delineated based on the Desikan–Killiany–Tourville (DKT)

atlas, also part of the standard FreeSurfer analysis pipeline
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[35]. Intracranial volume (ICV) was also calculated using

FreeSurfer [53].

Fractal dimensionality was quantified using the calcFD

toolbox (http://cmadan.github.io/calcFD/), which we pre-

viously developed and distribute freely [21, 24]. calcFD is

a MATLAB toolbox that calculates the fractal dimension-

ality of 3D structures and was developed to work with

intermediate files from the standard FreeSurfer pipeline.

Apart from when otherwise stated, FD was calculated for

filled structures (FDf) using the dilation algorithm. Here we

additionally modified calcFD in two ways. First, we

improved it to additionally calculate the fractal dimen-

sionality of cortical parcellations for all regions delineated

in the DKT atlas (see Appendix 2). An important consid-

eration in decreasing the size of cortical parcellations,

however, is that they inherently have decreased fractal

dimensionality, i.e., becoming closer to a ‘truncated rect-

angular pyramid.’ Second, we adjusted the toolbox to

calculate fractal dimensionality using the spherical har-

monics (e.g., [54–58]). Additional details about this

spherical harmonics approach are outlined in Appendix 3.

2.1.3 Measuring reliability

Reliability was calculated as intraclass correlation coeffi-

cient (ICC), which can be used to quantify the relationship

between multiple measurements [59–62]. McGraw and

Wong [63] provide a comprehensive review of the various

ICC formulas and their applicability to different research

questions. ICC was calculated as the one-way random

effects model for the consistency of single measurements,

i.e., ICC(1). As a general guideline, ICC values between

.75 and 1.00 are considered ‘excellent,’ .60–.74 is ‘good,’

.40–.59 is ‘fair,’ and below .40 is ‘poor’ [64]. For the

cortical parcellated regions, distributions of mean reliabil-

ity measures (e.g., lower panel of Fig. 4) were compared

using a Mann–Whitney U test, a nonparametric for testing

whether two sets of values belong to the same distribution.

In the current study, we focused on regional estimates of

brain morphology; a complimentary approach that we did

not evaluate here is the reliability in spatial segmentation.

This alternative approach evaluates the volumetric overlap

between 3Dstructureswithin the same space, often quantified

as a Dice coefficient (e.g., [5, 10, 48, 50, 65]). This overlap

approach is often used when comparing manual and auto-

matic segmentation protocols of the same anatomical vol-

ume; however, it canbe applied to test–retest reliability byco-

registering the individual anatomical volumes from the same

participant to each other and comparing the resulting seg-

mented structures’ overlap. In contrast, the present goal was

to evaluate ‘summary statistics’ of the structures, such as

thickness, volume, and fractal dimensionality.

2.2 Results

2.2.1 Cortical ribbon

We first examined the test–retest reliability of cortical

thickness and gyrification, as shown in Fig. 1 and Table 1.

Across both measures, estimates clustered closely for all

scans from the same individual. This qualitative finding

was corroborated by high ICC values, .816 and .945 for

thickness and gyrification, respectively.

Fractal dimensionality We computed the reliability of

five calculations of fractal dimensionality. First, we used

both the dilation and box-counting algorithms, as imple-

mented in the calcFD toolbox, for both the filled volumes

and surfaces only. We additionally used a spherical har-

monics (SPHARM) approach (surface only). See Appendix

3 for further details about calculating fractal dimensionality

using spherical harmonics. Figure 1 shows estimates of

fractal dimensionality based on the dilation-filled approach.

As shown in Table 1, we consistently found higher

reliability for the dilation algorithm than the box-counting

algorithm, though this difference was not statistically sig-

nificant. We found higher reliability for the spherical har-

monics approach; however, this approach can only be used

for surfaces of structures (rather than filled volumes).

2.2.2 Cortical parcellations

Mean regional cortical thickness was highest in lateral

temporal regions, followed by frontal regions (Fig. 2). This

pattern is consistent with prior findings (e.g.,

[20, 21, 38, 66, 67]). Regional thickness estimates were

highly consistent across regions, as shown by the low mean

deviation (between scans) for each region in Fig. 2. ICC

values for each region are shown in Figs. 3 and 4. Regions

with the greatest intersession variability are convergent

with prior reliability analyses (see [2] (Fig. 2), [3] (Fig. 1),

[4] (Fig. 3), [6] (Fig. 1)). Generally, thickness estimates

are less reliable around the temporal pole and would be

most affected in the inferior temporal gyrus using the DKT

parcellation scheme, and the anterior and medial cingulate.

Thickness estimates are often highest in parietal (particu-

larly superior parietal) and occipital cortices. Nonetheless,

despite the spatial variability in thickness reliability, mean

deviations are often small in magnitude, often around

.10 mm (Fig. 2) (see [2] (Fig. 2)).

As expected (as in [15]), gyrification was highest in the

insula and lowest over medial cortical regions (Fig. 2).

Beyond this, we additionally observed greater gyrification

over parietal regions, convergent with prior studies (e.g.,

[20, 21]). Test–retest reliability of regional gyrification was

generally quite high (Figs. 3, 4) and was significantly
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higher for gyrification than cortical thickness [Z = 5.98,

p\ .001].

Regional fractal dimensionality is shown in Fig. 2.

Smaller regions had lower fractal dimensionality, as

smaller segmented structures inherently have less structural

complexity due to both limitations MRI acquisition preci-

sion and biological constraints (also see [24]). Intraclass

correlations (ICCs) are shown for each structural measure

and brain region in Fig. 3; Fig. 4 shows the 95%

confidence intervals of the inter-class correlations (ICCs)

for each measure and region. Across regions, mean ICC

was not significantly related to the size of the region for

any of the measures [thickness: r(60) = .206, p = .11;

gyrification: r(60) = .154, p = .23; fractal dimensionality:

r(60) = .251, p = .05]. Test–retest reliability of regional

fractal dimensionality was generally high (Figs. 3, 4) and

was also significantly higher than for cortical thickness

[Z = 5.46, p\ .001]. Reliability did not differ between

gyrification and fractal dimensionality [Z = .31, p = .75].

2.2.3 Subcortical structures

Test–retest reliability was relatively high for most struc-

tures and was quite similar for both volume and fractal

dimensionality (Fig. 5). Reliability was lowest for the

hippocampus; reliability was the highest for the caudate,

putamen, and thalamus. Reliability estimates were signifi-

cantly higher for the ventricles than the subcortical

structures.

2.2.4 Summary

The results indicate that gyrification and fractal dimen-

sionality have high test–retest reliability. Indeed, reliability

using these measures was higher than for cortical thickness.

Fig. 1 Dot plot for the structural estimates for each measure for the

cortical ribbon, for the CCBD dataset. Participant labels are presented

on the left, such that each row represents structural metrics for a

single participant. Each dot within a measure (e.g., ‘Thickness’)

represents a different scan volume. Within each row, markers in the

same color denote measures taken from the same scan volume.

Values beside each set of markers denote the mean deviation between

estimates. (Color figure online)

Table 1 Test–retest reliability (ICC) for each measure and dataset,

for the cortical ribbon data

Measure Study 1

CCBD

Study 2

GSP

Thickness (CT) .816 .890

Gyrification (GI) .945 .941

Fractal dimensionality

Dilation filled (FDf) .842 .936

Dilation surface .845 .936

Boxcount filled .799 .879

Boxcount surface .769 .849

SPHARM surface .977 .982

SPHARM refers to spherical harmonics. When not otherwise stated,

FDf represents FD as calculated using the dilation-filled approach
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3 Study 2: GSP

To further assess the replicability of these findings, we

calculated these same measures in a second dataset. While

this dataset had only two MRI sessions, rather than 10, this

dataset used an anatomical MRI sequence that was opti-

mized for brain morphology research (based on prior val-

idation work assessing cortical thickness and subcortical

volume) [7, 68]. While this prior validation work suggests

that reliability for cortical thickness and subcortical volume

should be higher for this dataset, it is not clear how these

improvements to volumetric measures may influence

shape-related measures of morphology (i.e., gyrification

and fractal dimensionality).

3.1 Procedure

3.1.1 Dataset

MR images were acquired on Siemens Trio 3 T scanners at

Harvard University and Massachusetts General Hospital, as

part of the Brain Genome Superstruct Project (GSP; [34]).

This dataset includes 1570 participants from aged 18 to

25 years old. Test–retest reliability data were available for

Fig. 2 Mean regional

morphology measures for each

parcellated region plotted on

inflated surfaces, for the CCBD

dataset

Fig. 3 Test–retest reliability

(ICC) for cortical thickness,

gyrification, and fractal

dimensionality of the cortical

parcellations, for the CCBD

dataset
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Fig. 4 Test–retest reliability (ICC) for cortical thickness, gyrifica-

tion, and fractal dimensionality of the cortical parcellations, for the

CCBD dataset. Upper mean ICC values, with 95% confidence

intervals, for each region and measure. Right hemisphere regions are

displayed in red; left hemisphere regions are displayed in blue.

Lower: empirical cumulative distribution functions (CDFs) of the

mean ICC values. Gray lines show the proportion of regions with at

least a mean ICC of x. (Color figure online)

Fig. 5 Test–retest reliability

(ICC; mean and 95% confidence

interval) for volume and fractal

dimensionality of the

subcortical structures, for the

CCBD dataset
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69 participants who were scanned within 6 months of their

first session (also see [3]). T1-weighted data were acquired

using a MEMPRAGE sequence optimized for brain mor-

phology (TR: 2.20 s; TE: 1.5, 3.4, 5.2, 7.0 ms; flip angle:

7�; voxel size: 1.2 9 1.2 9 1.2 mm) [7, 68].

3.1.2 Data analysis

The MR images were processed using an identical proce-

dure as in Study 1. ICC was also evaluated using the same

approach.

3.2 Results

3.2.1 Cortical ribbon

As shown in Fig. 6, morphology estimates from the two

sessions were generally highly concordant, though esti-

mates did markedly differ for some participants (e.g.,

Sub0955, Sub0957). Nonetheless, test–retest reliability

(ICC) was comparable as with the CCBD dataset (see

Table 1). In almost all cases, reliability was numerically

higher for the GSP dataset than for the CCBD dataset,

though this difference was not statistically significant.

Fig. 6 Dot plot for the structural estimates for each measure for the

cortical ribbon, for the GSP dataset. Each row represents structural

metrics for a single participant, and each dot within a measure (e.g.,

‘Thickness’) represents a scan volume. Within each row, markers in

the same color denote measures from the same scan volume, across

measures. Values beside each set of markers denote the mean

deviation between estimates. (Color figure online)
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3.2.2 Cortical parcellations

Regional estimates of thickness, gyrification, and fractal

dimensionality were nearly identical between the two

datasets (see Figs. 2, 7). However, it is important to note

that test–retest reliability of regional estimates was very

high across all regions and measures (Fig. 8a) and was

indeed numerically higher than in the CCBD dataset. It is

likely the increased reliability in this dataset, relative to the

CCBD dataset, is related to the prior work optimizing the

anatomical sequence optimized for brain morphology

analyses [7, 68]. In this GSP dataset, the reliability differed

between all three measures (Fig. 8b): Regional thickness

had greater reliability than regional gyrification [Z = 2.27,

p = .023]. Regional fractal dimensionality had greater

reliability than both thickness [Z = 7.21, p\ .001] and

gyrification [Z = 4.91, p\ .001].

3.2.3 Subcortical structures

As shown in Fig. 8c, test–retest reliability was near per-

fect for both volume and fractal dimensionality of the

subcortical structures. The regions that had relatively

lower reliability (pallidum, amygdala, accumbens) were

also relatively lower in Study 1, demonstrating the

replicability of lower test–retest reliability in these

regions—at least when segmented using FreeSurfer’s

automated algorithms. Reliability was particularly high

for the hippocampus and was significantly higher than in

the CCBD dataset (Study 1).

4 Discussion

Here we evaluated the test–retest reliability of several brain

morphology measures using open-access datasets. Prior

work had examined the reliability of volumetric mea-

sures—cortical thickness and subcortical volume; however,

the present study is the first to assess reliability of shape-

related measures, gyrification and fractal dimensionality.

Both datasets showed relatively high reliability for all

morphology measures and additionally revealed that reli-

ability was particularly good for the gyrification and fractal

dimensionality measures. Additionally, we provide empir-

ical evidence that the dilation approach for calculating

fractal dimensionality was superior in reliability to the

‘standard’ box-counting method. These findings held

across two datasets, but reliability was particularly good in

the GSP dataset, where the anatomical sequence had been

previously optimized for use in brain morphology studies.

Although reliability was good in these datasets, there is

still the question of how reliability may be increased in

future studies. A number of factors have been found to

influence estimates of brain morphology. Broadly, these

factors can be divided into three categories: MR acquisi-

tion, biological, and analysis related. For MR acquisition,

there are not yet enough datasets available to systemati-

cally examine how reliability is affected by the particular

acquisition protocols, although the current data suggest that

sequences previously optimized for brain morphology

analyses (i.e., those used in GSP dataset) will have better

reliability. Another acquisition-related factor is head

Fig. 7 Mean regional

morphology measures for each

parcellated region plotted on

inflated surfaces, for the GSP

dataset
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movement; movement has been shown to lead to decreased

estimates of cortical thickness [69–72], though it is unclear

how movement would affect measures of gyrification and

fractal dimensionality. This issue may become less critical

in future studies, as recent advances in structural imaging

have been able to attenuate movement-related artifacts

(e.g., [73–76]). Morphological measures can also be

influenced by biological confounds, such as hydration

[77–80] or circadian rhythms [81, 82]. Additionally, it is

important to control for variations in analysis software and

operating system, which can also affect brain morphology

estimates [65, 83, 84].

While the surface reconstructions were visually

inspected, the surfaces were not manually edited, for two

reasons. First and foremost, the quality of the automatic

reconstructions was judged to be acceptable and did not

require manual intervention. While manual editing is more

necessary with older adult and patient populations, all of

the individuals included in the present work were young

adults. Additionally, manual editing introduces a subjective

component and is often not conducted in studies of

reconstruction reliability [2, 5, 6, 46], though some relia-

bility studies have included minimal manual editing [4, 7].

Given that no manual editing was conducted, the reliability

estimates presented here may serve as a lower bound,

where manual editing would be expected to increase reli-

ability [4, 6]; however, there is evidence that editing may

not sufficiently influence regional estimates [85, 86].

Fractal dimensionality was used here as a measure of the

complexity in the shape of a structure. Results indicate that

this measure was generally more reliable than volumetric

morphological measures, likely because fractal dimen-

sionality is influenced by both shape and volumetric

characteristics that often covary [21, 24, 87–89]. By

Fig. 8 Test–retest reliability

(ICC) for regional parcellations

and subcortical structures, for

the GSP dataset. a ICCs for

cortical thickness, gyrification,

and fractal dimensionality of the

cortical parcellations.

b Empirical cumulative

distribution functions (CDFs).

Gray lines show the proportion

of regions with at least a mean

ICC of x. (C) ICCs (mean and

95% confidence interval) for

volume and fractal

dimensionality of the

subcortical structures
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pooling from both of these characteristics, fractal dimen-

sionality appears to be more reliable and should be con-

sidered in future research investigating the relationship

between brain morphology and inter-individual

differences.

In sum, here we evaluated the reliability of several brain

morphology estimates using two open-access datasets.

Reliability was generally high, providing support for using

gyrification and fractal dimensionality measures to evalu-

ate inter-individual or between-sample differences in

morphology.
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Appendix 1

See Table 2.

Table 2 List of open-access datasets that include intersession test–retest structural MRIs

References N Notes

Analyzed TRT datasets

Chen et al. [33] 30 Ten sessions acquired over 1-month period (2–3 days between sessions); part of CoRR (HNU1; see below)

Holmes et al. [34] 69 Two sessions within 6-month period; part of larger dataset with N = 1570; also see Holmes et al. [3]

Additional TRT datasets

Boekel et al. [99] 34 Two sessions within same day; subsample of N = 15 had a third session in same day and

a 2-week follow-up

Marcus et al. [100] 20 Three–four volumes within session, for two sessions within a 90-day period; part of larger

cross-sectional dataset of aging and dementia with N = 416

Morey et al. [11] 23 Two sessions within single day, follow-up in 7–9 days with another two sessions within single day

Gorgolewski et al. [101] 22 Two sessions 1 week apart, three rs-fMRI scans per session (includes high-res prefrontal cortex scan);

acquired on a 7 T scanner

Landman et al. [102] 21 Two sessions within single day; multiple sequences

Gorgolewski et al. [103] 10 Two sessions acquired 2–3 days apart

Highly sampled individual participant datasets

Maclaren et al. [104] 3 Two volumes within single session, for each of 20 sessions over 1-month period

Poldrack et al. [105] 1 One hundred and four sessions; scanned intermittently over 18 months (10 usable T1 volumes);

also see Laumann et al. [106]

Choe et al. [107] 1 One hundred and fifty-eight sessions; scanned weekly for 3.5 years

Froeling et al. [108] 1 Eighteen sessions, comprising 8000 dMRI volumes (5 sessions included T1 volumes)

Datasets part of CoRR

Zuo et al. [36] – Consortium for Reliability and Reproducibility (CoRR), aggregates many TRT datasets

Orban et al. [109] 80 Two volumes within single session, for each of two sessions within 3-month period; part of CoRR (UM1)

Lin et al. [110] 57 Two sessions within 6-week period; part of CoRR (BNU1)

Huang et al. [111] 61 Two sessions within 6-month period; part of CoRR (BNU2)

Note, nearly all of these datasets also include test–retest rs-fMRI data, some additionally collected task-based fMRI data
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Appendix 2

Generating DKT volumes for the calcFD toolbox

calcFD toolbox (build 28 [and above]; http://cmadan.

github.io/calcFD/) can calculate the fractal dimensionality

for parcellated cortical regions based on the DKT atlas. This

is done based on the aparc.DKTaltas40?aseg.mgz

volume, which must first be generated using FreeSurfer, but

is not part of the standard analysis pipeline. The FreeSurfer

command to accomplish this is:

mri aparc2aseg� s½SUBJECTID�
� annotaparc:DKTatlas40

where [SUBJECTID] corresponds to the individual subject

folder.

After these volumes have been generated by FreeSurfer,

the calcFD toolbox only needs the options to be set to DKT

(set options.aparc to ‘DKT’).

Appendix 3

Measuring fractal dimensionality via spherical

harmonics

In addition to the fractal dimensionality measures con-

sidered in Madan and Kensinger [21], we additionally

considered an approach based on spherical harmonics

(often abbreviated as ‘SPHARM’). Yotter et al. [58]

demonstrated that fractal dimensionality can be calculated

using spherical harmonics and compared this to the

standard box-counting approach. Importantly, they found

that the spherical harmonics approach was more robust to

rotations of the structure than the box-counting method.

We additionally implemented this approach when evalu-

ating the test–retest reliability of fractal dimensionality

estimates.

Briefly, spherical harmonics can be used to reconstruct

complex 3D surfaces based on space–frequency deforma-

tions to a sphere, based on similar principles as used to

reconstruct complex wave functions using Fourier trans-

forms. Some of the spherical harmonics basis functions are

shown in Fig. 9. Chung [54, 90] provides a comprehensive

introduction to these principles.

We used weighted spherical harmonics, a generalized

form of traditional spherical harmonics, which substantially

reduces ringing artifacts related to the Gibbs phenomenon

[54, 56]. Previous studies have used spherical harmonics to

study the shape of cortical and subcortical structures (e.g.,

[55–57, 87, 89, 91–98]), but spherical harmonics have not

been connected with fractal dimensionality approaches until

recently [58].

The fractal dimensionality approach we took, using

spherical harmonics, was conducted based on weighted

spherical harmonics equations provided by Chung et al.

[54–56] and the fractal dimensionality equations from

Yotter et al. [58]. The spherical parameterization provided

by FreeSurfer (?h.sphere, ?h.pial) is used as the

input surfaces for this processes. Cortical surfaces were

reconstructed for each hemisphere with a maximum

degree of l = {11, 16, 20, 29} (a subset of those sug-

gested by [58]) and a bandwidth of r = .001 (as recom-

mended by [54]). The reconstruction of one hemisphere,

across a variety of degrees, is shown in Fig. 10. The

calculations involved in reconstructing cortical surfaces

using weighted spherical harmonics are discussed in

detail in Chung [54].

Fig. 9 Spherical harmonics space–frequency basis functions, orga-

nized by degree (l) and order (m)
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52. Wenger E, Mårtensson J, Noack H, Bodammer NC, Kühn S,
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