
European Journal of Operational Research 260 (2017) 494–506

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Markov Chain methods for the Bipartite Boolean Quadratic

Programming Problem

Daniel Karapetyan

a , b , c , ∗, Abraham P. Punnen

c , Andrew J. Parkes b

a Institute for Analytics and Data Science, University of Essex, Colchester CO4 3SQ, UK
b ASAP Research Group, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK
c Department of Mathematics, Simon Fraser University Surrey, Central City, 250-13450 102nd AV, Surrey, British Columbia V3T 0A3, Canada

a r t i c l e i n f o

Article history:

Received 27 April 2016

Accepted 2 January 2017

Available online 6 January 2017

Keywords:

Artificial intelligence

Bipartite Boolean quadratic programming

Automated heuristic configuration

Benchmark

a b s t r a c t

We study the Bipartite Boolean Quadratic Programming Problem (BBQP) which is an extension of the well

known Boolean Quadratic Programming Problem (BQP). Applications of the BBQP include mining discrete

patterns from binary data, approximating matrices by rank-one binary matrices, computing the cut-norm

of a matrix, and solving optimisation problems such as maximum weight biclique, bipartite maximum

weight cut, maximum weight induced sub-graph of a bipartite graph, etc. For the BBQP, we first present

several algorithmic components, specifically, hill climbers and mutations, and then show how to com-

bine them in a high-performance metaheuristic. Instead of hand-tuning a standard metaheuristic to test

the efficiency of the hybrid of the components, we chose to use an automated generation of a multi-

component metaheuristic to save human time, and also improve objectivity in the analysis and compar-

isons of components. For this we designed a new metaheuristic schema which we call Conditional Markov

Chain Search (CMCS). We show that CMCS is flexible enough to model several standard metaheuristics;

this flexibility is controlled by multiple numeric parameters, and so is convenient for automated genera-

tion. We study the configurations revealed by our approach and show that the best of them outperforms

the previous state-of-the-art BBQP algorithm by several orders of magnitude. In our experiments we use

benchmark instances introduced in the preliminary version of this paper and described here, which have

already become the de facto standard in the BBQP literature.

© 2017 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

w

a

a

c

i

a

a

x

n

v

a

{

i

m
1. Introduction

The (Unconstrained) Boolean Quadratic Programming Problem

(BQP) is to

maximise f (x) = x T Q

′ x + c ′ x + c ′ 0
subject to x ∈ { 0 , 1 } n ,
where Q

′ is an n × n real matrix, c ′ is a row vector in R

n , and

c ′ 0 is a constant. The BQP is a well-studied problem in the opera-

tional research literature (Billionnet, 2004). The focus of this paper

is on a problem closely related to BQP, called the Bipartite (Uncon-

strained) Boolean Quadratic Programming Problem (BBQP) (Punnen,

Sripratak, & Karapetyan, 2015b). BBQP can be defined as follows:

maximise f (x, y) = x T Qy + cx + dy + c 0

subject to x ∈ { 0 , 1 } m , y ∈ { 0 , 1 } n ,
∗ Corresponding author at: Institute for Analytics and Data Science, University of

Essex, Colchester CO4 3SQ, UK.

E-mail addresses: daniel.karapetyan@gmail.com (D. Karapetyan), apunnen@sfu.ca

(A.P. Punnen), andrew.parkes@nottingham.ac.uk (A.J. Parkes).

W

w

W

w

http://dx.doi.org/10.1016/j.ejor.2017.01.001

0377-2217/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
here Q = (q i j) is an m × n real matrix, c = (c 1 , c 2 , . . . , c m

) is

 row vector in R

m , d = (d 1 , d 2 , . . . , d n) is a row vector in R

n ,

nd c 0 is a constant. Without loss of generality, we assume that

 0 = 0 , and m ≤ n (which can be achieved by simply interchang-

ng the rows and columns if needed). In what follows, we denote

 BBQP instance built on matrix Q , row vectors c and d and c 0 = 0

s BBQP(Q , c , d), and (x , y) is a feasible solution of the BBQP if

 ∈ {0, 1} m and y ∈ {0, 1} n . Also x i stands for the i th compo-

ent of the vector x and y j stands for the j th component of the

ector y .

A graph theoretic interpretation of the BBQP can be given

s follows (Punnen et al., 2015b). Let I = { 1 , 2 , . . . , m } and J =
 1 , 2 , . . . , n } . Consider a bipartite graph G = (I, J, E) . For each node

 ∈ I and j ∈ J , respective costs c i and d j are prescribed. Further-

ore, for each (i , j) ∈ E , a cost q ij is given. Then the Maximum

eight Induced Subgraph Problem on G is to find a subgraph G

′ =
(I ′ , J ′ , E ′) such that

∑

i ∈ I ′ c i +

∑

j∈ J ′ d j +

∑

(i, j) ∈ E ′ q i j is maximised,

here I ′ ⊆ I , J ′ ⊆ J and G

′ is induced by I ′ ∪ J ′ . The Maximum

eight Induced Subgraph Problem on G is precisely the BBQP,

here q i j = 0 if (i , j) �∈ E .
nder the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.01.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:daniel.karapetyan@gmail.com
mailto:apunnen@sfu.ca
mailto:andrew.parkes@nottingham.ac.uk
http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://creativecommons.org/licenses/by/4.0/

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 495

p

g

E

M

o

q

w

t

T

a

a

M

m

&

b

G

J

g

u

i

q

t

i

r

l

b

a

a

w

r

q

L

f

p

b

p

r

i

a

g

i

r

t

i

a

h

p

t

i

2

B

r

u

w

t

a

i

d

c

o

2

f

w

t

p

h

e

R

c

r

m

p

h

2

a

y

T

a

e

i

e

N

l

t

h

v

t

m

c
There are some other well known combinatorial optimisation

roblems that can be modelled as a BBQP. Consider the bipartite

raph G = (I, J, E) with w i j being the weight of the edge (i , j) ∈
 . Then the Maximum Weight Biclique Problem (MWBP) (Ambühl,

astrolilli, & Svensson, 2011; Tan, 2008) is to find a biclique in G

f maximum total edge-weight. Define

 i j =

{
w i j if (i, j) ∈ E,

−M otherwise,

here M is a large positive constant. Set c and d as zero vec-

ors. Then BBQP(Q , c , d) solves the MWBP (Punnen et al., 2015b).

his immediately shows that the BBQP is NP-hard and one can

lso establish some approximation hardness results with appropri-

te assumptions (Ambühl et al., 2011; Tan, 2008). Note that the

WBP has applications in data mining, clustering and bioinfor-

atics (Chang, Vakati, Krause, & Eulenstein, 2012; Tanay, Sharan,

 Shamir, 2002) which in turn become applications of BBQP.

Another application of BBQP arises in approximating a matrix

y a rank-one binary matrix (Gillis & Glineur, 2011; Koyutürk,

rama, & Ramakrishnan, 20 05; 20 06; Lu, Vaidya, Atluri, Shin, &

iang, 2011; Shen, Ji, & Ye, 2009). For example, let H = (h i j) be a

iven m × n matrix and we want to find an m × n matrix A =
(a i j) , where a i j = u i v j and u i , v j ∈ { 0 , 1 } , such that

∑ m

i =1

∑ n
j=1 (h i j −

 i v j) 2 is minimised. The matrix A is called a rank one approx-

mation of H and can be identified by solving the BBQP with

 i j = 1 − 2 h i j , c i = 0 and d j = 0 for all i ∈ I and j ∈ J . Binary ma-

rix factorisation is an important topic in mining discrete patterns

n binary data (Lu et al., 2011; Shen et al., 2009). If u i and v j are

equired to be in {−1 , 1 } then also the resulting factorisation prob-

em can be formulated as a BBQP.

The Maximum Cut Problem on a bipartite graph (MaxCut) can

e formulated as BBQP (Punnen et al., 2015b) and this gives yet

nother application of the model. BBQP can also be used to find

pproximations to the cut-norm of a matrix (Alon & Naor, 2006).

For theoretical analysis of approximation algorithms for BBQP,

e refer to Punnen, Sripratak, and Karapetyan (2015a) .

A preliminary version of this paper was made available to the

esearch community in 2012 (Karapetyan & Punnen, 2012). Subse-

uently Glover, Ye, Punnen, and Kochenberger (2015) and Duarte,

aguna, Martí, and Sánchez-Oro (2014) studied heuristic algorithms

or the problem. The testbed presented in our preliminary re-

ort (Karapetyan & Punnen, 2012) continues to be the source of

enchmark instances for the BBQP. In this paper, in addition to

roviding a detailed description of the benchmark instances, we

efine the algorithms reported in Karapetyan and Punnen (2012) ,

ntroduce a new class of algorithms and give a methodology for

utomated generation of a multi-component metaheuristic. By (al-

orithmic) component we mean a black box algorithm that mod-

fies the given solution. All the algorithmic components can be

oughly split into two categories: hill climbers, i.e. components

hat guarantee that the solution not be worsened, and mutations,

.e. components that usually worsen the solution. Our main goals

re to verify that the proposed components are sufficient to build a

igh-performance heuristic for BBQP and also investigate the most

romising combinations. By this computational study, we also fur-

her support the ideas in the areas of automated parameter tun-

ng and algorithm configuration (e.g. see Adenso-Díaz & Laguna,

006; Bezerra, López-Ibáñez, & Stützle, 2015; Hutter, Hoos, Leyton-

rown, & Stützle, 2009; Hutter, Hoos, & Stützle, 2007). Thus we

ely entirely on automated configuration. During configuration, we

se smaller instances compared to those in our benchmark. This

ay we ensure that we do not over-train our metaheuristics to

he benchmark instances – an issue that is often quite hard to

void with manual design and configuration. We apply the result-

ng multi-component metaheuristic to our benchmark instances

emonstrating that a combination of several simple components
an yield powerful metaheuristics clearly outperforming the state-

f-the-art BBQP methods.

The main contributions of the paper include:

• In Section 2 , we describe several BBQP algorithmic components,

one of which is completely new.
• In Section 3 we take the Markov Chain idea, such as in the

Markov Chain Hyper-heuristic (McClymont & Keedwell, 2011),

but restrict it to use static weights (hence having no on-

line learning, and so, arguably, not best labelled as a ‘hyper-

heuristic’), but instead adding a powerful extension to it, giving

what we call ‘Conditional Markov Chain Search (CMCS)’.
• In Section 4 we describe five classes of instances correspond-

ing to various applications of BBQP. Based on these classes, a

set of benchmark instances is developed. These test instances

were first introduced in the preliminary version of this pa-

per (Karapetyan & Punnen, 2012) and since then used in a

number of papers (Duarte et al., 2014; Glover et al., 2015) be-

coming de facto standard testbed for the BBQP.
• In Section 5 we use automated configuration of CMCS to

demonstrate the performance of individual components and

their combinations, and give details sufficient to reproduce all

of the generated metaheuristics. We also show that a special

case of CMCS that we proposed significantly outperforms sev-

eral standard metaheuristics, on this problem.
• In Section 6 we show that our best machine-generated meta-

heuristic is, by several orders of magnitude, faster than the pre-

vious state-of-the-art BBQP method.

. Algorithmic components

In this section we introduce several algorithmic components

or BBQP. Except for ‘ Repair ’ and ‘Mutation-X/Y’, these components

ere introduced in Karapetyan and Punnen (2012) . A summary of

he components discussed below is provided in Table 1 . The com-

onents are selected to cover a reasonable mix of fast and slow

ill climbing operators for intensification, along with mutation op-

rators that can be expected to increase diversification, and with

epair that does a bit of both. Note that a hill climbing component

an potentially implement either a simple improvement move or a

epetitive local search procedure with iterated operators that ter-

inates only when a local maximum is reached. However in this

roject we opted for single moves leaving the control to the meta-

euristic framework.

.1. Components: OPTIMISE-X / OPTIMISE-Y

Observe that, given a fixed vector x , we can efficiently compute

n optimal y = y opt (x) :

 opt (x) j =

{

1 if
∑

i ∈ I
q i j x i + d j > 0 ,

0 otherwise.
(1)

his suggests a hill climber operator Optimise-Y (OptY) that fixes x

nd replaces y with y opt (x) . Eq. (1) was first introduced in Punnen

t al. (2015b) and then used as a neighbourhood search operator

n Karapetyan and Punnen (2012) , Duarte et al. (2014) and Glover

t al. (2015) .

OptY implements a hill climber operator in the neighbourhood

 OptY (x, y) = { (x, y ′) : y ′ ∈ { 0 , 1 } n } , where (x , y) is the original so-

ution. Observe that the running time of OptY is polynomial and

he size of the neighbourhood | N OptY (x, y) | = 2 n is exponential;

ence OptY corresponds to an operator that could be used in a

ery large-scale neighbourhood search (VLNS), a method that is of-

en considered as a powerful approach to hard combinatorial opti-

isation problems Ahuja, Ergun, Orlin, Punnen, (2002) .

Observe that OptY finds a local maximum after the first appli-

ation because N(x, y) = N(x, y opt (y)) (that is, it is an ‘idempotent

496 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

Table 1

List of the algorithmic components used in this paper, and described in Section 2 .

Name Description

— Hill climbing operators: that is, components guaranteeing that the solution will not be worsened

OptX Optimise-X , Section 2.1 . Fixes vector y while optimising x

OptY As OptX , but reversing roles of x and y

FlpX Flip-X , Section 2.2 . Checks if flipping x i for some i ∈ I and subsequently optimising y improves the solution

FlpY As FlpX , but reversing roles of x and y

— Mutations: that is, components that may worsen the solution

Repair Repair , Section 2.3 . Finds a single term of the objective function that can be improved and ‘repairs’ it

MutX4 Mutation-X(4), Section 2.4 . Flips x i for four randomly picked i ∈ I
MutY4 As MutX4 , but reversing roles of x and y

MutX16 As MutX4 , but for 16 randomly picked x i
MutY16 As MutY4 , but for 16 randomly picked y i

s

i

F

n

i

T

l

s

O

q

e

t

R

r

h

p

R

t

t

2

t

t

d

y

w

M

(

3

s

o

w

t

o

a

3

M

2

n

i

s
operator’); hence, there is no gain from applying OptY again im-

mediately after it was applied. Though, for example, iterating and

alternating between OptX and OptY would give a VLNS.

Note that y opt (x) j can take any value if
∑

i ∈ I q i j x i + d j = 0 , with-

out affecting the objective value of the solution. Thus, one can

implement various ‘tie breaking’ strategies including randomised

decision whether to assign 0 or 1 to y opt (x) j , however in that

case OptY would become non-deterministic. In our implementa-

tion of OptY we preserve the previous value by setting y opt (x) j =
y j for every j such that

∑

i ∈ I q i j x i + d j = 0 . As will be explained

in Section 5.1 , changing a value y j is a relatively expensive oper-

ation and thus, whenever not necessary, we prefer to avoid such a

change.

By interchanging the roles of rows and columns, we also define

x opt (y) i =

{

1 if
∑

j∈ J
q i j y j + c i > 0 ,

0 otherwise,

(2)

and a hill climber operator Optimise-X (OptX) with properties sim-

ilar to those of OptY .

2.2. Components: FLIP-X / FLIP-Y

This class of components is a generalisation of the previous

one. In Flip-X (FlpX), we try to flip x i for every i ∈ I , each

time re-optimising y . More formally, for i = 1 , 2 , . . . , m, we com-

pute x ′ = (x 1 , . . . , x i −1 , 1 − x i , x i +1 , . . . , x m

) and then verify if solu-

tion (x ′ , y opt (x ′)) is an improvement over (x , y). Each improvement

is immediately accepted, but the search carries on for the remain-

ing values of i . In fact, one could consider a generalisation of Flip-X

that flips x i for several i at a time. However, exploration of such a

neighbourhood would be significantly slower, and so we have not

studied such a generalisation in this paper.

By row/column interchange, we also introduce the Flip-Y (FlpY)

hill climbing operator. Clearly, FlpX and FlpY are also VLNS oper-

ators, though unlike OptX and OptY they are not idempotent and

so could be used consecutively.

FlpX and FlpY were first proposed in Punnen et al. (2015b) and

then used in Glover et al. (2015) .

2.3. Components: REPAIR

While all the above methods were handling entire rows or

columns, Repair is designed to work on the level of a single el-

ement of matrix Q . Repair is a new component inspired by the

WalkSAT heuristic for SAT problem (Papadimitriou, 1991; Selman,

Kautz, & Cohen, 1995) in that it is a version of ‘iterative repair’

(Zweben, Davis, Daun, & Deale, 1993) that tries to repair some sig-

nificant ‘flaw’ (deficiency of the solution) even if this results in cre-

ation of other flaws, in a hope that the newly created flaws could

be repaired later. This behaviour, of forcing the repair of randomly
elected flaws, gives some stochasticity to the search that is also

ntended to help in escaping from local optima.

Recall that the objective value of BBQP includes terms q ij x i y j .

or a pair (i , j), there are two possible kinds of flaws: either q ij is

egative but is included in the objective value (i.e. x i y j = 1), or it

s positive and not included in the objective value (i.e. x i y j = 0).

he Repair method looks for such flaws, especially for those with

arge | q ij |. For this, it uses the tournament principle; it randomly

amples pairs (i , j) and picks the one that maximises (1 − 2 x i y j) q i j .

nce an appropriate pair (i , j) is selected, it ‘repairs’ the flaw; if

 ij is positive then it sets x i = y j = 1 ; if q ij is negative then it sets

ither x i = 0 or y j = 0 (among these two options it picks the one

hat maximises the overall objective value). Our implementation of

epair terminates after the earliest of two: (i) finding 10 flaws and

epairing the biggest of them, or (ii) sampling 100 pairs (i , j).

Note that one could separate the two kinds of flaws, and so

ave two different methods: Repair-Positive , that looks for and re-

airs only positive ‘missing’ terms of the objective function, and

epair-Negative , that looks for and repairs only negative included

erms of the objective function. However, we leave these options

o future research.

.4. Components: MUTATION-X / MUTATION-Y

In our empirical study, we will use some pure mutation opera-

ors of various strengths to escape local maxima. For this, we use

he N OptX (x, y) neighbourhood. Our Mutation-X (k) operator picks k

istinct x variables at random and then flips their values, keeping

 unchanged. Similarly we introduce Mutation-Y (k). In this paper

e use k ∈ {4, 16}, and so have components which we call MutX4 ,

utX16 , MutY4 and MutY16 .

An operator similar to Mutation-X/Y was used in Duarte et al.

2014) .

. The Markov chain methods

The algorithmic components described in Section 2 are de-

igned to work within a metaheuristic; analysis of each component

n its own would not be sufficient to conclude on its usefulness

ithin the context of a multi-component system. To avoid bias due

o picking one or another metaheuristic, and to save human time

n hand-tuning it, we chose to use a generic schema coupled with

utomated configuration of it.

.1. Conditional Markov Chain Search (CMCS)

The existing framework that was closest to our needs was the

arkov Chain Hyper-Heuristic (MCHH) (McClymont & Keedwell,

011). MCHH is a relatively simple algorithm that applies compo-

ents in a sequence. This sequence is a Markov chain; the ‘state’

n the Markov chain is just the operator that is to be applied, and

o the Markov nature means that the transition to a new state

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 497

(

p

i

l

i

v

i

s

i

W

p

w

p

l

t

c

w

e

w

(

f

p

e

p

t

m

t

s

u

L

t

i

n

o

s

c

s

c

w

v

d

i

p

B

t

g

i

3

g

f

3

component/operator) only depends on the currently-applied com-

onent and transition probabilities. Transition probabilities, organ-

sed in a transition matrix, are obtained in MCHH dynamically, by

earning most successful sequences.

While MCHH is a successful approach capable of effectively util-

sing several algorithmic components, it does not necessarily pro-

ide the required convenience of interpretation of performance of

ndividual components and their combinations because the tran-

ition probabilities in MCHH change dynamically. To address this

ssue, we chose to fix the transition matrix and learn it offline.

e can then perform the analysis by studying the learnt transition

robabilities.

The drawback of learning the probabilities offline is that MCHH

ith static transition matrix receives no feedback from the search

rocess and, thus, has no ability to respond to the instance and so-

ution properties. To enable such a feedback, we propose to extend

he state of the Markov chain with the information about the out-

ome of the last component execution; this extension is simple but

ill prove to be effective. In particular, we suggest to distinguish

xecutions that improved the solution quality, and executions that

orsened, or did not change, the solution quality.

We call our new approach Conditional Markov Chain Search

CMCS). It is parameterised with two transition matrices: M

succ

or transitions if the last component execution was successful (im-

roved the solution), and M

fail for transitions if the last component

xecution failed (has not improved the solution). 1

Algorithm 1: Conditional Monte-Carlo search.

input : Ordered set of components H;

input : Matrices M

succ and M

fail of size |H| × |H| ;
input : Objective function f (S) to be maximised;

input : Initial solution S;

input : Termination time t erminat e - at ;

1 S ∗ ← S;

2 h ← 1 ;

3 while now < t erminat e - at do

4 f old ← f (S) ;

5 S ← H h (S) ;

6 f new

← f (S) ;

7 if f new

> f old then

8 h ← RouletteW heel (M

succ
h, 1

, M

succ
h, 2

, . . . , M

succ
h, |H|) ;

9 if f (S) > f (S ∗) then

10 S ∗ ← S;

11 else

12 h ← RouletteW heel (M

fail
h, 1

, M

fail
h, 2

, . . . , M

fail
h, |H|) ;

13 return S ∗;

CMCS does not in itself employ any learning during the search

rocess, but is configured by means of offline learning, and so

he behaviour of any specific instance of CMCS is defined by two

atrices M

succ and M

fail of size |H| × |H| each. Thus, we refer

o the general idea of CMCS as schema , and to a concrete in-
1 Note that executions that do not change the solution quality at all are also con-

idered as a failure. This allows us to model a hill climber that is applied repeatedly

ntil it becomes trapped in a local maximum.

et H be the pool of algorithmic components. CMCS is a single-point metaheuristic

hat applies one component h ∈ H at a time, accepting both improving and worsen-

ng moves. The next component h ′ ∈ H to be executed is determined by a function

ext : H → H. In particular, h ′ is chosen using roulette wheel with probabilities p hh ′

f transition from h to h ′ defined by matrix M

succ if the last execution of h was

uccessful and M

fail otherwise. All the moves are always accepted in CMCS. Pseudo-

ode of the CMCS schema is given in Algorithm 1 .

H

t

M

tance of CMCS, i.e. specific values of matrices M

succ and M

fail , as

onfiguration .

For the termination criterion, we use a predefined time after

hich CMCS terminates. This is most appropriate, as well as con-

enient, when we need to compare metaheuristics and in which

ifferent com ponents run at different speeds so that simple count-

ng of steps would not be a meaningful termination criterion.

CMCS requires an initial solution; this could have been sup-

lied from one of the several construction heuristics developed for

BQP (Duarte et al., 2014; Karapetyan & Punnen, 2012), however,

o reduce potential bias, we initialise the search with a randomly

enerated solution with probability of each of x i = 1 and y j = 1 be-

ng 50%.

.2. CMCS properties

Below we list some of the properties of CMCS that make it a

ood choice in our study. We also believe that it will be useful in

uture studies in a similar way.

• CMCS is able to combine several algorithmic components in one

search process, and with each component taken as a black box.
• CMCS has parameters for inclusion or exclusion of individual

components as we do not know in advance if any of our com-

ponents have poor performance. This is particularly true when

considering that performance of a component might well de-

pend on which others are available – some synergistic com-

binations might be much more powerful than the individuals

would suggest.
• CMCS has parameters that permit some components to be used

more often than others as some of our hill climbing opera-

tors are significantly faster than others; this also eliminates the

necessity to decide in advance on the frequency of usage of

each of the components. Appropriate choices of the parame-

ters should allow the imbalance of component runtimes to be

exploited.
• CMCS is capable of exploiting some (recent) history of the

choices made by the metaheuristic, as there might be efficient

sequences of components that should be exploitable.
• As we will show later, CMCS is powerful enough to model some

standard metaheuristics and, thus, allows easy comparison with

standard approaches.
• The performance of CMCS does not depend on the absolute val-

ues of the objective function; it is rank-based in that it only

uses the objective function to find out if a new solution is

better than the previous solution. This property helps CMCS

perform well across different families of instances. In contrast,

methods such as Simulated Annealing, depend on the abso-

lute values of the objective function and thus often need to be

tuned for each family of instances, or else need some mech-

anism to account for changes to the scale of the objective

function.
• The transition matrices of a tuned CMCS configuration allow us

conveniently interpret the results of automated generation.

.3. Special cases of CMCS

Several standard metaheuristics are special cases of CMCS. If

 = { HC , Mut } includes a hill climbing operator ‘HC’ and a muta-

ion ‘Mut’ then

succ =

(

HC Mut

HC 1 0

Mut 1 0

)

and

M

fail =

(

HC Mut
HC 0 1

Mut 1 0

)

498 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

Fig. 2. Implementation of a two-phase heuristic with probabilistic transition from

the first phase to the second phase. All the probabilities are 100% unless otherwise

labelled.

t

s

s

q

n

e

t

e

p

t

e

e

b

i

d

t

t

p

o

a

p

w
implements Iterated Local Search (Lourenço, Martin, and Stützle,

2010); the algorithm repeatedly applies HC until it fails, then ap-

plies Mut, and then returns to HC disregarding the success or fail-

ure of Mut.

If M

succ
h,h ′ = M

fail
h,h ′ = 1 / |H| for all h, h ′ ∈ H then CMCS implements

a simple uniform random choice of component (Cowling, Kendall,

& Soubeiga, 2001).

A generalisation of the uniform random choice is to allow non-

uniform probabilities of component selection. We call this spe-

cial case Operator Probabilities (Op. Prob.) and model it by set-

ting M

succ
h,h ′ = M

fail
h,h ′ = p h ′ for some vector p of probabilities. Note

that Operator Probabilities is a static version of a Selection Hyper-

heuristic (Cowling et al., 2001).

Obviously, if M

succ = M

fail then CMCS implements a static ver-

sion of MCHH.

By allowing M

succ � = M

fail , it is possible to implement a Variable

Neighbourhood Search (VNS) using the CMCS schema. For example,

if

M

succ =

⎛

⎜ ⎜ ⎝

HC1 HC2 HC3 Mut

HC1 1 0 0 0

HC2 1 0 0 0

HC3 1 0 0 0

Mut 1 0 0 0

⎞

⎟ ⎟ ⎠

and

M

fail =

⎛

⎜ ⎜ ⎝

HC1 HC2 HC3 Mut

HC1 0 1 0 0

HC2 0 0 1 0

HC3 0 0 0 1

Mut 1 0 0 0

⎞

⎟ ⎟ ⎠

then CMCS implements a VNS that applies HC1 until it fails, then

applies HC2. If HC2 improves the solution then the search gets

back to HC1; otherwise HC3 is executed. Similarly, if HC3 improves

the solution then the search gets back to HC1; otherwise current

solution is a local maximum with respect to the neighbourhoods

explored by HC1, HC2 and HC3 (assuming they are deterministic)

and mutation Mut is applied to diversify the search.

However, even though the previous examples are well-known

metaheuristics, they are rather special cases from the perspective

of CMCS, which allows much more sophisticated strategies. For ex-

ample, we can implement a two-loop heuristic, which alternates

hill climbing operator HC1 and mutation Mut1 until HC1 fails to

improve the solution. Then the control is passed to the second

loop, alternating HC2 and Mut2. Again, if HC2 fails, the control is

passed to the first loop.

To describe such more sophisticated strategies, it is convenient

to represent CMCS configurations with automata as in Fig. 1 . Blue

and red lines correspond to transitions in case of successful and

unsuccessful execution of the components, respectively. Probabili-
Fig. 1. Implementation of a two-loop heuristic within the CMCS framework. Blue

lines show transitions in case of success, and red lines show transitions in case

of failure of the component. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

e

h

f

o

g

n

N

C

g

b

fi

t

f

e

ies of each transition are shown with line widths (in Fig. 1 all the

hown probabilities are 100%). The advantage of automata repre-

entation is that it visualises the probabilities of transition and se-

uences in which components are executed (and so complements,

ot supplants, the formal description via the pseudo-code and the

xplicit transition matrices), as common when describing transi-

ion systems.

The transitions in the above example are deterministic, how-

ver, this is not an inherent limitation; for example, one could im-

lement a two phase search with the transition being probabilis-

ic, see Fig. 2 . We also note here that CMCS can be significantly

nriched by having several copies of each component in H and/or

mploying dummy components for describing more sophisticated

ehaviours; but we leave these possibilities to future work.

These are just some of the options available with CMCS, show-

ng that it is potentially a powerful tool. However, this flexibility

oes come with the associated challenge – of configuring the ma-

rices to generate effective metaheuristics. For example, if |H| = 10

hen CMCS has 2 |H| 2 = 200 continuous parameters.

By simple reasoning we can fix the values of a few of these

arameters:

• If component h is a deterministic hill climbing operator then

M

fail
h,h

= 0 , as when it fails then the solution remains unchanged

and so immediate repetition is pointless.
• If component h is an idempotent operator (e.g. OptX or OptY)

then M

succ
h,h

= M

fail
h,h

= 0 ; again there is no use in applying h sev-

eral times in a row.

Nevertheless, the significant number of remaining parameters

f CMCS makes it hard to configure. For this reason we propose,

nd exploit a special case of the CMCS schema, with much fewer

arameters but that still provides much of the power of the frame-

ork of the full CMCS. Specifically, we allow at most k non-zero

lements in each row of M

succ and M

fail , calling the resulting meta-

euristic ‘CMCS[k -row]’. Clearly, CMCS[|H| -row] is identical to the

ull version of CMCS. In practice, however, we expect one to use

nly smaller values of k ; either k = 1 or k = 2 .

When k = 1 , the corresponding automata has at most one out-

oing ‘success’ arc, and one outgoing ‘failure’ arc for each compo-

ent. Hence CMCS turns into a deterministic control mechanism.

ote that iterated local search and VNS are in fact special cases of

MCS[1-row].

When k = 2 , the corresponding automata has at most two out-

oing ‘success’ arcs from each component, and their total proba-

ility of transition is 100%. Hence, the ‘success’ transition is de-

ned by a pair of components and the split of probabilities be-

ween them. ‘Failure’ transition is defined in the same way.

In Section 5 , we show that CMCS[2-row] is sufficiently power-

ul to implement complex component combinations but is much

asier to configure and analyse than full CMCS.

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 499

4

fi

2

t

d

W

i

p

w

a

m

e

H

t

b

w

L

M

s

M

L

T

i

5

d

S

e

c

c

v

t

m

e

5

s

a

t

o

t

d

s

u

m

5

d

f

i

o

c

V

t

b

c
. Benchmark instances

The testbed which is currently de facto standard for BBQP was

rst introduced in our unpublished work (Karapetyan & Punnen,

012). Our testbed consists of five instance types that correspond

o some of the real life applications of BBQP. Here we provide the

escription of it, and also make it openly available for download. 2

e keep record of the best known solutions for each of the test

nstances which will also be placed on the download page.

In order to generate some of the instances, we need random bi-

artite graphs. To generate a random bipartite graph G = (V, U, E) ,

e define seven parameters, namely m = | V | , n = | U| , d 1 , d̄ 1 , d 2 , d̄ 2
nd μ such that 0 ≤ d 1 ≤ d̄ 1 ≤ n, 0 ≤ d 2 ≤ d̄ 2 ≤ m, m d 1 ≤ n ̄d 2 and

 ̄d 1 ≥ n d 2 .

The bipartite graph generator proceeds as follows.

1. For each node v ∈ V, select d v uniformly at random from the

range [d 1 , d̄ 1] .

2. For each node u ∈ U , select d u uniformly at random from the

range [d 2 , d̄ 2] .

3. While
∑

v ∈ V d v � =

∑

u ∈ U d u , alternatively select a node in V or U

and re-generate its degree as described above. 3

4. Create a bipartite graph G = (V, U, E) , where E = ∅ .
5. Randomly select a node v ∈ V such that d v > deg v (if no such

node exists, go to the next step). Let U

′ = { u ∈ U : deg u <

d u and (v , u) / ∈ E} . If U

′ � = ∅ , select a node u ∈ U

′ randomly.

Otherwise randomly select a node u ∈ U such that (v , u) / ∈ E

and d u > 0; randomly select a node v ′ ∈ V adjacent to u and

delete the edge (v ′ , u) . Add an edge (v , u) . Repeat this step.

6. For each edge (v , u) ∈ E select the weight w v u as a normally

distributed integer with standard deviation σ = 100 and given

mean μ.

The following are the instance types used in our computational

xperiments:

1. The Random instances are as follows: q ij , c i and d j are integers

selected at random with normal distribution (mean μ = 0 and

standard deviation σ = 100).

2. The Max Biclique instances model the problem of finding a bi-

clique of maximum weight in a bipartite graph. Let G = (I, J, E)

be a random bipartite graph with d 1 = n/ 5 , d̄ 1 = n, d 2 = m/ 5 ,

d̄ 2 = m and μ = 100 . (Note that setting μ to 0 would make the

weight of any large biclique likely to be around 0, which would

make the problem much easier.) If w i j is the weight of an edge

(i , j) ∈ E , set q i j = w i j for every i ∈ I and j ∈ J if (i , j) ∈ E and

q i j = −M otherwise, where M is large number. Set c and d as

zero vectors.

3. The Max Induced Subgraph instances model the problem of find-

ing a subset of nodes in a bipartite graph that maximises the

total weight of the induced subgraph. The Max Induced Sub-

graph instances are similar to the Max Biclique instances ex-

cept that q i j = 0 if (i , j) �∈ E and μ = 0 . (Note that if μ > 0 then

the optimal solution would likely include all or almost all the

nodes and, thus, the problem would be relatively easy.)

4. The MaxCut instances model the MaxCut problem as follows.

First, we generate a random bipartite graph as for the Max

Induced Subgraph instances. Then, we set q i j = −2 w i j if (i , j)

∈ E and q i j = 0 if (i , j) �∈ E . Finally, we set c i =

1
2

∑

j∈ J q i j and

d j =

1
2

∑

i ∈ I q i j . For an explanation, see Punnen et al. (2015b) .
2 http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP .
3 In practice, if m (d 1 + d̄ 1) ≈ n (d 2 + d̄ 2) , this algorithm converges very quickly.

owever, in theory it may not terminate in finite time and, formally speaking,

here needs to be a mechanism to guarantee convergence. Such a mechanism could

e turned on after a certain (finite) number of unsuccessful attempts, and then it

ould force the changes of degrees d v that reduce | ∑

v ∈ V d v −
∑

u ∈ U d u | .

q

a

c

p

t

V
5. The Matrix Factorisation instances model the problem of pro-

ducing a rank one approximation of a binary matrix. The origi-

nal matrix H = (h i j) (see Section 1) is generated randomly with

probability 0.5 of h i j = 1 . The values of q ij are then calculated

as q i j = 1 − 2 h i j , and c and d are zero vectors.

Our benchmark consists of two sets of instances: Medium and

arge. Each of the sets includes one instance of each type (Random,

ax Biclique, Max Induced Subgraph, MaxCut and Matrix Factori-

ation) of each of the following sizes:

edium : 200 × 1000 , 400 × 1000 , 600 × 1000 , 800 × 1000 ,

10 0 0 × 10 0 0 ;
arge : 10 0 0 × 50 0 0 , 20 0 0 × 50 0 0 , 30 0 0 × 50 0 0 , 40 0 0 × 50 0 0 ,

50 0 0 × 50 0 0 .

hus, in total, the benchmark includes 25 medium and 25 large

nstances.

. Metaheuristic design

In this section we describe configuration of metaheuristics as

iscussed in Section 3 and using the BBQP components given in

ection 2 . In Sections 5.1 and 5.2 we give some details about our

xperiments, then in Section 5.3 describe the employed automated

onfiguration technique, in Section 5.4 we provide details of the

onfigured metaheuristics, and in Section 5.5 analyse the results.

Our test machine is based on two Intel Xeon CPU E5-2630

2 (2.6 gigahertz) and has 32 gigabytes RAM installed. Hyper-

hreading is enabled, but we never run more than one experi-

ent per physical CPU core concurrently, and concurrency is not

xploited in any of the tested solution methods.

.1. Solution representation

We use the most natural solution representation for BBQP, i.e.

imply storing vectors x and y . However, additionally storing some

uxiliary information with the solution can dramatically improve

he performance of algorithms. We use a strategy similar to the

ne employed in Glover et al. (2015) . In particular, along with vec-

ors x and y , we always maintain values c i +

∑

j y j q i j for each i , and

 j +

∑

i x i q i j for each j . Maintenance of this auxiliary information

lows down any updates of the solution but significantly speeds

p the evaluation of potential moves, which is what usually takes

ost of time during the search.

.2. Solution polishing

As in many single-point metaheuristics, the changes between

iversifying and intensifying steps of CMCS mean that the best

ound solution needs to be stored, and also that it is not necessar-

ly a local maximum with respect to all the available hill climbing

perators. Hence, we apply a polishing procedure to every CMCS

onfiguration produced in this study, including special cases of

NS, Op. Prob. and MCHH. Our polishing procedure is executed af-

er the CMCS finishes its work, and it is aimed at improving the

est solution found during the run of CMCS. It sequentially exe-

utes OptX , OptY , FlpX and FlpY components, restarting this se-

uence every time an improvement is found. When none of these

lgorithms can improve the solution, that is, the solution is a lo-

al maximum with respect to all of our hill climbing operators, the

rocedure terminates.

While taking very little time, this polishing procedure has no-

ably improved our results. We note that this polishing stage is a

ariable Neighbourhood Descent, and thus a special case of CMCS;

http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP

500 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

Fig. 3. Transition matrix of MCHH. Dashes show prohibited transitions, i.e. the tran-

sitions that are guaranteed to be useless and so are constrained to zero, as opposed

to being set to zero by the tuning generation process. In this table, and subsequent

ones, the row specifies the previously executed component, and the column speci-

fies the next executed component.

t

M

t

g

a

s

o

t

e

t

w

h

r

r

e

s

s

t

a

t

a

w

o

b

w

5

(

g

t

t

a

t

p

a

e

p

t

t

I

b

M

n

n

c

h

p

w

F
hence, the final polishing could be represented as a second phase

of CMCS. We also note that the Tabu Search algorithm, against

which we compare our best CMCS configuration in Section 6.1 ,

uses an equivalent polishing procedure applied to each solution

and thus the comparison is fair.

5.3. Approach to configuration of the metaheuristics

Our ultimate goal in this experiment is to apply automated con-

figuration (e.g. in the case of CMCS, to configure M

succ and M

fail

matrices), which would compete with the state-of-the-art meth-

ods on the benchmark instances (which have sizes 200 × 10 0 0

to 50 0 0 × 50 0 0) and with running times in the order of several

seconds to several minutes. As explained in Section 3 , instead of

hand designing a metaheuristic we chose to use automated gener-

ation based on the CMCS schema. Automated generation required

a set of training instances. Although straightforward, directly train-

ing on benchmark instances would result in over-training (a prac-

tice generally considered unfair because an over-trained heuristic

might perform well only on a very small set of instances on which

it is tuned and then tested) and also would take considerable com-

putational effort. Thus, for training we use instances of size 200 ×
500. We also reduced the running times to 100 milliseconds per

run of each candidate configuration, that is, matrices when config-

uring CMCS or MCHH, probability vector for Op. Prob., and compo-

nent sequence for VNS.

Let T be the set of instances used for training. Then our objec-

tive function for configuration is

f (h, T) =

1

| T |
∑

t∈ T

f best (t) − h (t)

f best (t)
· 100% , (3)

where h is the evaluated heuristic, h (t) is the objective value of so-

lution obtained by h for instance t , and f best (t) is the best known

solution for instance t . For the training set, we used instances of

all of the types. In particular, we use one instance of each of the

five types (see Section 4), all of size 200 × 500, and each of these

training instances is included in T 10 times, thus | T | = 50 (we ob-

served that without including each instance several times the noise

level significantly obfuscated results). Further, when testing the top

ten candidates, we include each of the five instances 100 times in

T , thus having | T | = 500 .

We consider four types of metaheuristics: VNS, Op. Prob.,

MCHH and CMCS[2-row], all of which are also special cases of

CMCS. All the components discussed in Section 2 , and also briefly

described in Table 1 , are considered for inclusion in all the meta-

heuristics. Additionally, since Repair is a totally new component,

we want to confirm its usefulness. For this we also study a spe-

cial case of CMCS[2-row] which we call ‘ CMCS[2-row reduced] ’. In

CMCS[2-row reduced], the pool of potential components includes

all the components in Table 1 except Repair .

To configure VNS and Op. Prob., we use brute force search as

we can reasonably restrict the search to a relatively small number

of options. In particular, when configuring Op. Prob., the number of

components |H| (recall that H is the set of components employed

by the metaheuristic) is restricted to at most four, and weights of

individual components are selected from {0.1, 0.2, 0.5, 0.8, 1} (these

weights are then rescaled to obtain probabilities). We also require

that there has to be at least one hill climbing operator in H as oth-

erwise there would be no pressure to improve the solution, and

one mutation operator as otherwise the search would quickly be-

come trapped in a local maximum. Note that we count Repair as

a mutation as, although designed to explicitly fix flaws, it is quite

likely to worsen the solution (even if in the long run this will be

beneficial). When configuring VNS, H includes one or several hill

climbing operators and one mutation and the configuration pro-

cess has to also select the order in which they are applied.
To configure CMCS and static MCHH, we use a simple evolu-

ionary algorithm, with the solution describing matrices M

succ and

fail (accordingly restricted), and fitness function (3) . Implementa-

ion of a specialised tuning algorithm has an advantage over the

eneral-purpose automated algorithm configuration packages, as

 specialised system can exploit the knowledge of the parameter

pace (such as entanglement of certain parameters). In this project,

ur evolutionary algorithm employs specific neighbourhood opera-

ors that intuitively make sense for this particular application. For

xample, when tuning 2-row, we employ, among others, a muta-

ion operator that swaps the two non-zero weights in a row of a

eight matrix. Such a move is likely to be useful for ‘exploitation’;

owever it is unlikely to be discovered by a general purpose pa-

ameter tuning algorithm.

We compared the tuning results of our CMCS-specific algo-

ithm to ParamILS (Hutter et al., 2009), one of the leading gen-

ral purpose automated parameter tuning/algorithm configuration

oftware. We found out that, while ParamILS performs well, our

pecialised algorithm clearly outperforms it, producing much bet-

er configurations. It should be noted that there can be multiple

pproaches to encode matrices M

succ and M

fail for ParamILS. We

ried two most natural approaches and both attempts were rel-

tively unsuccessful; however, it is possible that future research

ill reveal more efficient ways to represent the key parameters

f CMCS. We also point out that CMCS can be a new interesting

enchmark for algorithm configuration or parameter tuning soft-

are.

.4. Configured metaheuristics

In this section we describe the configurations of each type

VNS, Op. Prob., MCHH, CMCS[2-row reduced] and CMCS[2-row])

enerated as described in Section 5.3 . From now on we refer to

he obtained configurations by the name of their types. Note that

he structures described in this section are all machine-generated,

nd thus when we say that ‘a metaheuristic chose to do some-

hing’, we mean that such a decision emerged from the generation

rocess; the decision was not a human choice.

VNS chose three hill climbing operators, OptY , FlpY and OptX ,

nd a mutation MutX16 , and using the order as written. It is inter-

sting to observe that this choice and sequence can be easily ex-

lained. Effectively, the search optimises y given a fixed x (OptY),

hen tries small changes to x with some lookahead (FlpY), and if

his fails then optimises x globally but without lookahead (OptX).

f the search is in a local maximum with respect to all three neigh-

ourhoods then the solution is perturbed by a strong mutation

utX16 . Observe that the sequence of hill climbing operators does

ot obey the generally accepted rule of thumb to place smaller

eighbourhoods first; the third hill climbing operator OptX has

learly smaller neighbourhood than FlpY . However, this sequence

as an interesting internal logic. Whenever FlpY succeeds in im-

roving the solution, the resultant solution is a local minimum

ith respect to OptX . Accordingly, VNS jumps back to OptY when

lpY succeeds. However, if FlpY fails then the solution might not

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 501

Fig. 4. Transition matrices of CMCS[2-row reduced]. Dashes show prohibited transitions, see Section 3.3 . CMCS[2-row reduced] transition frequencies are shown in Fig. 7 a.

Fig. 5. Transition matrices of CMCS[2-row], our best performing metaheuristic. Dashes show prohibited transitions. CMCS[2-row] transition frequencies are shown in Fig. 7 b.

b

c

g

e

i

t

t

M

p

M

i

l

a

c

r

s

q

a

c

(

w

r

n

M

m

5

n

w

e

p

O

h

fi

t

Table 2

Performance of the emergent metaheuristics on the training instance set. Rows are

ordered by performance of metaheuristics, from worst to best.

Metaheuristic Objective value (3) Comp. exec.

VNS 0.598% 384

Op. Prob. 0.448% 520

MCHH 0.395% 2008

CMCS[2-row reduced] 0.256% 5259

CMCS[2-row] 0.242% 5157

c

V

b

w

M

s

n

o

i

s

e

p

o

W

p

e

s

t

W

m

f

n

o

p

a

d

F

o
e a local minimum with respect to OptX , and then OptX is exe-

uted. This shows that the automated configuration is capable of

enerating meaningful configurations which are relatively easy to

xplain but might not be so easy to come up with.

The Op. Prob. chose four components: OptX (probability of pick-

ng is 40%), FlpX (20%), Repair (20%) and MutX16 (20%). Note that

he actual runtime frequency of OptX is only about 30% because

he framework will never execute OptX twice in a row.

Out of 9 components, MCHH chose five: OptX , OptY , FlpX ,

utY4 and MutX16 . The generated transition matrix (showing the

robabilities of transitions) is given in Fig. 3 .

CMCS[2-row reduced] chose to use only OptX , OptY , FlpX ,

utX4 , MutY4 and MutY16 from the pool of 8 components it was

nitially permitted (recall that CMCS[2-row reduced] was not al-

owed to use Repair), and transition matrices as given in Fig. 4

nd visually illustrated in Fig. 7 a. The line width in Fig. 7 a indi-

ates the frequency of the transition when we tested the configu-

ation on the tuning instance set. Although these frequencies may

lightly vary depending on the particular instance, showing fre-

uencies preserves all the advantages of showing probabilities but

dditionally allows one to see: (i) how often a component is exe-

uted (defined by the total width of all incoming/outgoing arrows),

ii) the probability of success of a component (defined by the total

idth of blue outgoing arrows compared to the total width of the

ed outgoing arrows), and (iii) most common sequences of compo-

ent executions (defined by thickest arrows).

CMCS[2-row] decided to use only OptX , OptY , FlpX , Repair ,

utY4 and MutY16 from the set of 9 moves it was initially per-

itted, and transition matrices as shown in Fig. 5 .

.5. Analysis of components and metaheuristics

Table 2 gives the tuning objective function (3) and the average

umber of component executions per run (i.e. in 100 milliseconds

hen solving a 200 × 500 instance) for each metaheuristic. CMCS,

ven if restricted to CMCS[2-row] and even if the pool of com-

onents is reduced, outperforms all standard metaheuristics (VNS,

p. Prob. and MCHH), even though Op. Prob. and VNS benefit from

igher quality configuration (recall that VNS and Op. Prob. are con-

gured using complete brute-force search). An interesting observa-

ion is that the best performing metaheuristics mostly employ fast
omponents thus being able to run many more iterations than, say,

NS or Op. Prob.

Fig. 6 gives the relative frequency of usage of each component

y each metaheuristic. Most of the components appear to be useful

ithin at least one of the considered metaheuristic schemas; only

utX4 is almost unused. It is however not surprising to observe

ome imbalance between the Mutation-X and Mutation-Y compo-

ents because the number of rows is about half of the number

f columns in the training instances. The selection of components

s hard to predict as it significantly depends on the metaheuristic

chema; indeed, different types of metaheuristics may be able to

fficiently exploit different features of the components. Thus com-

onents should not be permanently discarded or selected based

nly on expert intuition and/or a limited number of experiments.

e believe that the approach to component usage analysis pro-

osed and used in this paper (and also in works such as Hutter

t al., 2009; Bezerra et al., 2015 , and others) is in many circum-

tances more comprehensive than manual analysis.

While frequencies of usage of the components vary between all

he metaheuristics, Op. Prob. is clearly an outlier in this respect.

e believe that this reflects the fact that Op. Prob. is the only

etaheuristic among the considered ones that does not have any

orm of memory and thus does not control the order of compo-

ents. Thus it prefers strong (possibly slow) components whereas

ther metaheuristics have some tendency to form composite com-

onents from fast ones, with the latter (history-based) approach

pparently being superior.

More information about the performance of CMCS[2-row re-

uced] and CMCS[2-row] configurations can be collected from

ig. 7 detailing the runtime frequencies of transitions in each

f them. Edge width here is proportional to square root of the

502 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

Fig. 6. Runtime frequency of usage of the components in tuned metaheuristics.

Fig. 7. Runtime frequencies of CMCS[2-row reduced] and CMCS[2-row] tested on the training instance set. The names and brief descriptions of each component are given in

Table 1 .

h

e

c

t

w

a

l

t

i

t

a

d

runtime frequency of the corresponding transition occurring in

several test runs; thus it allows to see not only the probabilities

of transitions from any individual component, but also how fre-

quently that component was executed and how often it was suc-

cessful, compared to other components.

Firstly, we observe that the two metaheuristics employ simi-

lar sets of components; the only difference is that CMCS[2-row]

does not use MutX4 but adds Repair (recall that Repair was pur-

posely removed from the pool of components of CMCS[2-row re-

duced]). Furthermore, the core components (OptX , OptY , MutY4

and MutY16) are exactly the same, and most of interconnections

between them are similar. However, the direction of transitions to

and from MutY16 is different. One may also notice that both meta-
euristics have ‘mutation’ blocks; that is, mutations that are often

xecuted in sequences. It is then not surprising that CMCS[2-row]

onnects Repair to the other mutation components.

Both metaheuristics include some natural patterns such as al-

ernation of OptX and OptY , or iterated local search OptX –MutY4 ,

hich we could also expect in a hand-designed metaheuristic. It is

lso easy to suggest an explanation for the loop at MutY16 as it al-

ows the component to be repeated a couple of times intensifying

he mutation. However, the overall structure of the metaheuristics

s complex and hard to explain. Our point here is that, although

he observed chains of components make sense, it is unlikely that

 human expert would come up with a heuristic of such a level of

etail.

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 503

Table 3

Evaluation of metaheuristics on Medium Instances, 10 seconds per run. Reported are the gaps, as percentages, to the best known solutions. Best value in a row is bold, and

where heuristic finds the best known (objective value) solution, the gap is underlined. (Note that due to rounding, a gap value of 0.00 is not automatically the same as

having found the best known.)

Instance VNS Op. Prob. MCHH CMCS[2-row reduced] CMCS[2-row]

Rand 20 0 ×10 0 0 0.01 0.00 0.00 0.00 0.00

Rand 40 0 ×10 0 0 0.05 0.00 0.00 0.00 0.00

Rand 60 0 ×10 0 0 0.00 0.00 0.00 0.00 0.00

Rand 80 0 ×10 0 0 0.08 0.00 0.01 0.00 0.00

Rand 10 0 0 ×10 0 0 0.07 0.03 0.20 0.00 0.04

Biclique 20 0 ×10 0 0 0.88 0.00 0.00 0.00 0.00

Biclique 40 0 ×10 0 0 0.00 0.00 0.14 0.09 0.09

Biclique 60 0 ×10 0 0 0.09 0.54 0.95 0.55 1.48

Biclique 80 0 ×10 0 0 0.00 0.53 0.34 0.24 0.56

Biclique 10 0 0 ×10 0 0 0.00 0.14 0.13 0.16 0.35

MaxInduced 20 0 ×10 0 0 0.00 0.00 0.00 0.00 0.00

MaxInduced 40 0 ×10 0 0 0.00 0.00 0.00 0.00 0.00

MaxInduced 60 0 ×10 0 0 0.18 0.00 0.00 0.00 0.00

MaxInduced 80 0 ×10 0 0 0.30 0.08 0.08 0.09 0.00

MaxInduced 10 0 0 ×10 0 0 0.16 0.04 0.04 0.04 0.03

BMaxCut 20 0 ×10 0 0 1.76 0.14 0.09 0.43 0.06

BMaxCut 40 0 ×10 0 0 2.25 0.67 1.25 0.89 0.40

BMaxCut 60 0 ×10 0 0 2.46 1.18 3.19 1.16 0.53

BMaxCut 80 0 ×10 0 0 4.35 2.19 2.75 1.49 1.05

BMaxCut 10 0 0 ×10 0 0 4.51 2.65 2.39 0.39 0.46

MatrixFactor 20 0 ×10 0 0 0.00 0.27 0.05 0.03 0.00

MatrixFactor 40 0 ×10 0 0 0.00 0.00 0.00 0.00 0.00

MatrixFactor 60 0 ×10 0 0 0.00 0.00 0.12 0.00 0.00

MatrixFactor 80 0 ×10 0 0 0.43 0.01 0.00 0.00 0.00

MatrixFactor 10 0 0 ×10 0 0 0.09 0.00 0.10 0.00 0.03

Average 0.71 0.34 0.47 0.22 0.20

Max 4.51 2.65 3.19 1.49 1.48

Table 4

Evaluation of metaheuristics on Large Instances, 100 seconds per run. The format of the table is identical to that of Table 3 .

Instance VNS Op. Prob. MCHH CMCS[2-row reduced] CMCS[2-row]

Rand 10 0 0 ×50 0 0 0.07 0.00 0.08 0.04 0.04

Rand 20 0 0 ×50 0 0 0.38 0.17 0.15 0.13 0.07

Rand 30 0 0 ×50 0 0 0.50 0.19 0.22 0.24 0.12

Rand 40 0 0 ×50 0 0 0.29 0.13 0.19 0.08 0.07

Rand 50 0 0 ×50 0 0 0.38 0.31 0.31 0.23 0.11

Biclique 10 0 0 ×50 0 0 0.92 0.06 0.23 0.22 0.08

Biclique 20 0 0 ×50 0 0 0.05 0.37 0.53 0.57 0.52

Biclique 30 0 0 ×50 0 0 0.00 0.11 0.13 0.07 0.43

Biclique 40 0 0 ×50 0 0 0.00 0.00 0.26 0.27 0.38

Biclique 50 0 0 ×50 0 0 0.00 0.16 0.00 0.03 0.00

MaxInduced 10 0 0 ×50 0 0 0.21 0.01 0.01 0.05 0.01

MaxInduced 20 0 0 ×50 0 0 0.36 0.08 0.19 0.01 0.01

MaxInduced 30 0 0 ×50 0 0 0.53 0.11 0.21 0.20 0.08

MaxInduced 40 0 0 ×50 0 0 0.52 0.30 0.28 0.14 0.20

MaxInduced 50 0 0 ×50 0 0 0.52 0.32 0.42 0.23 0.14

BMaxCut 10 0 0 ×50 0 0 2.57 0.71 1.39 2.90 2.69

BMaxCut 20 0 0 ×50 0 0 5.61 2.63 3.41 3.99 3.75

BMaxCut 30 0 0 ×50 0 0 6.00 2.86 4.11 3.35 2.69

BMaxCut 40 0 0 ×50 0 0 6.09 4.33 4.07 3.41 3.34

BMaxCut 50 0 0 ×50 0 0 5.28 3.76 4.34 2.65 2.49

MatrixFactor 10 0 0 ×50 0 0 0.09 0.35 0.10 0.04 0.07

MatrixFactor 20 0 0 ×50 0 0 0.41 0.12 0.11 0.13 0.16

MatrixFactor 30 0 0 ×50 0 0 0.55 0.17 0.43 0.24 0.16

MatrixFactor 40 0 0 ×50 0 0 0.45 0.34 0.43 0.28 0.13

MatrixFactor 50 0 0 ×50 0 0 0.42 0.38 0.40 0.38 0.16

Average 1.29 0.72 0.88 0.80 0.72

Max 6.09 4.33 4.34 3.99 3.75

6

h

t

M

s

t

o

a

e

p

a

e

t

m

d
. Evaluation of metaheuristics

So far we have only been testing the performance of the meta-

euristics on the training instance set. In Tables 3 and 4 we report

heir performance on benchmark instances, giving 10 seconds per

edium instance and 100 seconds per Large instance. For each in-

tance and metaheuristic, we report the percentage gap, between

he solution obtained by that metaheuristic and the best known

bjective value for that instance. The best known objective values
re obtained by recording the best solutions produced in all our

xperiments, not necessarily only the experiments reported in this

aper. The best known solutions will be available for download,

nd their objective values are reported in Tables 5 and 6 .

The results of the experiments on benchmark instances gen-

rally positively correlate with the configuration objective func-

ion (3) reported in Table 2 , except that Op. Prob. shows perfor-

ance better than MCHH, and is competing with CMCS[2-row re-

uced] on Large instances. This shows a common problem that the

504 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

Table 5

Empirical comparison of the CMCS[2-row] and Tabu Search (Glover et al., 2015) (which performs on average similarly to the method of Duarte et al., 2014) on the Medium

instances. Reported are the gaps to the best known solution, in per cent. As in Tables 3 and 4 , where the heuristic finds the best known (objective value) solution, the value

(0.00) is underlined. Where CMCS[2-row] finds a solution at least as good as the one found by Tabu Search, the gap is shown in bold. Similarly, where Tabu Search (10 0 0

seconds) finds a solution at least as good as the one found by CMCS[2-row] (10 0 0 seconds), the gap is shown in bold.

CMCS[2-row] Tabu Search

Instance Best known 1 seconds 10 seconds 100 seconds 10 0 0 seconds 10 0 0 seconds

Rand 20 0 ×10 0 0 612,947 0.00 0.00 0.00 0.00 0.00

Rand 40 0 ×10 0 0 951,950 0.05 0.00 0.00 0.00 0.00

Rand 60 0 ×10 0 0 1,345,748 0.00 0.00 0.00 0.00 0.00

Rand 80 0 ×10 0 0 1,604,925 0.09 0.00 0.00 0.00 0.01

Rand 10 0 0 ×10 0 0 1,830,236 0.04 0.04 0.02 0.00 0.07

Biclique 20 0 ×10 0 0 2,150,201 0.00 0.00 0.00 0.00 0.00

Biclique 40 0 ×10 0 0 4,051,884 0.27 0.09 0.00 0.00 0.00

Biclique 60 0 ×10 0 0 5,501,111 0.59 1.48 0.47 0.47 0.65

Biclique 80 0 ×10 0 0 6,703,926 0.68 0.56 0.04 0.04 0.79

Biclique 10 0 0 ×10 0 0 8,680,142 0.10 0.35 0.35 0.11 0.91

MaxInduced 20 0 ×10 0 0 513,081 0.00 0.00 0.00 0.00 0.00

MaxInduced 40 0 ×10 0 0 777,028 0.01 0.00 0.00 0.00 0.00

MaxInduced 60 0 ×10 0 0 973,711 0.00 0.00 0.00 0.00 0.00

MaxInduced 80 0 ×10 0 0 1,205,533 0.01 0.00 0.00 0.00 0.07

MaxInduced 10 0 0 ×10 0 0 1,415,622 0.03 0.03 0.03 0.01 0.06

BMaxCut 20 0 ×10 0 0 617,700 1.59 0.06 0.00 0.00 0.14

BMaxCut 40 0 ×10 0 0 951,726 1.34 0.40 0.00 0.00 1.13

BMaxCut 60 0 ×10 0 0 1,239,982 1.83 0.53 0.53 0.37 2.00

BMaxCut 80 0 ×10 0 0 1,545,820 1.74 1.05 0.08 0.08 1.66

BMaxCut 10 0 0 ×10 0 0 1,816,688 1.83 0.46 0.23 0.23 2.47

MatrixFactor 20 0 ×10 0 0 6283 0.18 0.00 0.00 0.00 0.00

MatrixFactor 40 0 ×10 0 0 9862 0.00 0.00 0.00 0.00 0.00

MatrixFactor 60 0 ×10 0 0 12,902 0.05 0.00 0.00 0.00 0.03

MatrixFactor 80 0 ×10 0 0 15,466 0.49 0.00 0.00 0.00 0.19

MatrixFactor 10 0 0 ×10 0 0 18,813 0.08 0.03 0.00 0.00 0.11

Average 0.44 0.20 0.07 0.05 0.41

Max 1.83 1.48 0.53 0.47 2.47

(

a

r

t

r

F

r

t

P

r

(

T

b

1

s

e

a

e

s

t

r

S

T

w

t

d

c

w

evaluation by short runs on small instances, as used for training,

may not always perfectly correlate with the performance of the

heuristic on real (or benchmark) instances Hutter et al. (2007) .

However, in our case, the main conclusions are unaffected by

this. In particular, we still observe that CMCS[2-row] outperforms

other metaheuristics, including CMCS[2-row reduced], hence prov-

ing usefulness of the Repair component. Also CMCS[2-row] clearly

outperforms MCHH demonstrating that even a restricted version

of the CMCS schema is more robust than the MCHH schema; recall

that CMCS is an extension of MCHH with conditional transitions.

We made the source code of CMCS[2-row] publicly available. 4

The code is in C# and was tested on Windows and Linux ma-

chines. We note here that CMCS is relevant to the Program-

ming by Optimisation (PbO) concept Hoos (2012) . We made sure

that our code complies with the ‘PbO Level 3’ standard, i.e. ‘the

software-development process is structured and carried out in a

way that seeks to provide design choices and alternatives in many

performance-relevant components of a project’. Hoos (2012) . Our

code is not compliant with ‘PbO Level 4’ because some of the

choices made (specifically, the internal parameters of individual

components) were not designed to be tuned along with the CMCS

matrices; for details of PbO see Hoos (2012) .

6.1. Comparison to the state-of-the-art

There have been two published high-performance metaheuris-

tics for BBQP: Iterated Local Search by Duarte et al. (2014) and Tabu

Search by Glover et al. (2015) . Both papers agree that their ap-

proaches perform similarly; in fact, following a sign test, Duarte

et al. conclude that ‘there are not significant differences between

both procedures’. At first, we compare CMCS[2-row] to Tabu Search

for which we have detailed experimental results Glover et al.
4 http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP . a
2015) . Then we also compare CMCS[2-row] to ILS using approach

dopted in Duarte et al. (2014) .

Tabu Search has two phases: (i) a classic tabu search based on a

elatively small neighbourhood, which runs until it fails to improve

he solution, and (ii) a polishing procedure, similar to ours, which

epeats a sequence of hill climbing operators OptY , FlpX , OptX and

lpY until a local maximum is reached. 5 The whole procedure is

epeated as many times as the time allows.

The experiments in Glover et al. (2015) were conducted on

he same benchmark instances, first introduced in Karapetyan and

unnen (2012) and now described in Section 4 of this paper. Each

un of Tabu Search was given 10 0 0 seconds for Medium instances

 n = 10 0 0) and 10,0 0 0 seconds for Large instances (n = 50 0 0). In

able 5 we report the performance results of CMCS[2-row], our

est performing metaheuristic, on Medium instances with 1, 10,

00 and 10 0 0 seconds time limits, and in Table 6 on Large in-

tances with 10, 100, 1000 and 10,000 seconds time limits, and

xplicitly compare those results to the performance of Tabu Search

nd so implicitly compare to the results of Duarte et al. Duarte

t al. (2014) that were not significantly different from Tabu.

Given the same time, CMCS[2-row] produces same (for 10 in-

tances) or better (for 20 instances) solutions. The worst gap be-

ween best known and obtained solution (reported in the Max

ow at the bottom of each table) is also much larger for Tabu

earch than for CMCS[2-row]. CMCS[2-row] clearly outperforms

abu Search even if given a factor of 100 less time, and competes

ith it even if given a factor of 10 0 0 less time. Thus we conclude

hat CMCS[2-row] is faster than Tabu Search by two to three or-

ers of magnitude. Further, we observe that CMCS[2-row] does not

onverge prematurely, that is, it continues to improve the solution

hen given more time.
5 In Glover et al. (2015) , a composite of OptY and FlpX is called Flip- x -Float- y ,

nd a composite of OptX and FlpY is called Flip- y -Float- x .

http://csee.essex.ac.uk/staff/dkarap/?page=publications&key=CMCS-BBQP

D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506 505

Table 6

Empirical comparison of CMCS[2-row] with Tabu Search (Glover et al., 2015) (which performs on average similarly to the method of Duarte et al., 2014) on the Large

instances. The format of the table is identical to that of Table 5 .

CMCS[2-row] Tabu Search

Instance Best known 10 seconds 100 seconds 10 0 0 seconds 10,0 0 0 seconds 10,0 0 0 seconds

Rand 10 0 0 ×50 0 0 7,183,221 0.04 0.04 0.01 0.01 0.01

Rand 20 0 0 ×50 0 0 11,098,093 0.18 0.07 0.07 0.02 0.09

Rand 30 0 0 ×50 0 0 14,435,941 0.16 0.12 0.11 0.07 0.22

Rand 40 0 0 ×50 0 0 18,069,396 0.14 0.07 0.01 0.01 0.19

Rand 50 0 0 ×50 0 0 20,999,474 0.26 0.11 0.08 0.07 0.25

Biclique 10 0 0 ×50 0 0 38,4 95,6 88 0.22 0.08 0.02 0.00 0.02

Biclique 20 0 0 ×50 0 0 64,731,072 1.67 0.52 0.19 0.28 0.94

Biclique 30 0 0 ×50 0 0 98,204,538 1.68 0.43 0.01 0.04 1.50

Biclique 40 0 0 ×50 0 0 128,500,727 0.38 0.38 0.22 0.00 2.19

Biclique 50 0 0 ×50 0 0 163,628,686 0.38 0.00 0.00 0.00 1.01

MaxInduced 10 0 0 ×50 0 0 5,465,051 0.01 0.01 0.00 0.00 0.02

MaxInduced 20 0 0 ×50 0 0 8,266,136 0.10 0.01 0.01 0.00 0.12

MaxInduced 30 0 0 ×50 0 0 11,090,573 0.15 0.08 0.04 0.03 0.18

MaxInduced 40 0 0 ×50 0 0 13,496,469 0.29 0.20 0.06 0.05 0.36

MaxInduced 50 0 0 ×50 0 0 16,021,337 0.19 0.14 0.08 0.08 0.29

BMaxCut 10 0 0 ×50 0 0 6,644,232 2.98 2.69 2.17 1.20 1.70

BMaxCut 20 0 0 ×50 0 0 10,352,878 5.39 3.75 3.39 1.80 2.58

BMaxCut 30 0 0 ×50 0 0 13,988,920 3.49 2.69 1.99 1.81 3.45

BMaxCut 40 0 0 ×50 0 0 17,090,794 4.36 3.34 3.31 2.31 4.28

BMaxCut 50 0 0 ×50 0 0 20,134,370 3.15 2.49 2.34 1.79 3.90

MatrixFactor 10 0 0 ×50 0 0 71,485 0.11 0.07 0.00 0.00 0.02

MatrixFactor 20 0 0 ×50 0 0 108,039 0.19 0.16 0.06 0.04 0.09

MatrixFactor 30 0 0 ×50 0 0 144,255 0.17 0.16 0.14 0.11 0.26

MatrixFactor 40 0 0 ×50 0 0 179,493 0.26 0.13 0.10 0.10 0.29

MatrixFactor 50 0 0 ×50 0 0 211,088 0.21 0.16 0.13 0.04 0.33

Average 1.05 0.72 0.58 0.39 0.97

Max 5.39 3.75 3.39 2.31 4.28

I

h

a

v

(

a

p

a

r

i

2

s

r

t

m

(

c

o

h

s

t

i

7

m

P

B

a

t

h

(

s

fi

i

f

c

n

s

c

n

c

t

e

t

o

b

s

w

s

c

s

p

i

t

t

p

s

r

o

7

a

h
As pointed out above, it is known from the literature that

LS (Duarte et al., 2014) performs similarly to Tabu Search, and

ence the conclusions of the comparison between CMCS[2-row]

nd Tabu Search can be extended to ILS as well. However, to

erify this, we reproduced the experiment from Duarte et al.

2014) . In that experiment, Duarte et al. solved each of the medium

nd large instances, giving ILS 10 0 0 seconds per run, and then re-

orted the average objective value. We tested CMCS[2-row] is ex-

ctly the same way, except that we allowed only 10 seconds per

un. Despite a much lower time budget, our result of 14523968.32

s superior to the result of 14455832.30 reported in (Duarte et al.,

014, Table 8) . This direct experiment confirms that CMCS[2-row]

ignificantly outperforms ILS.

We note here that this result is achieved in spite of CMCS[2-

ow] consisting of simple components combined in an entirely au-

omated way; without any human intelligence put into the detailed

etaheuristic design. Instead, only a modest computational power

a few hours of CPU time) was required to obtain it. (Note that this

omputational power should not be compared to the running time

f the algorithm itself; it is a replacement of expensive time of a

uman expert working on manual design of a high-performance

olution method.) We believe that these results strongly support

he idea of automated metaheuristic in general and CMCS schema

n particular.

. Conclusions

In this work, we considered an important combinatorial opti-

isation problem called Bipartite Boolean Quadratic Programming

roblem (BBQP). We defined several algorithmic components for

BQP, primarily aiming at components for metaheuristics. To test

nd analyse the performance of the components, and to combine

hem in a powerful metaheuristic, we designed a flexible meta-

euristic schema, which we call Conditional Markov Chain Search

CMCS), the behaviour of which is entirely defined by an explicit

et of parameters and thus which is convenient for automated con-
guration. CMCS is a powerful schema with special cases cover-

ng several standard metaheuristics. Hence, to evaluate the per-

ormance of a metaheuristic on a specific problem class, we can

onfigure the CMCS restricted to that metaheuristic, obtaining a

early best possible metaheuristic of that particular type for that

pecific problem class. The key advantages of this approach in-

lude avoidance of human/expert bias in analysis of the compo-

ents and metaheuristics, and complete automation of the typi-

ally time-consuming process of metaheuristic design.

Of the methods we consider, the CMCS schema is potentially

he most powerful as it includes the others as special cases, how-

ver, it has a lot of parameters, and this complicates the selec-

ion of the matrices. To combat this, we proposed a special case

f CMCS, CMCS[k -row], which is significantly easier to configure,

ut that still preserves much of the flexibility of the approach.

By configuring several special cases of CMCS on a set of

mall instances and then testing them on benchmark instances,

e learnt several lessons. In particular, we found out that CMCS

chema, even if restricted to the CMCS[2-row] schema, is signifi-

antly more powerful than VNS, Op. Prob. and even MCHH (with a

tatic transition matrix). We also verified that the new BBQP com-

onent, Repair , is useful, as its inclusion in the pool of components

mproved the performance of CMCS[2-row]. Finally, we showed

hat the best found strategies are often much more sophisticated

han the strategies implemented in standard approaches.

Our best performing metaheuristic, CMCS[2-row], clearly out-

erforms the previous state-of-the-art BBQP methods. Following a

eries of computational experiments, we estimated that CMCS[2-

ow] is faster than those methods by roughly two to three orders

f magnitude.

.1. Future work

A few other BBQP algorithmic components could be studied

nd exploited using the CMCS schema. Variations of the Repair

euristic, as discussed in Section 2.3 , should be considered more

506 D. Karapetyan et al. / European Journal of Operational Research 260 (2017) 494–506

C

C

D

G

H

K

K

K

L

L

M

P

P

P

S

S

T

Z

thoroughly. Another possibility for creating a new class of powerful

components is to reduce the entire problem by adding constraints

of the form x i = x i ′ , x i � = x i ′ or x i = 1 , or even more sophisticated

such as x i = x i ′ ∨ x i ′′ . Note that such constraints effectively reduce

the original problem to a smaller BBQP; then this smaller BBQP can

be solved exactly or heuristically. Also note that if such constraints

are generated to be consistent with the current solution then this

approach can be used as a hill climbing operator.

It is interesting to note that the reduced size subproblem could

itself be solved using a version of CMCS configured to be effec-

tive for brief intense runs. This gives the intriguing possibility of

an upper-level CMCS in which one of the components uses a dif-

ferent CMCS – though we expect that tuning such a system could

be a significant, but interesting, challenge.

The CMCS schema should be developed in several directions.

First of all, it should be tested on other domains. Then a few ex-

tensions can be studied, e.g. one could add a ‘termination’ compo-

nent that would stop the search – to allow variable running times.

It is possible to add some form of memory and/or backtracking

functionality, for example to implement a tabu-like mechanism.

Another direction of research is population-based extensions of

CMCS. Of interest are efficient configuration procedures that would

allow to include more components. Finally, of course, one can

study methods for online learning, that is adaptation of the tran-

sition probabilities during the search process itself; in which case

it would be most natural to call the method ‘Conditional Markov

Chain Hyper-heuristic’.

Acknowledgement

This research work was partially supported by an NSERC Dis-

covery accelerator supplement awarded to Abraham P. Punnen,

EPSRC Grants EP/H0 0 0968/1 and EP/F033214/1 (‘The LANCS Initia-

tive’), and also LANCS Initiative International Scientific Outreach

Fund that supported the visit of Daniel Karapetyan to the Simon

Fraser University.

References

Adenso-Díaz, B. , & Laguna, M. (2006). Fine-tuning of algorithms using fractional ex-

perimental designs and local search. Operations Research, 54 (1), 99–114 .

Ahuja, R. K. , Ergun, Ö. , Orlin, J. B. , & Punnen, A. P. (2002). A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics, 123 ,

75–102 .
Alon, N. , & Naor, A. (2006). Approximating the cut-norm via Grothendieck’s inequal-

ity. SIAM Journal on Computing, 35 (4), 787–803 .
Ambühl, C. , Mastrolilli, M. , & Svensson, O. (2011). Inapproximability results for

maximum edge biclique, minimum linear arrangement, and sparsest cut. SIAM

Journal on Computing, 40 (2), 567–596 .
Bezerra, L. C. T., López-Ibáñez, M., & Stützle, T. (2015). Comparing decomposition-

based and automatically component-wise designed multi-objective evolution-
ary algorithms. In Evolutionary multi-criterion optimization: 8th international

conference, EMO 2015, Guimarães, Portugal, March 29–April 1, 2015. Proceedings,
part I (pp. 396–410)). Cham: Springer International Publishing. doi: 10.1007/

978- 3- 319- 15934- 8 _ 27 .

Billionnet, A. (2004). Quadratic 0-1 bibliography. URL: http://cedric.cnam.fr/fichiers/
RC611.pdf .
hang, W.-C. , Vakati, S. , Krause, R. , & Eulenstein, O. (2012). Exploring biological in-
teraction networks with tailored weighted quasi-bicliques. BMC Bioinformatics,

13 (Suppl. 1), S16 .
owling, P., Kendall, G., & Soubeiga, E. (2001). A hyperheuristic approach to schedul-

ing a sales summit. In E. Burke, & W. Erben (Eds.), Selected papers from the
3rd international conference on the practice and theory of automated timetabling

(PATAT 2001) . In Lecture notes in computer science: Vol. 2079 (pp. 176–190).
Springer. doi: 10.1007/3- 540- 44629- X _ 11 .

uarte, A. , Laguna, M. , Martí, R. , & Sánchez-Oro, J. (2014). Optimization procedures

for the bipartite unconstrained 0-1 quadratic programming problem. Computers
& Operations Research, 51 , 123–129 .

illis, N. , & Glineur, F. (2011). Low-rank matrix approximation with weights or miss-
ing data is NP-hard. SIAM Journal on Matrix Analysis and Applications, 32 (4),

1149–1165 .
Glover, F. , Ye, T. , Punnen, A. , & Kochenberger, G. (2015). Integrating tabu search

and VLSN search to develop enhanced algorithms: A case study using bipar-

tite Boolean quadratic programs. European Journal of Operational Research, 241 ,
697–707 .

Hoos, H. H. (2012). Programming by optimization. Communications of the ACM, 55 (2),
70–80 .

utter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009). ParamILS: An auto-
matic algorithm configuration framework. Journal of Artificial Research, 36 (1),

267–306. doi: 10.1613/jair.2861 .

Hutter, F. , Hoos, H. H. , & Stützle, T. (2007). Automatic algorithm configuration based
on local search. In Proceedings of the 22nd national conference on artificial intel-

ligence, AAAI’07: Vol. 2 (pp. 1152–1157). AAAI Press .
arapetyan, D., & Punnen, A. P. (2012). Heuristic algorithms for the bipartite un-

constrained 0-1 quadratic programming problem. URL: http://arxiv.org/abs/1210.
3684 .

oyutürk, M. , Grama, A. , & Ramakrishnan, N. (2005). Compression, clustering, and

pattern discovery in very high-dimensional discrete-attribute data sets. IEEE
Transactions on Knowledge and Data Engineering, 17 (4), 447–461 .

oyutürk, M. , Grama, A. , & Ramakrishnan, N. (2006). Nonorthogonal decomposition
of binary matrices for bounded-error data compression and analysis. ACM Trans-

actions on Mathematical Software, 32 (1), 33–69 .
ourenço, H. R., Martin, O. C., & Stützle, T. (2010). Iterated local search: Framework

and applications handbook of metaheuristics. In International series in operations

research & management science: Vol. 146 (pp. 363–397). Boston, MA: Springer US.
doi: 10.1007/978- 1- 4419- 1665- 5 _ 12 .

u, H. , Vaidya, J. , Atluri, V. , Shin, H. , & Jiang, L. (2011). Weighted rank-one binary
matrix factorization. In Proceedings of the eleventh SIAM international conference

on data mining (pp. 283–294). SIAM/Omnipress .
cClymont, K., & Keedwell, E. C. (2011). Markov chain hyper-heuristic (MCHH): An

online selective hyper-heuristic for multi-objective continuous problems. In Pro-

ceedings of the 13th annual conference on genetic and evolutionary computation
(pp. 2003–2010). New York, NY, USA: ACM. doi: 10.1145/2001576.2001845 .

apadimitriou, C. H. (1991). On selecting a satisfying truth assignment. In Proceed-
ings of the 32nd annual symposium on Foundations of computer science (pp. 163–

169). doi: 10.1109/SFCS.1991.185365 .
unnen, A. P. , Sripratak, P. , & Karapetyan, D. (2015a). Average value of solutions for

the bipartite Boolean quadratic programs and rounding algorithms. Theoretical
Computer Science, 565 , 77–89 .

unnen, A. P. , Sripratak, P. , & Karapetyan, D. (2015b). The bipartite unconstrained

0-1 quadratic programming problem: Polynomially solvable cases. Discrete Ap-
plied Mathematics, 193 , 1–10 .

elman, B. , Kautz, H. , & Cohen, B. (1996). Local search strategies for satisfiability
testing. In DIMACS series in discrete mathematics and theoretical computer science:

Vol. 26 (pp. 521–532). American Mathematical Society .
hen, B.-h. , Ji, S. , & Ye, J. (2009). Mining discrete patterns via binary matrix factor-

ization. In Proceedings of the 15th ACM SIGKDD international conference on knowl-

edge discovery and data mining (pp. 757–766). ACM Press .
Tan, J. (2008). Inapproximability of maximum weighted edge biclique and its appli-

cations. In Proceedings of the 5th international conference on theory and applica-
tions of models of computation (pp. 282–293). Springer-Verlag .

anay, A. , Sharan, R. , & Shamir, R. (2002). Discovering statistically significant biclus-
ters in gene expression data. Bioinformatics, 18 (Suppl. 1), S136–S144 .

weben, M., Davis, E., Daun, B., & Deale, M. J. (1993). Scheduling and rescheduling

with iterative repair. IEEE Transactions on Systems, Man, and Cybernetics, 23 (6),
1588–1596. doi: 10.1109/21.257756 .

http://dx.doi.org/10.13039/501100000038
http://dx.doi.org/10.13039/501100000266
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0004
http://dx.doi.org/10.1007/978-3-319-15934-8_27
http://cedric.cnam.fr/fichiers/RC611.pdf
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0006
http://dx.doi.org/10.1007/3-540-44629-X_11
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0011
http://dx.doi.org/10.1613/jair.2861
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0013
http://arxiv.org/abs/1210.3684
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0015
http://dx.doi.org/10.1007/978-1-4419-1665-5_12
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0017
http://dx.doi.org/10.1145/2001576.2001845
http://dx.doi.org/10.1109/SFCS.1991.185365
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30006-1/sbref0025
http://dx.doi.org/10.1109/21.257756

	Markov Chain methods for the Bipartite Boolean Quadratic Programming Problem
	1 Introduction
	2 Algorithmic components
	2.1 Components: Optimise-X/Optimise-Y
	2.2 Components: Flip-X / Flip-Y
	2.3 Components: Repair
	2.4 Components: Mutation-X/Mutation-Y

	3 The Markov chain methods
	3.1 Conditional Markov Chain Search (CMCS)
	3.2 CMCS properties
	3.3 Special cases of CMCS

	4 Benchmark instances
	5 Metaheuristic design
	5.1 Solution representation
	5.2 Solution polishing
	5.3 Approach to configuration of the metaheuristics
	5.4 Configured metaheuristics
	5.5 Analysis of components and metaheuristics

	6 Evaluation of metaheuristics
	6.1 Comparison to the state-of-the-art

	7 Conclusions
	7.1 Future work

	 Acknowledgement
	 References

