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Abstract 

The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-

diagrammatic construction [ADC(3)] approximation scheme for the one-particle Green's 

function and the outer-valence Green's function (OVGF) method. The results were used to 

interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the 

photon energy range of 17 – 120 eV. The lowest four states of the pyridine radical cation, 

namely 2A2(1a2
1), 2A1(7a1

1), 2B1(2b1
1), 2B2(5b2

1), were studied in detail using various 

high-level electronic structure calculation methods. The vertical ionization energies were 

established using the equation-of-motion coupled-cluster approach with single, double and 

triple excitations (EOM-IP-CCSDT) and the complete basis set (CBS) extrapolation 

technique. Further interpretation of the electronic structure results was accomplished using 

Dyson orbitals, electron density difference plots, and a second-order perturbation theory 

treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects 

were shown to accompany ionization of the 7a1 orbital, which formally represents the 

nonbonding -type nitrogen lone-pair (n) orbital. The theoretical work establishes the 

important roles of the -system (-* excitations) in the screening of the n-hole and of the 
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relaxation of the molecular orbitals in the formation of 7a1(n)1 state. Equilibrium geometric 

parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) 

and CCSD (coupled-cluster singles and doubles) methods, and the harmonic vibrational 

frequencies were obtained at the MP2 level of theory for the lowest three cation states. The 

results were used to estimate the adiabatic 0-0 ionization energies, which were then compared 

to the available experimental and theoretical data. Photoelectron anisotropy parameters and 

photoionization partial cross-sections, derived from the experimental spectra, were compared 

to predictions obtained with the continuum multiple scattering approach.  
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I. INTRODUCTION 

Pyridine (Figure 1) is an important heterocyclic molecule, and is closely related to 

benzene and more complex six-membered nitrogen-containing aromatic molecules. Such 

molecules occur as structural units in many biological compounds. Hence, an understanding 

of the electronic structure of pyridine is essential to many fields of organic chemistry 

including biochemistry, medicinal and pharmaceutical chemistry.1,2 

Photoelectron spectroscopy, especially when carried out with a continuously tunable 

photon source, provides an ideal means of exploring molecular electronic structure. The 

results obtained from such experiments can be interpreted with the help of quantum chemical 

calculations. The latter can be performed using various approximate computational schemes 

ranging from Hartree-Fock (HF) theory (Koopmans' theorem) to highly sophisticated methods 

aiming to eliminate shortcomings of the one-electron approximation.3 The improvements with 

respect to the Koopmans level of theory are usually discussed in terms of two effects, namely 

orbital relaxation and electron correlation.4 Whereas orbital relaxation (i.e. the response of the 

electronic structure to a hole created in the occupied orbitals) can be accounted for using HF 

calculations performed separately for the initial and final states [the so-called delta self-

consistent field (SCF) approach], electron correlation can be treated only through methods 

going beyond the HF level of theory. 

Orbital relaxation and electron correlation are treated consistently in the Green's 

function (electron propagator) methods.3,4 Here, computational schemes within the algebraic-

diagrammatic construction (ADC) approach5-11 have proved to be very useful,4,7,8,11-13 

especially the third-order ADC schemes [ADC(3)] using the Dyson equation,5-8 or a more 

direct non-Dyson framework.9-11 Results of a similar quality can be obtained in many cases 

using the closely related two-particle-one-hole Tamm-Dancoff,7 3+,14 and nondiagonal 

renormalized second-order15 methods, as well as the simpler outer-valence Green's function 

(OVGF)7,14,16 and partial third-order quasiparticle17,18 diagonal self-energy methods.  

Reliable results for ionization potentials (IPs) can also be obtained within the 

framework of the equation-of-motion (EOM) coupled-cluster (CC) theory (EOM-IP-CC)19-21 

at the level of singles and doubles (CCSD) and higher CC models,22 or by using the 
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theoretically equivalent symmetry-adapted cluster configuration interaction (SAC-CI) 

method.23 Accurate predictions of ionization energies for the lowest cationic state in each 

spatial symmetry are possible when separate CC calculations for the neutral and cationic 

species are performed (CC approach). 

The methods mentioned above normally yield consistent results, suitable for the 

unambiguous interpretation of valence-shell photoelectron spectra, except for certain difficult 

cases where the theoretical predictions diverge. One such example concerns the two lowest 

states, 2A1(n1) and 2A2(1), of the pyridine cation. These states are close in energy, and 

their vertical ordering has not been established conclusively either experimentally24-39 or 

theoretically,35,40-48 although there is a general consensus, based on experimental evidence, 

that the 2A1(n1) state is at least adiabatically below the 2A2(1) state. The calculated 

ionization energy of the 2A1(n1) state varies considerably, depending on the theoretical 

treatment, whereas the results for the 2A2(1) state are more stable.  

Similar effects concerning nearly degenerate energy levels, due to the ionization of non-

bonding n-type lone-pairs (LPs) and -orbitals, has been observed in other heteroaromatic 

molecules, such as adenine,49-51 pyrimidine52 and purine,52 where the LPs belong to the 

nitrogen atoms. In thymine,50,51,53 uracil, and the uracil derivatives,54-56 the LPs involved 

belong to the oxygen atoms outside the aromatic ring; and in guanine51,57,58 the LPs have a 

mixed nitrogen-oxygen character. 

Another important issue related to the theoretical treatment of the nearly-degenerate n-

 pairs is that the n- and -states are initially always strongly separated at the HF 

(Koopmans' theorem) level of theory, but merge together when a more accurate treatment is 

employed. The shifts in the HF ionization energies are non-uniform, and are much larger for 

the n-levels than for the -levels. This effect is more pronounced in the propagator 

results35,47,48, 50,53-59 than in those employing the EOM-IP-CC approach.51  

Previously, the ionization of pyridine has been studied theoretically by Suzuki and 

Suzuki,41 using the continuum multiple scattering X (CMS-X) method, by Wan et al.,42 

and Kitao and Nakatsuji,43 using the SAC-CI method, and by Plashkevych et al.44 using 

Kohn-Sham density functional and transition potential methodology. Yang et al.45 used the 
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direct static exchange approach, which takes cross-section effects into account, to investigate 

the photoelectron spectra of pyridine and some of its derivatives. Lorentzon et al.46 computed 

the lowest ionization potentials using second-order complete-active space perturbation theory 

(CASPT2). Walker et al.40 studied a large number of cationic states spanning the entire outer-

valence energy domain using multi-reference configuration interaction methods with singly 

and doubly excited configurations (MRD-CI). The ionization spectrum of pyridine has also 

been treated using many-body Green's function techniques.35,47,48 

A comprehensive review of the corresponding experimental work, carried out prior to 

1988, has been provided by Innes et al.24 Many of these early studies focused on identifying 

the molecular orbitals giving rise to the first two bands in the photoelectron spectrum. The 

outermost band in the HeI excited photoelectron spectrum,25-30 observed at binding energies 

between 9.2 and 10.2 eV, is predicted to correspond to ionization from the 7a1(σN LP) and 

1a2() orbitals. This band is partially overlapped by the second band, centred around 10.5 eV 

and due to the 2b1() orbital ionization. Band shape considerations led Gleiter et al.26 to 

associate the 7a1 and 1a2 orbitals with the highest occupied molecular orbital (HOMO) and 

HOMO-1, respectively, although King et al.,27 based upon fluoro-substituent effects, 

preferred the reverse ordering. 

Another experimental approach which is often useful in assigning a particular molecular 

orbital to a specific photoelectron band involves measuring the photoelectron angular 

distributions. This technique was used in the HeI excited photoelectron study performed by 

Utsunomiya et al.29 to determine the anisotropy parameters, as a function of binding energy, 

of the outermost bands of pyridine and dimethylpyridine. For the dimethyl substituted 

molecule, the molecular orbital sequence is well established. A comparison between the 

anisotropy parameters for dimethylpyridine and those for pyridine resulted in Utsunomiya et 

al. assigning the lowest ionization in pyridine to the 7a1 orbital. 

Photoelectron angular distribution experiments have also been performed by 

Piancastelli et al.31 employing synchrotron radiation. Their measurements showed that the 

anisotropy parameter for the high binding energy region of the first band increased more 

rapidly as the photon energy increased from 13 to 27 eV than did the anisotropy parameter for 
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the low binding energy region. Since a rapid increase in the value of the anisotropy parameter 

is typical for electron ejection from a -orbital, Piancastelli et al.31 associated the low binding 

energy region of the first band predominantly to contributions from the 7a1(σN LP) orbital. 

Similar conclusions were reached by Berg et al.32 using multiphoton ionization. 

Subsequent experimental studies include photoelectron spectra recorded with HeI33,34 or 

synchrotron35,36 radiation, a resonance-enhanced multiphoton ionization study,37 and mass 

analyzed threshold ionization (MATI) investigations.38,39 The emphasis of these recent studies 

lay in obtaining an improved understanding of the spectroscopic properties of the pyridine 

cation. In contrast, the valence shell photoionization dynamics have not been investigated in a 

detailed manner, either experimentally or theoretically. 

The results from earlier calculations have allowed many of the bands observed in the 

photoelectron spectrum to be assigned but, as already mentioned, inconsistencies remain with 

respect to the position of the 2A1 (n1) state and of some of the other states. The difficulty 

concerning the 2A1 (n1) state is related to a more general issue regarding the ionization of 

n-orbitals in heteroatomic molecules. The present work addresses this issue by analyzing the 

lowest - and -type cationic states of pyridine in terms of orbital relaxation and electron 

correlation effects. We use the ADC(3), OVGF and EOM-IP-CC methods and present an 

analysis of relaxation energies based on second-order perturbation theory, together with 

electron density difference plots, and Dyson molecular orbitals. We also measure valence 

shell photoelectron angular distributions and photoionization partial cross-sections, and 

compare these experimental results to theoretical predictions obtained with the CMS- X 

approach, to help characterize the photoionization dynamics. 

 

II. THEORY AND COMPUTATIONAL DETAILS OF ELECTRONIC STRUCTURE 
CALCULATIONS 

The computation of the energies and photoelectron intensities of the outer- and inner-

valence vertical ionization transitions of pyridine was based on the ab initio Green’s function 

(GF) electronic structure methods as used in our previous studies of halogenated benzenes11,12 

and other heterocyclic molecules.50,53-55,57 More specifically, the ADC(3) scheme for the one-
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particle Green’s function5-8 was employed. For the outer valence orbitals the less rigorous but 

more economic OVGF method7,14 was also used. The results of the calculations were 

analyzed with the aid of Dyson molecular orbitals for the lowest four ionization transitions. 

The electron density difference maps for HF and coupled-cluster doubles (CCD) densities 

were plotted, and the second-order perturbation-theoretical treatment of the relaxation energy 

was employed to obtain a better insight into the electron correlation and orbital relaxation 

effects in the ionization of these orbitals. 

 

A. Third-order algebraic-diagrammatic construction approach to the one-
particle Green’s function 

In the ADC(3) scheme for the one-particle Green’s function,5-8 the vertical ionization 

energies and the corresponding transition probabilities are obtained as the solutions of the 

Hermitian eigenvalue problem: 

B X XE ,     † X X 1 , (1) 

 where the matrix B is defined according to: 

† †( ) ( ) ( )

( ) 0

0 ( )

 

 

 

  


  
  

ε Σ U U

B U K C

U K C

 . (2) 

Here ε  is the diagonal matrix of the HF orbital energies, and ( )Σ  is the constant part of the 

self-energy. Both quantities are defined with respect to the space of one-hole (1h) and one-

particle (1p) configurations with respect to the HF ground state. The matrices ( )K C  and 

U  are referred to as matrices of effective interactions and effective coupling amplitudes, 

respectively. Their definition involves configuration spaces of two hole-one particle (2h-1p) 

and two particle-one hole (2p-1h) configurations, indicated by “minus” and “plus” 

superscripts, respectively. The elements of the ( )Σ , ( )K C , and U  matrices have the 

form of the finite perturbation theoretical (PT) expansions through third order with respect to 

the residual electron interaction beyond the HF picture. In the present version of the ADC(3) 

method, the constant part ( )Σ  is treated at least through fourth order according to the 

procedure described in Ref. 6, which significantly improves the quality of the results. The 
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specific form of the matrix B originates from the treatment of the Dyson equation in which 

the ADC representation of the dynamic self-energy part, ( )Σ , is used. The fact that the 

(N1)- and (N1)-electron spaces are coupled is a consequence of the Dyson equation 

connecting respective parts of the Green’s function.3,59,60 

The eigenvalues ne  ( nm n mnE e  ) of Eq. (1) are the negative vertical ionization 

energies 1
0( )N

n ne E E    and electron affinities 1
0( )N

n ne E E     of the system under 

consideration. They are the poles of the one-particle Green’s function in its spectroscopic 

representation. The corresponding residues are defined as ( ) ( )*n n
p qx x  products of the 

eigenvector components ( )n
p pnx X . The quantities ( )n

px , also referred to as spectroscopic 

factors, define, for ionization, the probability of finding the final ionic state 1N
n
  in the 

form of a pseudo-state 0
N

pa  , produced by the sudden ejection of an electron out of the 

molecular orbital p  in the initial state 0
N  (here pa  is the appropriate destruction 

operator): 

( ) 1
0

n N N
p n px a   . (3) 

The spectroscopic factors ( )n
px  (also known as Feynman-Dyson amplitudes) allow one to 

evaluate the "pole strength" Pn, which is used as an approximate measure of the relative 

spectral intensity: 

( ) 2| |n
n p

p

P x , (4) 

where the summation is performed over the whole range of molecular orbitals (MOs).  

In the ADC(3) method, both ne  and ( )n
px  are treated consistently through third order of 

PT with respect to the main photoelectron transitions (producing cationic states of 1h-type). 

The photoelectron satellite states characterized as 2h-1p excitations are treated consistently 

only through first order, so that a less accurate description is afforded in spectral regions 

dominated by such transitions. Nevertheless, the ADC(3) method allows a fairly reliable 

description of cationic states characterized as strong 1h/2h-1p mixtures. Such mixtures are 

often encountered at higher ionization energies where a "break-down of the one-electron 

picture of ionization" may occur.4 This capability is not only important for an adequate 

http://dx.doi.org/10.1063/1.4986405


9 
 

description of the inner-valence region of the ionization spectra, but also for the treatment of 

heterocyclic molecules (which includes pyridine) where an early onset of the "selective" 

break-down phenomenon, characterized by the strong redistribution of intensity from the 

inner -type MOs to various satellites, has been observed.61,62  

In general, the ADC(3) method takes into account all physical effects, such as electron 

correlation in the initial and final states, and orbital relaxation, relevant to ionization. The 

computational procedure of the ADC(3) scheme is size-consistent,63 and can be implemented 

as an n5 scaling of the computational effort, where n is the number of molecular orbitals 

(disregarding here the improved fourth-order treatment of ( )Σ ). This represents one of the 

best trade-offs between computational effort and theoretical accuracy available today.  

  

B. Dyson orbitals 

The Dyson orbitals (DOs) 1( )n r  are defined64,65 as overlaps of the initial N-electron 

ground-state wavefunction 0
N  and the final (N1)-electron wavefunction 1N

n
  for the 

n-th state of the cation: 
1

1 *2
1 0 1 2( ) ( ) ( , , ) ( , , )N N

n N n N NN    2x x x x x dx dx   , (5)  

where the integration is performed over the space-spin coordinates ix  of (N1) electrons. Eq. 

(5) can be rewritten using the second-quantization formalism as follows:   

1 ( )
0

N N n
n p n p p p

p p

c x       , (6)  

where the summation is performed over all available HF orbitals p . The expansion 

coefficients ( )n
px , readily identified as the spectroscopic factors (Eq. (3)) of the one-particle 

Green’s function, are obtained from the ADC(3) calculations.  

The DOs reflect the change in the electronic structure effected by the removal of an 

electron from the molecule. From Eq. (6) it is also clear that in the HF approximation (where 

( )n
p pnx  ), the DOs p  coincide with the canonical HF orbitals p p  . For correlated 

methods, the DOs are linear combinations of the HF orbitals; usually there is a single 

dominant term when there are no closely lying interacting cationic states, and the one-electron 

picture of ionization holds.  
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The following important relation can be obtained for DOs: 

( ) 2| |n
n n p n

p

x P    . (7)  

This implies that the norm of n  is given by the pole strength nP  of the corresponding 

transition. According to Eq. (3), the spectroscopic factors, and thus the pole strengths, 

decrease when the 2h-1p character of 1N
n
  increases, as is the case when the one-electron 

picture of ionization breaks-down.4 In such a situation, the DOs are no longer appropriate for 

the analysis of changes in the electronic structure upon ionization. Even if 2h-1p admixtures 

do not compromise the one-electron picture of ionization, the respective changes are hardly 

reflected by the DOs. This shows the limitations of the DOs with respect to e.g. such an 

important effect as orbital relaxation, manifesting itself by 2h-1p admixtures in the final wave 

function.5,66 

The Dyson orbitals can be used for studies of various ionization related phenomena,67-

71 as well as for the visualization of the results of the Green’s function calculations.49,53 In the 

present study we employ Dyson orbitals to analyze the ADC(3) results for pyridine. 

 

C. The electron density and electron density differences 

Another option to analyze the changes in the electronic structure upon ionization is to 

consider the many-electron density differences. The initial N-electron ground-state density 

function 1( )N r  is defined according to the well-known expression:72 

2

1 0 1 1 2 2

1

( ) ( , , , , , )N N
N N N

s sN

N s s s    2r r r r dr dr


  , (8)  

where 0
N  as earlier is the ground-state wavefunction; the integration is performed over the 

space coordinates ir  of (N1) electrons and the summation is performed over all spin 

coordinates si. Analogously, the final-state (N1)-electronic density can be written as: 

21 1
1 1 1 2 2 1 1 1

1 1

( ) ( 1) ( , , , , , )N N
n n N N N

s sN

N s s s  
  



    2r r r r dr dr


  , (9)  

where 1N
n
  is the wavefunction for the cationic state under consideration and the 

integration is performed over the coordinates of (N2) electrons. 

The density difference function 1/N N
n
 , defined as  
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1/ 1
0( ) ( ) ( )N N N N

n n     r r r , (10)  

 shows the changes in the electron density upon ionization. In contrast to the Dyson orbitals, 
1/N N

n
  is not affected by the limitations with respect to 2h-1p admixtures, and correlated 

wave functions of arbitrary complexity can be studied. In the present work, we inspect 
1/N N

n
  to qualitatively investigate orbital relaxation and electron correlation effects in 

pyridine, using densities computed at the CCD level of theory. 

The electron density differences provide a possibility of comparing different theoretical 

approximations. By comparing the cationic electron densities computed using the HF and 

SCF approaches the changes due to the orbital relaxation, -1(rel) ( )N
n r , can be isolated and 

analyzed: 

-1(rel) -1( SCF) -1(HF)( ) ( ) ( )N N N
n n n    r r r . (11)  

Similarly, when the SCF electron density for a cationic state is compared to the 

density computed using the CCD approach based on relaxed SCF orbitals (within the 

unrestricted HF framework), a density difference function of the form 

-1(cor ) -1(CCD) -1( SCF)( ) ( ) ( )N N N
n n n     r r r  (12)  

allows for an insight into the role of the electron correlation effects. 

To display ( ) r , which depends on three spatial coordinates, we use two-dimensional 

contour plots (where two coordinates are varied and one coordinate remains fixed). As 

sections we chose the plane of the pyridine ring and the parallel plane 0.5 Å above the 

molecular plane. 

 

D. Second-order perturbation theory for the relaxation energy 

As mentioned above, the SCF approach allows one to fully recover the relaxation 

energy. The SCF results can, in turn, be analyzed by perturbation theory (see Refs. [66,73] 

and references cited therein), providing useful insight into the nature of the relaxation 

processes.  
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The starting point here is the assumption that the SCF result for the IP of the k-th 

orbital can be expressed as the Koopmans' result (neutral ground-state HF orbital energy k  

taken with the opposite sign) corrected by subtraction of the relaxation energy R
kE :66 

IP ( SCF) R
k k kE     . (13)  

The relaxation energy R
kE  for the k-th orbital through second order is equal to one half of the 

screening energy ( )SE k  for that orbital:66 

1
( ) (3)

2
R S
kE E k O    . (14) 

Here and further on O(3) denotes the remainder of perturbation series beyond second order. 

The screening energy ( )SE k  can be expressed as the diagonal matrix element of the 

so-called screening operator ˆ
k  defined with respect to the k-th orbital.66 The perturbation 

expansion for ( )SE k  through second order reads: 

 
,

( | )ˆ( ) 2 2 ( | ) ( | ) (3)
( )

S
k

i k a a i

kk ai
E k k k kk ai ki ak O

 

     
 . (15) 

Here, i and a denote occupied and unoccupied orbitals, respectively, in the HF ground-state.  

The Coulomb two-electron matrix elements (pq|rs) are given in the “1122” notation, and p  

denote the HF orbital energies. Here and further on in this section the expressions are given in 

the spin-free form where the summation over spin variables has been performed so that only 

spatial orbitals come into play.  

For further use it can be convenient to rewrite the relaxation energy as follows: 

,

( , ) (3)R
k

i k a

E S k ia O


   . (16) 

In Eq. (16) each term ( , )S k ia  consists of the two parts: 

1 2( , ) ( , ) ( , )S k ia S k ia S k ia  , (17) 

where 
2

1

( | )
( , ) 2

( )a i

kk ai
S k ia

 



, (18) 

and 

2

( | ) ( | )
( , )

( )a i

kk ai ki ak
S k ia

 



. (19) 
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Here we also note that the matrix element ( | )kk ai  can be considered as the matrix element 

ˆ
ki J a  of the familiar Coulomb operator ˆ

kJ  for orbital k. 

 

E. Details of the computations 

The ADC(3) calculations were performed using the original code74 linked to the 

Gamess ab initio program package.75 The cc-pVDZ basis set76 with Cartesian representation 

of the d-functions was employed in the calculations of the spectral profiles. Additionally, the 

low-lying ionization transitions were computed at the ADC(3) level using the cc-pVTZ basis 

set.76 Block-Davidson diagonalization techniques were used in the evaluation of the most 

prominent transitions at lower binding energies. The block-Lanczos procedure was applied in 

the generation of the entire spectral envelope, thereby allowing low-intensity satellite 

contributions to be taken into account. The theoretical spectral profiles were constructed by 

convoluting the ADC(3) energies with Lorentzians of 0.4 eV FWHM (full width at half 

maximum). 

The ground-state geometrical parameters of pyridine were obtained through a full 

geometry optimization using MP2 theory together with the cc-pVTZ basis sets.76 The MP2 

calculations were carried out using the Gaussian package of programs.77  

Several basis sets were used in the OVGF calculations.7,16 Besides the cc-pVDZ basis, 

allowing for a comparison of the OVGF and ADC(3) results, the hierarchy of cc-pVnZ (n = 

D, T, Q, 5) and aug-cc-pVnZ (n = D, T, Q) correlation consistent basis sets76 with spherical 

representation of d-functions were also used.  

The frozen-core approximation was adopted in the ADC(3) and OVGF calculations, 

that is, the carbon and nitrogen K-shell orbitals were not correlated. This frozen-core model 

has been adopted in the notation of the molecular orbitals throughout this paper. 

The results of the OVGF calculations allow the convergence of the ionization energies 

with respect to systematic improvements in the basis set to be studied and to extrapolate to the 

CBS limit. Here we use the three-parameter exponential formula:78-80 

CBS( ) nE n E Be   , (20) 
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where n is the cardinal number of the basis set (2, 3, 4, 5 for D, T, Q, and 5 sets, respectively), 

CBSE  is the estimated ionization energy for the CBS limit (as n ), and B,  are further 

parameters found by fitting Eq. (20) to the computed energies ( )E n . This type of 

extrapolation is known to provide sufficiently reliable results,78-80 although some other 

techniques can be more advantageous for  extrapolations of the ionization energies.69   

The outer-valence vertical ionization energies were also computed using the EOM-IP-

CCSD method,19-22 as implemented in the Q-Chem program package.81 The aug-cc-pVTZ 

basis set76 was used in these calculations. 

The restricted Hartree-Fock (RHF) and unrestricted Hartree-Fock (UHF) calculations 

were performed to obtain HF, RHF/SCF, and UHF/SCF ionization energies. The 

calculations were carried out using the Gaussian,77 Q-Chem,81 and Gamess75 program 

packages. In the SCF calculations, in addition to the 1A1 ground-state of neutral pyridine, the 

2A1(7a1
1), 2A2(1a2

1), 2B1(2b1
1), 2B2(5b2

1) states of the pyridine cation-radical were also 

considered. 

In the “”-approach, the total energies of the initial and final states are computed, and 

the transition energies are then given as total energy differences. In the present work the 

approach to ionization energies was applied at the MP2 (second-order Moller-Plesset 

PT), MP3, and MP4 levels, as well as by using coupled cluster methods at the CCD 

(coupled cluster doubles), CCSD, and CCSD(T) (singles and doubles with perturbative 

treatment of triples) levels. The calculations were carried out using the Gaussian77 program 

within the UHF and frozen-core frameworks. 

The EOM-CC calculations of vertical ionization energies were carried out using the 

following models: CCSD, CC3 (CCSD model with approximate treatment of triple 

excitations), CCSDT (the full coupled cluster singles, doubles and triples model). Whereas 

the CCSD and CCSDT calculations were done within the EOM-CC approach for ionization 

energies (EOM-IP-CC),19-22 for the CC3 calculations the EOM-CC approach for the excitation 

energies (EOM-EE-CC3) was employed in which the continuum orbital approximation82 

allows for the evaluation of ionization energies. The EOM-CC calculations were performed 

with the CFOUR program83 within the frozen-core framework. 
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In order to obtain the adiabatic and 0-0 transition energies, the geometry optimization 

for the 2A1(7a1
1), 2A2(1a2

1), 2B1(2b1
1), and 2B2(5b2

1) cationic states was performed at the 

MP2 and CCSD levels of theory using the cc-pVTZ basis set. The geometry optimization for 

the 2B2(5b2
1) state carried out using the UHF-based MP2 method failed. Regardless of the 

initial guess, large gradients were obtained which caused a reduction of the molecular 

symmetry to the C1 point group. All cationic states then fall into the same irreducible 

representation, and the variational UHF method converges to the lowest state 2A2(1a2
1). The 

optimized geometric parameters for the 2A2(1a2
1) state were therefore obtained. The 

equilibrium electronic ground-state geometry of neutral pyridine was also computed using the 

same methods for a reference. For all states where MP2-optimized geometric parameters 

could be obtained, the harmonic vibrational frequencies were evaluated at the MP2 level of 

theory. The calculations were carried out using the Gaussian77 program within the UHF and 

frozen-core frameworks. 

The second-order perturbation theory for the relaxation energy, presented in Sec. IID, 

was implemented as a supplement to our ADC software.74 The calculations were performed 

using the compact 6-31G* basis set84 to simplify the analysis of the results. 

The Gaussian Cube utility77 was used to generate the total electron densities ( ) r  and 

the electron density differences ( ) r . The 1/ ( )N N
n
 r  function (Eq. (10)) was evaluated at 

the CCD level of theory within the UHF and frozen-core frameworks. The -1(r el) N
n  

function (Eq. (11)) was generated from the RHF/SCF and HF densities. The latter were 

obtained as follows: the neutral ground-state HF orbitals were given as the initial guess for the 

cationic-state RHF calculations and the SCF procedure was terminated before the onset of the 

iterations. The -1(cor ) N
n  function (Eq. (12)) was obtained using the CCD and UHF/SCF 

densities. The cc-pVTZ basis set was used in these calculations. The GaussView program85 

was employed to produce contour plots. The contour values suggested by GaussView, 0.001, 

0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 2, were adopted. The Molden software86 

was used to plot the Dyson orbitals computed by our one-particle Green’s function program74 

at the ADC(3)/cc-pVDZ level of theory. 

 

http://dx.doi.org/10.1063/1.4986405


16 
 

F. CMS-Xα calculations of photoionization cross-sections and photoelectron 
angular distributions 

 Photoionization dynamics calculations were performed using the CMS-Xapproach, 

following procedures similar to those described previously.87,88 Briefly, a model potential is 

constructed using overlapping, spherical atomic volumes, placed at centres determined from 

the MP2/cc-pVTZ optimized geometry, with atomic radii selected and scaled (0.85) as 

previously described.88 We then iterate to achieve a self-consistent ground state potential in 

which the exchange contribution to an effective one-electron potential is represented using the 

Xlocal density approximation. A final state cation potential having the correct asymptotic 

Coulombic form was subsequently generated from this ground state neutral potential. Electron 

wavefunctions, expanded in a symmetry adapted basis of spherical harmonic functions, and 

with radial terms obtained by direct numerical integration, are then obtained in these 

potentials and used to construct the electric dipole photoionization matrix elements in an 

independent electron, frozen core approximation. Finally, photoionization cross-sections and 

photoelectron anisotropy parameters were computed from these matrix elements, and thus 

represent ionization of a fixed geometry, non-rotating, non-vibrating molecule. 

 The spherical harmonic basis expansions for the initial neutral state were truncated at 

values, lmax, of 5, 2 and 1 in, respectively, the outer molecule region, the non-hydrogenic 

atomic regions, and the hydrogen atoms regions. For the final continuum state, the outgoing 

electron can be scattered into higher l-waves by the anisotropic ion potential, and so the 

corresponding truncation limits were extended to lmax = 9, 4, and 3. 

 

III. EXPERIMENTAL APPARATUS AND PROCEDURE 

 Photoelectron spectra of pyridine were recorded using a rotatable hemispherical 

electron energy analyzer and synchrotron radiation emitted from the Daresbury Laboratory 

storage ring.89 Detailed descriptions of the monochromator90 and the experimental procedure 

have been reported.91 
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 The photoionization differential cross-section in the electric dipole approximation 

assuming randomly oriented targets and electron analysis in a plane perpendicular to the 

photon propagation direction, can be expressed in the form 

 totald
1 3Pcos2 1

d 4 4

         
, (21) 

where σtotal is the angle-integrated cross-section, β is the photoelectron anisotropy parameter, 

θ is the photoelectron ejection angle relative to the major polarization axis and P is the degree 

of linear polarization of the incident radiation. At each photon energy, photoelectron spectra 

were recorded at  = 0 and  = 90, thus allowing the anisotropy parameter to be determined 

once the polarization had been deduced. The degree of polarization was determined by 

recording Ar 3p and He 1s photoelectron spectra as a function of photon energy, and using the 

well-established β-parameters for these gases.91,92 

 The spectra were analyzed by dividing the binding energy range into the regions 

specified in Table I to obtain photoelectron anisotropy parameters and β-independent 

branching ratios. The branching ratio for a specific region is defined as the intensity in that 

particular region divided by the sum of the intensity in all the energetically accessible regions. 

Since the binding energies for some of the orbitals are very similar, the corresponding 

photoelectron bands overlap to some extent, and for these bands a complete separation 

between the ionic states is not possible. 

 The branching ratios (not shown) for the outer valence shell were used to derive 

absolute photoionization partial cross-sections (regions 1 – 8, Table I) as follows. First, the 

absolute total photoionization cross-section was obtained as the product of the absolute 

photoabsorption cross-section93 and the photoionization quantum efficiency.93 Secondly, the 

absolute photoionization partial cross-section for a particular region (Table I) was then 

determined by multiplying the appropriate branching ratio with the absolute total 

photoionization cross-section. 
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IV. RESULTS AND DISCUSSION 
A. Pyridine molecular orbitals 

According to our HF calculations, the ground-state valence-shell electron configuration 

of pyridine can be written using C2v point group notation as 

Inner valence:   1a1
2 2a1

2 1b2
2 3a1

2 2b2
2 

Outer valence:  4a1
2 3b2

2 5a1
2 4b2

2 6a1
2 1b1

2 5b2
2 7a1

2 2b1
2 1a2

2 

where the core orbitals are excluded from the orbital numbering scheme. The character of the 

outer-valence orbitals can be understood from the Mulliken atomic populations given in 

Table II. 

The MOs can be assigned as - and -type, as is usual for aromatic molecules. The 

aromatic system comprises three -orbitals (1b1, 2b1, 1a2). A characteristic feature of the 

pyridine molecule is the non-bonding -type lone-pair orbital of the nitrogen atom (7a1). This 

orbital appears in the spectrum at a low binding energy, although the exact location remains 

uncertain. According to the Mulliken populations (Table II), the nσN LP orbital shows a 

substantial localization on nitrogen, although some of the electron density is delocalized over 

the hydrogen atoms. The other orbitals forming the outer- and inner-valence shells of pyridine 

are essentially -type bonding orbitals with significant delocalization over the ring and 

hydrogen atoms. 

 

B. Vertical ionization energies 

The energies and intensities of the vertical transitions belonging to the outer-valence 

region of the ionization spectrum, computed using various methods, are listed in Table III. 

The theoretical results are obtained using the HF, OVGF, ADC(3) and EOM-IP-CCSD 

methods in combination with the cc-pVDZ and aug-cc-pVTZ basis sets. Experimental values 

are also given for comparison. 

The basis set effect can be studied in more detail using the data given in Table IV, 

comparing the OVGF results for the aug-cc-pVnZ and cc-pVmZ series up to n = Q and m = 5. 

Since the accuracy of the OVGF results above 16 eV is not sufficient for a reliable 

extrapolation, due to increased configuration interaction effects in this energy region, the data 
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for the 5a1, 3b2 and 4a1 orbitals were not included. Beyond the cc-pVTZ level, the results are 

nearly converged, so that the cc-pVTZ and aug-cc-pVTZ sets can be used for a stringent 

comparison with both experiment and between different theoretical schemes. The cc-pVDZ 

basis set, on the other hand, is more appropriate for a qualitative description of the spectrum 

yielding ionization energies typically 0.25 eV below the basis set limit.  

Considerable corrections to the HF ionization energies can be seen in the results of the 

correlated methods for almost all states. Exceptions are the ionization energies of the 

outermost -orbitals, 2b1 and 1a2, which are surprisingly stable with respect to the theoretical 

treatment used. There are two groups of orbitals, (1a2, 2b1, 7a1) and (5a1, 3b2), where the 

energetic ordering changes with respect to the HF predictions when more accurate methods 

are employed. Limitations of the one-electron approximation also play a role in the 1b1
1, 

3b2
1, and 4a1

1
 states, where reduced intensities of the corresponding transitions are predicted 

at the ADC(3) level. Here, configuration interaction in the final cationic states becomes 

important, and the HF and OVGF methods are no longer strictly appropriate. This, for 

example, can be seen in the large discrepancy between the OVGF and ADC(3) results for the 

3b2
1 state, which otherwise are in good mutual agreement. Typically here the presence of 

satellites, acquiring their intensity from the respective 1h main state, can be expected.4 

Overall, the one-particle picture of ionization4 holds to a good approximation over the entire 

outer-valence region. 

In general, the present ADC(3), OVGF, and EOM-IP-CCSD results are fairly consistent 

with the experimental data. Disparities, such as those for ionization of the 3b2 and 4a1 orbitals, 

can most likely be explained by the possibility that the measured peak positions do not strictly 

match the vertical ionization energies. The two quantities can deviate from each other due to 

extended vibrational progressions and overlapping spectral structures. As already mentioned, 

the first band in the photoelectron spectrum encompasses two closely spaced transitions due 

to the 1a2(π) and 7a1(σN LP) orbitals. In view of the error margins in the computational results 

(Table III), the correct energetic ordering of these states becomes an issue. Whereas the 

ADC(3) and OVGF methods predict the state ordering to be 1a2(π)1 followed by 7a1(σN LP)1 

at slightly higher energy, the EOM-IP-CCSD calculations indicate the reverse order.  

http://dx.doi.org/10.1063/1.4986405


20 
 

 

C. Cationic states 2A1 (7a1
1), 2A2 (1a2

1), 2B1 (2b1
1), and 2B2 (5b2

1) 

The lack of agreement amongst the theoretical methods with respect to the low-energy 

part of the ionization spectrum calls for further attention. To address this issue, in Table V we 

list the results for the four lowest vertical ionization energies obtained in the present work 

using different computational approaches, as well as those from previous studies.35,40,42,46 As 

can be seen, the difficulty arises mainly from the large variation in the estimates for the 

nitrogen LP orbital, 7a1(σN LP), whose ionization energy depends strongly on the method used.  

The 7a1(σN LP) ionization energy, being grossly overestimated at the HF level 

(11.37 eV), is shifted down by 2.73 eV to 8.64 eV at the RHF/SCF level of theory. The 

corresponding shifts for the other orbitals, 1a2(π), 2b1(π), 5b2(σ), are less pronounced (0.85, 

0.96, 0.86 eV, respectively). As a result, the 7a1(σN LP)1 state moves from the third lowest 

place in the spectrum to the second, and becomes nearly degenerate with the lowest state, 

1a2(π)1. The UHF/SCF method provides qualitatively similar results, but yields even 

smaller ionization energies than those determined in the RHF treatment, due to the lower 

energies of the cationic-states obtained at the UHF level.  

Methods going beyond the HF level treat both electron correlation and orbital 

relaxation, and shift the 7a1(σN LP)1 state to a lower energy with respect to the HF value. As a 

result, the 7a1(σN LP)1 state becomes the second lowest state in the MP2, MP3, MP4, 

CCD, CCSD, OVGF, and ADC(3) treatments, and the lowest in the results of the other 

correlated methods in Table V. The energy gap between the 7a1(σN LP)1 and 1a2(π)1 states is 

significantly reduced, especially at the CCSD, CCSD(T), EOM-IP-CCSD, and CASPT2 

levels of theory where the two states are nearly degenerate.  

At the highest level of theory (EOM-IP-CCSDT) employed in the present work, the 

7a1(σN LP)1 state is predicted to lie vertically below the 1a2(π)1 state by 0.12 eV. The EOM-

IP-CCSDT/cc-pVTZ results, owing to the high-level of the CCSDT approximation and the 

cc-pVTZ basis (Table IV), provide a very accurate description of the electronic structure.  

Using the EOM-IP-CCSDT/cc-pVTZ results as benchmarks for the other computational 

schemes in Table V, one notices that the -states, in general, converge faster with the level of 
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theoretical treatment than do the -states. According to the absolute mean error and the 

maximal errors, the EOM-IP-CC3 and EOM-IP-CCSD results are in best agreement with the 

EOM-IP-CCSDT benchmarks. The CC3 model is clearly superior to the CCSD method with 

respect to the “difficult” 7a1(σN LP)1 and 5b2 (σ)1 states, while for the -type states the two 

schemes show roughly equivalent performance. The CCSD(T) scheme shows nearly the 

same numerical performance as that for the EOM-IP-CCSD scheme. Slightly larger mean 

absolute errors of 0.1-0.2 eV occur for the ADC(3), OVGF, and CCSD schemes. 

Interestingly, the OVGF results appear to be somewhat more accurate than the ADC(3) 

results. As expected, the simple CCD model is the least satisfactory among the CC and GF 

methods. It is noticeable that the CCD ionization energies are almost identical to those 

obtained using the MP3 scheme. The accuracy afforded by the MPn schemes is relatively 

poor in comparison with the CC and GF methods. A better level of accuracy is attained in the 

third-order GF schemes, ADC(3) and OVGF, and also in the CCSD scheme which, however, 

is consistent only through second order. 

Despite the differences in the basis sets and geometrical parameters, the results from 

previous theoretical studies are quite consistent with the present calculations. The ADC(3) 

vertical ionization energies obtained by Moghaddam et al.35 are systematically 0.2-0.3 eV 

lower than the present ADC(3) values (Table V). For the -type states, 1a2
1 and 2b1

1, the 

ADC(3) results35 are very similar to the SAC-CI data of Wan et al.42 However, for the -type 

states the vertical ionization energies obtained in the latter work are somewhat too small. 

Similarly, the MRD-CI results of Walker et al.40 clearly underestimate the ionization energy 

of the 7a1(σN LP) orbital, predicting it to be only 8.84 eV; the overall accuracy is similar to that 

of the SAC-CI calculations. The CASPT2 results of Lorentzon et al.46 (unavailable for 

5b2 (σ)1 state) appear to be very accurate and show only minor deviations from the EOM-IP-

CCSDT energies. 

In view of the apparent complexity of the lowest cationic states of pyridine, a more 

detailed analysis seems appropriate. First, one can look at the Dyson orbitals, which represent 

many-electron effects in orbital form, visualizing the molecular domain left by the emitted 

electron (Figure 2). The Dyson orbitals for the 1a2(π)1 and 2b1(π)1 states closely resemble 
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the corresponding canonical HF molecular orbitals, both being of typical -character. The 

Dyson orbital for the 7a1(σN LP)1 state is also rather similar to the corresponding HF MO. Its 

lone-pair character is clearly reflected in the characteristic density maximum, directed 

perpendicular to the ring plane, at the nitrogen site. For the 5b2(σ)1 state the Dyson and HF 

orbitals describe -bonding of the N-C2, C3-C4, and C-H atoms. 

More information can be gained from the density difference plots comparing the total 

correlated electron density in the electronic ground state of neutral pyridine and its cationic 

states. Since total densities cannot be obtained in the ADC approach, they were evaluated 

using the CCD method for both the initial and final states (Figure 2). This should be sufficient 

for a qualitative analysis. The regions in the density difference plots shown in blue are 

depleted as a result of electron emission. The shape of these areas agrees with the shape of the 

Dyson orbitals when the phase structure is disregarded in the latter.  

The Dyson orbitals and the density difference plots are equally useful for visualizing 

regions of decreased electron density. The density difference plots, however, also give an idea 

of the density redistribution in the cations due to orbital relaxation and electron correlation. In 

Figure 2, the regions plotted in red are characterized by increased electron population and 

reflect the rearrangements taking place in the cationic states. As can be seen, the areas of 

increased density are compactly located in the central part of the molecule, mainly on the 

bonds forming the six-membered ring. This can be understood in that the remaining density 

tends to strengthen the bonds in the cation-radicals compensating for the loss of an electron.  

The observed rearrangements can also be interpreted as a screening of the positive 

charge of the hole generated by the removal of an electron. For the -type final states, 2A2 

(1a2
1) and 2B1 (2b1

1), the screening effect is observed in the molecular plane, which is the 

nodal plane of the -orbitals. For states of -symmetry, 2A1 (7a1
1) and 2B2 (5b2

1), in 

contrast, some increase of electron density can also be seen above (and below) the molecular 

plane.  
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D. Orbital relaxation and electron correlation effects 

It has yet to be explained why the ground-state HF orbital (Koopmans' theorem) 

provides such a poor description of the 7a1(σN LP)1 state, necessitating a large correction at 

the higher computational levels. It is instructive to note that the SCF treatment yields quite 

reasonable estimates for the relative ionization energies (or spacing) associated with the three 

lowest states, 1a2(π)1, 7a1(σN LP)1 and 2b1(π)1. The SCF scheme fully accounts for orbital 

relaxation but disregards electron correlation, which indicates that relaxation is a crucial 

factor in the description of the 7a1(σN LP)1 state. Electron correlation, on the other hand, 

improves the absolute ionization energies by shifting both the neutral ground state and the 

cationic states to lower energy. The resulting correction, defined by these two shifts, is state 

specific. 

 

1. Orbital relaxation 

In order to see how relaxation changes the localization properties of the 7a1(σN LP) and 

other molecular orbitals, in Table VI we compare their Mulliken atomic populations in the 

electronic ground state (closed shells) and in the respective cation radicals (half-occupied 

shells). Table VI shows that the Mulliken atomic population of the 7a1(σN LP) MO changes 

dramatically upon ionization. The nitrogen character increases by about 25%, from 62% in 

neutral pyridine to 88% in the pyridine cation-radical. The 7a1(σN LP) MO is significantly 

more localized on nitrogen in the cationic state than in the (neutral) ground state. This can be 

seen not only in the decreased contribution of the carbon atoms, but also in a quite substantial 

(7%) decrease in the contributions of the hydrogen atoms. By contrast, the -orbitals, 1a2(π) 

and 2b1(π), hardly change upon ionization, and largely retain their localization properties in 

the cation-radical. The localization properties of the 5b2(σ) orbital change moderately. Here a 

certain decrease of N- and C2- character and the corresponding increase of C3- and C4- 

character occurs. 

The changes in the total electronic density distribution caused by relaxation can be 

visualized by the density difference plots (Figure 3) for the 7a1(σN LP) and 5b2(σ) orbitals. 

Similar plots for the 1a2(π) and 2b1(π) orbitals, together with above-plane density difference 
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plots for all four orbitals, are shown in Figure S1 in Supplementary Material. These plots 

compare the cationic states in terms of the unrelaxed (neutral ground-state HF) density and 

the fully relaxed density obtained from the ROHF calculations for the state under 

consideration. 

For the 2A1(7a1
1) state the density difference surface is very steep, especially in the 

vicinity of the nitrogen atom. This implies that a strong rearrangement of the electron density 

due to relaxation takes place. When relaxation is taken into account, more electron density is 

withdrawn from the area surrounding the nitrogen atom, whereas there is an increase in the 

electron density on the molecular peripheral domains including the hydrogen atoms and C-H 

bonds. The in-plane and above-plane cross-sections show a similar relaxation pattern, 

although – as expected for states of -symmetry – the effect is much weaker above the 

molecular plane. This description is in agreement with the picture based on the Mulliken 

atomic populations given in Table VI, predicting a more pronounced lone-pair character for 

the 7a1 orbital at the level of the SCF treatment. 

The density difference surfaces of the -states, 2A2 and 2B1, are rather flat (Figure S1), 

which means that there is no pronounced relaxation effect. For the -states, the density 

difference above the molecular plane has to be considered. It shows density redistribution 

patterns similar to the shapes of the corresponding 1a2 and 2b1 orbitals. Interestingly, there is 

also a notable in-plane relaxation effect leading to quite different and substantially more 

symmetric density redistribution patterns. In both cases, the in-plane electron density is 

transferred from the six-membered ring towards the hydrogen atoms. 

Strong in-plane relaxation effects can be seen for the 2B2(5b2
1) state (Figure 3). Here 

the electron density is transferred from the bonds adjacent to the C4 atom to the bonds on the 

opposite side of the molecule adjacent to nitrogen. The in- and above-plane reorganization 

effects differ somewhat, as can be seen from the respective surfaces (Figure S1). 

 

2. Electron correlation 

The orbital relaxation effects in the pyridine cation-radicals considered above are 

characterized by a strong non-local density redistribution, resembling to a certain extent intra-
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molecular charge transfer. In contrast, when electron correlation is taken into account the 

resulting changes to the electron distribution are essentially local. This is evident from the 

characteristic pattern in the total electron density difference maps (Figures 3 and S2 in 

Supplementary Material) obtained by comparing the relaxed UHF densities for the cationic 

states with the densities derived from CCD computations using the UHF orbitals. For all four 

states considered here, one sees that electron correlation introduces local corrections which 

decrease the density on the chemical bonds and increase the density near atoms. This leads to 

a more balanced electron density distribution, compared to the case when only orbital 

relaxation effects are taken into account, and is in agreement with the earlier findings 

concerning the role of the electron correlation effects.94,95 

Considerable in-plane density redistribution due to electron correlation can be seen in 

the -states, 2A2 and 2B1 (Figure S2). As already mentioned, the correlation induced changes 

modify the local bonding situation. The above-plane cuts of the density difference maps do 

not facilitate a simple interpretation, but clearly indicate that for both - and -type states 

correlation related changes in the electron density arise throughout the entire molecular 

environment, including regions distant from the ring plane. 

The electron correlation effects for the ionization energies, as obtained by the CCD 

approach, are quite considerable, amounting to 1.57, 1.18, 1.30, 0.81 eV for the 7a1(LP)1, 

1a2()1, 2b1()1, 5b2()1 states, respectively (Figures 3 and S2). These corrections are 

roughly of the same order of magnitude as the relaxation shifts (2.73, 0.85, 0.96, 

0.86 eV, respectively), but have the opposite sign (Figures 3 and S1). Except for the 

7a1(LP)1 state, this leads to a rather effective compensation of the two effects, resulting in  

modest overall corrections (Figure S3 in Supplementary Material). For the 2A1(7a1
1) state, 

however, the relaxation effect is much more substantial than the correlation contribution, so 

the total correction is large (1.16 eV). The electron density difference maps (Figure S3 in 

Supplementary Material), incorporating both effects, support these findings. One can 

therefore state that the neutral ground-state HF description of the LP MO in pyridine – and 

most likely in other heteroaromatic compounds – is inappropriate for the associated cationic 

states. 
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3. Perturbation treatments 

As addressed in Sec. IID, the SCF calculations can be analyzed by perturbation theory. 

The results of a PT2 analysis for the four highest occupied orbitals are given in Table VII. 

The SCF and HF ionization energies are also listed, establishing the full relaxation energy, 

RE (SCF), according to Eq. (13). As can be seen, the PT2 approach recovers the relaxation 

energy surprisingly well. The mean error for the - and -type states is only 0.2 and 0.1 eV, 

respectively, with RE  being overestimated in the former and underestimated in the latter. 

The IPs derived from PT2 and SCF are in good agreement as well. 

The five largest terms in the PT2 expansions of R
kE  (Eq. (16)) for the 7a1(N LP), 

1a2(), 2b1(), and 5b2() orbitals are shown in Table VIII, together with the dominant S1 

terms (Eq. (18)), the ( | )kk ai  integrals, and the ( )a i   orbital energy differences (the latter 

two quantities appear in the nominator and denominator, respectively, of S1). Inspection of the 

terms listed in Table VIII shows that there are obvious differences between the cationic states 

of N LP-, -, and -type. According to our results, the N LP relaxation is driven mainly by the 

two-electron integrals of (N LP N LP|*)  σ N LP
ˆπ π*J  type describing the coupling of the 

N LP charge to the electron density distributed in the  and * orbitals. The large relaxation 

effect in the 7a1(LP)1 state is reflected in the substantial magnitude of that Coulomb integral. 

Also, the small -* energy gap plays an important role (Table VIII). This finding implies 

that the -system plays an active role in the screening of the N LP-hole and in the relaxation 

accompanying the ionization of an N LP electron (Eq. (14)). This is also in agreement with the 

density difference plots demonstrating a considerable above-plane relaxation component for 

ionization of the LP-orbital. Indeed, according to our results, more than 50% of the relaxation 

energy of the LP orbital is due to the -system contribution (as indicated by the RE  value in 

Table VII). In contrast, the -system contributes only 28% to the relaxation energy of the 

5b2()1 state (Table VII), which clearly shows here a distinctly different relaxation 

mechanism. For the -type states, 1a2()1 and 2b1()1, the main relaxation effect appears to 

be due to the -system, since the -system supplies, in both cases, only 11% of the relaxation 
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energy (Table VII). Thus, the most important two-electron integrals here are of 

(|*)  π
ˆσ σ*J  type (Table VIII).  

An important distinction between the relaxation mechanism in the 7a1(N LP)1 state and 

that in the 1a2()1, 2b1()1, and 5b2()1 states is the existence of a single dominant term in 

the PT2 expansion (Table VIII). According to our results the largest S contribution for the 

7a1(N LP)1 state provides 24% of the total relaxation energy, but only 13, 8, and 10% in the 

1a2()1, 2b1()1, and 5b2()1 states, respectively. In the latter cases no single major 

contribution can be identified; the individual contributions to the relaxation energy are 

relatively small as a consequence of small matrix elements in the nominators and large energy 

gaps in the denominators. 

From the above considerations it is clear that the -system, with the low-lying 

unoccupied *-MOs having similar localization properties as the occupied -MOs, is 

essential for an efficient screening of the n-holes (the pairs of orbitals 2b1()-3b1(*) and 

1a2()-2a2(*) fulfill this requirement). On the other hand, the n-orbital is well localized, so 

that large nσ
ˆπ π*J  integrals are obtained. Large-magnitude ˆπ π*kJ  matrix elements, 

similar to those discussed here in relation to valence shell ionization, occur in K-shell 

ionization, where k are highly localized 1s-MOs. Huge relaxation shifts are typical for such 

core-hole states.66 

The charge screening in the LP MO by the -electrons is accomplished by -* 

excitations. The relaxation effects are generally taken into account via electron interaction of 

1h-states with 2h-1p-, 3h-2p- and higher excited states. Through first order of many-body 

perturbation theory, the interaction of the 1h-state k  and 2h-1p-state kja  (representing a 

result of single electron excitation from occupied orbital j to unoccupied orbital a with respect 

to k ) reads 

ˆ ( | ) ( | )k I kjaH ka jk kk ja     (22) 

where the usual Møller-Plesset partitioning 0
ˆ ˆ ˆ

IH H H   of the Hamiltonian Ĥ  into the 

zero-order Hartree-Fock part 0Ĥ  and the interaction ˆ
IH  is assumed. The second term on the 
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right-hand side of Eq. (22) is readily identified as the Coulomb integral ˆ
kj J a  discussed 

above in the context of the PT2 relaxation energy analysis.  

The first-order interaction of the 1h- and 2h-1p-states is explicitly taken into account in 

the ADC(3) and EOM-IP-CCSD schemes and contributes to the treatment of the orbital 

relaxation effects. Indeed, inspection of our ADC(3)/6-31G results for the 7a1(σN LP)1 state 

shows that the total weight of the 2h-1p configurations in the ADC(3) eigenvector amounts to 

11%, and the most important of these configurations are: 7a1
1 2b1

1 3b1, 7a1
1 2b1

1 4b1, 

7a1
11a2

1 2a2 (that is, the excitations from the occupied 2b1 and 1a2 -orbitals into the virtual 

3b1, 4b1, and 2a2 *-orbitals). The extension of the basis set from 6-31G to cc-pVTZ hardly 

influences the results. In the higher-order EOM-IP-CC3 and EOM-IP-CCSDT schemes, the 

interaction of the 1h- and 3h-2p- states comes into play. This improves the treatment of the 

orbital relaxation effects and, consequently, the results for the cationic states where such 

effects are important. Within the ADC hierarchy a similar improvement is expected at the 

level of the ADC(4) scheme, the proper implementation of which is still not available. 

 

E. Geometric structure and vibrational analysis 

Having discussed the vertical ionization energies of the four lowest cationic states, we 

now look at the geometric structure and vibrations. The optimized geometrical parameters for 

the 2A1(7a1
1), 2A2(1a2

1), and 2B1 (2b1
1) states, obtained at the MP2 and CCSD levels using 

the cc-pVTZ basis set, are given in Tables IX and X, respectively. MP2 results for the 

2B2(5b2
1) state could not be obtained, since here the optimization procedure converged to the 

lower-lying 2A2(1a2
1) state, but CCSD/cc-pVTZ results for this state are included in Table X. 

The MP2 harmonic vibrational frequencies for the 2A1(7a1
1), 2A2(1a2

1) and 2B1 (2b1
1) states 

are listed in Table XI.   

The geometrical parameters predicted by the MP2 and CCSD methods are in fair 

agreement with each other. Whereas for neutral pyridine in its electronic ground state the 

MP2 method predicts slightly larger bond lengths than those obtained using the CCSD 

method, the opposite trend is observed for the cationic states. The largest inconsistencies are 

found for the 2A1(7a1
1) state, where differences up to 0.02-0.03 Å occur for the C-C and C-N 
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bond lengths. For both computational schemes, the bond lengths in the neutral ground-state 

are slightly smaller than the experimental values.96 Consistent results are obtained for the 

angles, and agree well with the experimental data.96 The neutral ground-state frequencies 

calculated in this work using the MP2 method agree very well with the experimental data of 

DiLella et al.97  The calculated normal modes are consistent with their classical definitions 

given by Langseth and Lord98 and by Zerbi et al.99 The original notations of Langseth and 

Lord were therefore adopted, while some insight into the nature of the vibrations can be 

gained from the qualitative descriptions introduced by Kumar et al.100 also given in Table XI. 

The vibrational frequencies of the cationic states are less well studied but Lee et al.39 

have calculated B3LYP/cc-pVTZ frequencies, differing from those of the neutral ground state, 

for the 2A1(7a1
1) state. In our calculation for the 2B1(2b1

1) state two imaginary frequencies 

(of b1 and b2 symmetry) were obtained. This means that here the symmetric C2v molecular 

structure represents a saddle point on the potential energy surface, and one can expect that 

certain in-plane and out-of-plane distortions of the molecular configuration will lead to 

structures with lower total energy. Further studies are necessary to ascertain whether this 

result is an artifact of the method used, and whether the structures with reduced symmetry are 

bound. 

 

F. Assignment of the spectrum 
1. Vertical ionization 

The theoretical ionization spectrum of pyridine computed at the ADC(3)/cc-pVDZ level 

of theory is shown in Figure 4, together with a complete valence shell photoelectron spectrum 

recorded at a photon energy of 80 eV, and at θ = 0°. The present theoretical spectrum agrees 

well with previous ADC(3) calculations.35,47 It reproduces the main features observed in the 

experimental spectrum and therefore can be used for qualitative assignments. The numerical 

data for the outer-valence region can be found in Tables III, IV and V. 

According to the ADC(3) results, the photoelectron band occurring between ~9.1-

10.3 eV is formed by the closely spaced transitions into the 1a2(π)1 and 7a1(σN LP)1 states. 

This is in agreement with the results of the other theoretical methods used in the present work 
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and in the previous studies (Table V). However, the vertical ordering of the 1a2(π)1 and 

7a1(σN LP)1 states cannot be determined unambiguously since the energy separation is smaller 

than the accuracy margin afforded by the computational schemes, especially for the 

7a1(σN LP)1 state, as discussed in Sec. IVC. 

Obviously, the best estimates of the vertical ionization energies for the 7a1(σN LP)1 and 

1a2(π)1 states are provided by the present EOM-IP-CCSDT/cc-pVTZ calculations (9.61 and 

9.73 eV, respectively). These values can be improved further by adding the  CBS 

correction (defined as   = Ev (cc-pVZ)  Ev (cc-pVTZ)) using the results given in 

Table IV), to obtain 9.72 and 9.85 eV, respectively. For comparison, Reineck et al30 reported 

vertical ionization energies of 9.66 and 9.85 eV for the HOMO and HOMO-1 orbitals, from 

their HeI excited spectrum. Similar accurate theoretical results, of 9.54 and 9.65 eV, were 

obtained previously only in the CASPT2 study of Lorentzon et al.46 As can be seen from 

Table V, other theoretical methods give less accurate results for the lowest two cationic states, 

and in some cases reverse the order established by the CCSDT benchmarks. 

 

2. Adiabatic ionization 

We have used the MP2 and CCSD geometries (Tables IX and X) to compute the 

adiabatic ionization energies and to evaluate the adiabatic energy corrections (ad) to the 

vertical ionization energies v (Table V). The ad corrections are obtained as the 

differences between the total energies (Etot) for the cationic state at its optimal geometry (CS) 

and the ground-state optimal geometry (GS): ad  = Etot (CS)  Etot (GS). The final-state 

vibrational frequencies were computed at the MP2 level (Table XI), and the corresponding 0-

0 corrections (00) to the adiabatic ionization energies were evaluated (Table V). The latter 

are defined as the difference between the zero-point vibrational energies (ZPVE) for the 

cationic state and the electronic ground state: 00 = ZPVE (CS)  ZPVE (GS). The ad 

CCSD adiabatic and 00 MP2 0-0 corrections as well as the   CBS correction were 

added to the EOM-IP-CCSDT vertical ionization energies to obtain the best estimates (E00) 

of the 0-0 ionization energies (Table V). 
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Our best estimate for the 7a1(σN LP)1 0-0 transition energy is 9.31 eV. This energy is 

still slightly higher than the E00 values, 9.199,34 9.197,36 9.1978,38 and 9.1215,39 eV, obtained 

in recent experiments. It is interesting to note that Riese et al.38 attempted to characterize the 

lowest cationic state using density functional theory with a B3LYP functional and the aug-cc-

pVTZ basis set. The resulting cationic ground state was predicted to be of 2B2 symmetry, with 

a molecular structure differing considerably from that obtained in our CCSD/cc-pVTZ 

treatment of the 2B2 state.  

The best estimate for the 00 transition energy of the 1a2(π)1 state obtained in the 

present theoretical work is 9.65 eV. The corresponding experimental value is difficult to 

determine due to the complexity of the lowest photoelectron band, to which this transition 

contributes. The only experimental value, 9.275 eV39, is much lower than our prediction. In 

view of the very small vertical gap between the 7a1(σN LP)1 and 1a2(π)1 states (0.12-0.13 eV 

at the EOM-IP-CCSDT level of theory), it is very likely that these two states are subject to 

strong vibronic coupling. This coupling probably also involves the 2b1(π)1 state, which lies 

0.7 eV above the 1a2(π)1 state (Table V). The characteristic appearance of the first two 

photoelectron bands observed in the HeI excited spectrum recorded by Liu et al34 supports 

this suggestion. Below the maximum (at ~9.7 eV) of the first photoelectron band the spectrum 

is dominated by well-resolved vibrational excitations. These excitations become exceedingly 

dense near the band maximum but disappear at binding energies above ~10 eV. No 

vibrational structure is observed either on the high energy portion of the first photoelectron 

band or across the entire second photoelectron band, which occurs between 10.3 and 11.0 eV. 

Previous theoretical work has shown that resolved vibrational structure is usually absent 

above the point of a conical intersection between potential energy surfaces, as here the nuclear 

dynamics becomes strongly non-adiabatic and give rise to numerous irregular vibronic 

transitions.101 (See, for example, Ref. 12 which shows photoelectron spectra of the 

dichlorobenzenes where vibronic coupling occurs between the lowest two ionic states). In 

pyridine it seems plausible to suggest that the lack of vibrational peaks above ~10 eV marks 

the presence of a conical intersection between the 7a1(σN LP)1 and 1a2(π)1 states. In such 

situations, accurate vertical and adiabatic transition energies can be extracted from 
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experimental data only through using appropriate vibronic coupling models based on the 

results of high-level electronic structure methods.101,102  

The second band in the photoelectron spectrum, with a maximum near 10.5 eV, can be 

attributed unambiguously to the 2b1(π)1 final state. While the vertical energy of this 

transition is reproduced rather accurately by most of the theoretical methods (Tables III-V), 

the absence of any resolved vibrational structure in the experimental spectra indicates a more 

complex situation that can be understood only within the framework of a suitable vibronic 

coupling model. Our best estimate for the 2b1(π) ionization energy, 10.56 eV, obtained at the 

EOM-IP-CCSDT level of theory using CBS extrapolation, is in excellent agreement with the 

measured value (Table III). Our theoretical result for E00, 10.30 eV, is also in accord with the 

00 transition energy of 10.315 eV reported by Śmiałek et al.36 

The next group of bands is located in the experimental spectrum between ~12 and 

15 eV. The observed structure, due to four overlapping bands, is quite complex, with maxima 

occurring at 12.454, 13.2 13.8 and 14.5 eV.30 These features correspond to peaks 4-7 in the 

theoretical spectrum (Figure 4), which, according to our calculations, can be assigned to 

ionization of the 5b2(), 1b1(), 6a1(), and 5b2() orbitals, respectively. The vertical EOM-

IP-CCSDT energy for ionization of the 5b2() orbital, 12.88 eV (CBS limit), is slightly higher 

than the measured value (12.454 eV30). A shift in the same direction occurs for E00, where 

our calculated value of 12.31 eV compares with the experimental result of 12.257 eV.30 The 

vertical ionization energies, 13.27 and 14.04 eV, of the 1b1() and 6a1() orbitals, 

respectively, computed at the ADC(3) level, are in good agreement with the corresponding 

measurements (Table III). 

Our calculations predict that satellites begin contributing to the spectrum above 14 eV. 

Several low-intensity 2h-1p transitions, including shake-up satellites associated with the 

1a2(π), 5b2(), and 6a1() main lines, appear in the theoretical spectrum (Figure 4) at 14.16 , 

14.28 and 14.79 eV. These satellites have relative intensities of <0.01, 0.02, and 0.04, 

respectively, compared to the corresponding main line. According to our ADC(3) results, the 

intensity of the 1b2(π) main line is 0.72, which means that almost 30% of the intensity has 
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been diverted to satellites. While not individually resolved, these satellites increase the width 

of the observed bands. 

The next two bands in the experimental spectrum, with maxima at 15.838 eV and 

17.1 eV,30 are relatively easy to assign. The first is due to ionization of the closely spaced 

3b2() and 5a1() orbitals, and the presence of these two contributions is reflected in the 

relatively high spectral intensity.30 The second band can be associated with the 4a1() orbital. 

Our calculations predict extensive satellite structure in the binding energy range 

encompassing the 4a1() main line, so the observed width will be increased due to these 

unresolved contributions. 

In common with many other organic compounds, the simple one-particle picture of 

ionization4,61,62 becomes inappropriate at binding energies above 18 eV, as here a strong 

mixing of 1h and 2h-1p configurations no longer allows a distinction between main lines and 

satellite states. The experimental spectrum of pyridine (Figure 4) contains a broad band 

between 19 and 21 eV, with a maximum at ~19.5 eV. Our calculations suggest that this band 

is formed by three major components, exhibiting strong contributions from the 3a1 and 2b2 

orbitals, together with a large number of medium or low intensity 2h-1p-type transitions 

related to the 4a1, 3a1, and 2b2 orbitals. 

The complexity of the photoelectron spectrum increases further towards higher binding 

energy. The broad band between 22 and 26 eV, with a maximum at ~24 eV, and the band 

between 26 and 30 eV, with a maximum at ~28 eV, are formed by various states reflecting a 

strong mixing between the 1b2, 2a1 and 1a1 hole states and a large number of 2h-1p 

configurations. As a result of this 1h/2h-1p mixing, the intensity of the individual final states 

decreases, while the number of final states grows. The spectral intensity originally allocated 

to a 1h state is shared amongst a manifold of final states and there is no longer a dominant 1h 

state. This situation is referred to as the "break-down of the orbital picture of ionization".4 
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G. Photoelectron angular distributions and photoionization partial cross-
sections 

Photoelectron angular distributions can often be used to help assign the type of orbital 

(π, σ or non-bonding) associated with a specific band even in congested regions of the 

spectrum where the individual bands partially overlap. Previous experimental61,103,104 and 

theoretical12,41,105 work has established that anisotropy parameters due to π, σ or non-bonding 

orbitals exhibit differing energy dependences, and that these differences are particularly 

evident in the photon energy range ~ 40 - 60 eV. The β-parameter corresponding to ionization 

of a π-orbital tends to lie close to zero at threshold, and then rises rapidly as the photon energy 

increases to reach a plateau value of at least 1.5 at hν ~ 60 eV. In contrast, the value of an 

anisotropy parameter associated with a σ-orbital rises much more slowly as the energy 

increases. In favorable circumstances, these differing energy dependencies allow the type of 

orbital associated with a specific photoelectron band to be identified through simple 

comparison of photoelectron spectra recorded either parallel or perpendicular to the 

polarization vector of the incident plane polarized radiation. 

Figure 5 shows an example where comparison of perpendicular and parallel  

photoelectron spectra enable the band due to a π-orbital to be distinguished from neighboring 

bands associated with σ-orbitals. The band due to the 1b1(π) orbital, whose maximum occurs 

around 13 eV, is much stronger in the spectrum recorded at θ = 0° than it is in that recorded at 

θ = 90°, because, at a photon energy of 40 eV, the β-parameter of a π-orbital is much higher 

than that of a σ-orbital. Thus, the band due to the 1b1(π) orbital is readily distinguished from 

those due to the adjacent 5b2(σ), 6a1(σ) and 4b2(σ) orbitals. A full analysis of parallel and 

perpendicular recordings, extended across all measured bands, allows quantitative 

experimental anisotropy parameters to be derived as a function of photon energy from our 

angle resolved spectra. 

In previous experimental studies29,31,34 the variation of the β-parameter, as a function of 

binding energy, for the outermost photoelectron band of pyridine, encompassing contributions 

from the 7a1(σN LP) and 1a2(π) orbitals, has been used as an indication of the ordering of these 

two orbitals. These analyses suggest that the ionization energy of the 7a1 orbital is lower than 

that of the 1a2 orbital. Our present results do not allow such a definite conclusion on the 
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orbital sequence to be reached. Although at some photon energies the value of the β-

parameter for the low binding energy region of the band is lower than that for higher binding 

energies, in accord with earlier analyses,29,31 at other photon energies the opposite variation 

has been found. Moreover, at many photon energies the β-parameter does not appear to vary 

significantly across the band. Such a behavior would be consistent with that expected from 

two substantially overlapping bands whose ionization energies are similar, as our calculations 

predict, and as previously suggested by Liu et al.34 It should also be noted that at low photon 

energies, such as those used in earlier experiments,29,31 the ionization process may be 

influenced by autoionization, which is known to affect β-parameter values. 

Figure 6 shows photoelectron anisotropy parameters for the 1a2(π), 7a1(σN LP), 2b1(π) 

and 5b2(σ) orbitals measured in the present experiment together with theoretical predictions. 

A complete set of experimental and theoretical β-parameters for all the energy regions 

specified in Table I is available in the Supplementary Material. In general the agreement 

between experiment and theory is reasonable and demonstrates the expected differing energy 

dependencies for ionization from a σ- or π-orbital. The β-parameter for the 2b1(π) orbital rises 

rapidly with increasing energy (as shown by both experiment and theory) in contrast to that 

for the 5b2(σ) orbital where the increase in the β-value is more gradual. Indeed, this 

contrasting energy variation is evident in the theoretical predictions for the outermost band, 

comprising contributions from the 7a1(σN LP) and 1a2(π) orbitals. The calculated β-parameter 

for the 1a2 orbital increases more rapidly than that associated with the 7a1 orbital, with the 

individual curves reaching similar values for a photon energy of ~100 eV. These two 

contributions are not resolved experimentally and in the photon energy range 20 - 50 eV the 

measured anisotropy parameter lies between those predicted for the 7a1 and 1a2 orbitals. It 

should be noted that the representation of the 7a1 orbital in these calculations includes none of 

the post HF refinements discussed above.  

The experimentally derived and the calculated absolute photoionization partial cross-

sections for the 1a2(π), 7a1(σN LP), 2b1(π) and 5b2(σ) orbitals are plotted in Figure 7. Again, a 

complete set of results is available in Supplementary Material. The overall agreement between 

experiment and theory is satisfactory, especially at photon energies above ~30 eV. For some 
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orbitals, the prominent resonances predicted a few eV above threshold appear overestimated. 

Such effects have been observed previously in fixed geometry CMS-X calculations.106 The 

inclusion of vibrational averaging tends to both reduce the magnitude of the resonance and to 

increase the peak width. 

  

V. SUMMARY AND CONCLUSIONS 

The outer- and inner-valence shell ionization spectra of pyridine were investigated using 

the ADC(3) approximation scheme for the one-particle Green's function. The vertical 

ionization energies and the corresponding spectral intensities (pole strengths) were computed, 

and these were used to interpret the experimental photoelectron spectra. To limit the 

computational cost, the relatively compact cc-pVDZ basis sets were used in these 

calculations. These, nevertheless, allow a qualitatively correct description of the spectrum to 

be obtained. 

Outer-valence ionization transitions were also computed using the OVGF and EOM-IP-

CCSD methods. Here, the larger aug-cc-pVTZ basis sets were used as these allow the outer-

valence ionization to be described in a quantitative manner. At the OVGF level, a basis set 

convergence study was carried out employing the cc-pVnZ and aug-cc-pVmZ (n = D, T, Q, 5, 

and m = D, T, Q) sets. CBS extrapolation results were obtained. 

The theoretical results were found to be in good agreement with the experimental data 

across the entire binding energy range, and enabled the structure observed in the 

photoelectron spectra to be assigned. The outer-valence ionic states are well described within 

the one-electron picture of ionization. The lowest satellite (2h-1p) states appear at about 

14 eV, and acquire their intensity from the innermost -orbital. Hence, the spectral intensity 

of the 1 main state is somewhat decreased, as is typical for heteroaromatic molecules.61 The 

ionization of the inner-valence orbitals is influenced by large electron correlation and orbital 

relaxation effects. These effects are reflected in our calculations in strong 1h and 2h-1p 

configuration mixing and in the transfer of intensity from the main (1h) state to a manifold of 

final states. This situation, also referred to as the break-down of the one-electron picture of 

ionization,4 occurs in the spectra at binding energies above 20 eV. In the ADC(3) method, the 
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2h-1p states are treated less accurately (first order) than the 1h states (third order), thereby 

affording only a qualitative description of the inner-valence spectral regime. 

The effects of electron correlation and orbital relaxation can also be important for outer-

valence ionization. This is demonstrated by our study of the lowest four states, 2A2(1a2
1), 

2A1(7a1
1), 2B1(2b1

1), and 2B2(5b2
1), of the pyridine radical cation. The relative positions of 

the corresponding energy levels, particularly that of the 7a1(n) orbital, has been a major 

issue in the theoretical and experimental literature For a definitive clarification, we have used 

high-level electronic structure methods, including the EOM-IP-CCSDT scheme, together with 

the high-quality cc-pVTZ basis set and CBS limit extrapolation. According to our best 

estimates, the 7a1(n)1 state is the ground state of the pyridine cation, with a vertical 

ionization energy of 9.72 eV, followed by the 1a2()1 state at 9.85 eV, the 2b1()1 state at 

10.56 eV, and the 5b2()1 state at 12.88 eV.  

For each of the four lowest cationic states, the equilibrium geometry parameters were 

computed using the MP2 and CCSD methods, and the harmonic vibrational frequencies were 

obtained at the MP2 level. These results were used to estimate the adiabatic (0-0) ionization 

energies (9.31, 9.65, 10.30, 12.31 eV). Except for the 1a2()1 state, the theoretical 0-0 

estimates are in accord with the experimental data. For the 1a2()1 state, vibronic coupling to 

the lower 7a1(n)1 state may play a role, as indicated by the small energy gap between the 

two states and the rather complex appearance of the 1a2() photoelectron band.34 

The orbital relaxation and electron correlation effects in the 7a1(n), 1a2(), 2b1(), and 

5b2() transitions were analyzed in detail. Often an ionic state is reasonably well described as 

a 1h HF configuration where the unaffected electrons reside in the ground-state (frozen) HF 

orbitals. That is the first-order Koopmans description of ionization. At the second-order level, 

electron correlation and orbital relaxation comes into play, and it is interesting to analyze the 

corresponding changes in the electron density in the ionic states. To this end, we have 

computed total electron density difference maps, allowing the frozen and relaxed densities to 

be compared.  

A very strong orbital relaxation effect, amounting to 2.73 eV, was found for the 

7a1(n)1 state. This is much larger than the corresponding values of 0.85, 0.96, and 
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0.86 eV for the three other low-lying cationic states, 1a2()1, 2b1()1, and 5b2()1 , 

respectively. In contrast, the electron correlation contributions, 1.57, 1.18, 1.30, and 0.81 eV, 

respectively, are more uniform. The exceptionally large relaxation shift for the nitrogen lone-

pair state poses an obvious challenge to the electronic structure methods used here. 

An explicit PT2 expansion of the relaxation energy allowed the relaxation effect in the 

n lone-pair state to be analyzed in detail. More specifically, by employing the PT2 approach, 

the main contributions to the relaxation energy in terms of two-electron integrals were 

identified. The screening of the n positive charge is described by the (|*)  σ
ˆπ π*J  

integral reflecting the coupling of the  charge to the density in the highest  and the lowest 

* orbitals. According to our results, more than 50% of the relaxation energy of the n orbital 

is due to the -system contribution. This is in agreement with the density difference plots 

predicting for the n orbital considerable changes in the electron density distribution above 

the molecular plane. For comparison, the -system contributes only about 20% to the 

relaxation of 5b2()1 state.  

The relaxation mechanism discussed above seems to be rather general and can be 

present in other heteroaromatic molecules possessing -systems and n-type lone-pairs of the 

heteroatoms (nitrogen or oxygen). It may be responsible for the near degeneracy between the 

n and  levels noticed in previous works on such molecules.49-58 This will be checked in our 

future studies. 

Photoelectron anisotropy parameters and photoionization partial cross-sections for the 

outer-valence orbitals have been measured from the ionization threshold to a photon energy of 

120 eV. The experimental data have been compared to the corresponding theoretical 

predictions obtained with the CMS-Xapproach. The overall agreement is satisfactory, 

thereby supporting the predicted electronic orbital configuration. 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for contour plots of pyridine total electron density 

differences showing the effects of orbital relaxation and electron correlation for ionization 

from the 7a1(σN LP), 1a2(), 2b1(),and 5b2() orbitals. Supplementary material also contains a 
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complete set of experimental and theoretical β-parameters, and a complete set of experimental 

and theoretical absolute photoionization partial cross-sections for all the regions specified in 

Table I. 
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   TABLES 
Table I.  Binding energy regions used in the analysis of the angle resolved photoelectron 

spectra. 

Region Binding energy range (eV) Encompassed orbitals 

 8.7 – 10.2 1a2(π), 7a1(σN LP) 

 10.2 – 11.4 2b1(π) 

 11.9 – 12.75 5b2(σ) 

 12.75 – 13.5 1b1(π) 

 13.5 – 14.0 6a1(σ) 

6 14.0 – 15.15 4b2(σ) 

 15.15 – 16.5 5a1(σ), 3b2(σ) 

 16.5 – 18.4 4a1(σ) 

 18.4 – 21.4 3a1(σ), 2b2(σ) 

 21.4 – 34.0 1b2(σ), 2a1(σ), 1a1(σ) 
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Table II.  Mulliken atomic population in the outer-valence molecular orbitals of pyridine (units are 

electrons; sum over all atoms is 2) calculated at the HF/cc-pVDZ level. 

Atom 
7a1 1a2 2b1 5b2 1b1 6a1 4b2 5a1 3b2 4a1 

(σN LP) (π) (π) (σ) (π) (σ) (σ) (σ) (σ) (σ) 

N 1.24 0.01 0.59 0.16 0.53 0.34 0.02 0.05 0.36 0.14 

C2 0.15 0.47 0.09 0.20 0.37 0.14 0.31 0.16 0.31 0.26 

C3 0.12 0.52 0.27 0.25 0.25 0.12 0.31 0.32 0.33 0.19 

C4 0.03 0.02 0.68 0.29 0.22 0.58 0.03 0.07 0.32 0.31 
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Table III.  Energies E (eV) and intensities P of the outer-valence vertical ionization transitions in pyridine calculated 

using the HF, OVGF, ADC(3), and EOM-IP-CCSD methods and the cc-pVDZ and aug-cc-pVTZ basis sets. The 

experimental values are also listed. 

Molecular 

orbital 
Type 

OVGF /  

aug-cc-pVTZ 

cc-pVDZ a EOM-IP-

CCSD / 

aug-cc-pVTZ

Exp.b HF OVGF ADC(3) 

E P E E P E P 

7a1 σN LP 9.90 0.89 11.29 9.57 0.89 9.82 0.88 9.78 9.66 

1a2 π 9.67 0.90 9.39 9.41 0.90 9.52 0.89 9.80 9.85 

2b1 π 10.44 0.89 10.34 10.16 0.90 10.24 0.88 10.52 10.51 

5b2 σ 12.91 0.90 14.04 12.67 0.90 12.88 0.90 12.94 12.454 

1b1 π 13.46 0.81 14.62 13.22 0.82 13.27 0.72 13.70 13.2 

6a1 σ 14.09 0.88 15.62 13.86 0.89 14.04 0.83 14.10 13.8 

4b2 σ 14.82 0.88 16.20 14.62 0.89 14.80 0.85 14.83 14.5 

3b2 σ 15.95 0.86 17.87 15.79 0.87 16.23 0.70 16.04 15.838 

5a1 σ 16.18 0.87 17.73 16.10 0.87 16.13 0.81 16.23 15.838 

4a1 σ   19.56 17.58 0.86 17.69 0.76 17.74 17.1 

a Cartesian representation of d-function was used. 
b Peak maxima reported by Reineck et al.30 
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Table IV.  Vertical ionization energies of pyridine (eV) calculated at the OVGF level of 

theory using the series of basis sets cc-pVnZ and aug-cc-pVnZ with improving quality (n = 

D, T, Q, 5), and results for the complete basis set (CBS) limits (n  ). 

Basis set 
7a1 1a2 2b1 5b2 1b1 6a1 4b2 

(σN LP) (π) (π) (σ) (π) (σ) (σ) 

cc-pVDZ 9.58 9.42 10.17 12.68 13.24 13.87 14.63 

aug-cc-pVDZ 9.85 9.60 10.29 12.88 13.46 14.07 14.81 

cc-pVTZ 9.80 9.60 10.36 12.83 13.37 14.01 14.75 

aug-cc-pVTZ 9.90 9.67 10.44 12.91 13.46 14.09 14.82 

cc-pVQZ 9.87 9.67 10.44 12.89 13.42 14.07 14.80 

aug-cc-pVQZ 9.91 9.70 10.47 12.92 13.46 14.10 14.83 

cc-pV5Z 9.90 9.70 10.47 12.91 13.44 14.09 14.82 

cc-pVZ 9.91 9.72 10.49 12.93 13.45 14.11 14.83 

aug-cc-pVZ 9.91 9.72 10.48 12.93 13.46 14.11 14.83 
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Table V.  Energies, Ev, of the four lowest vertical ionization transitions of pyridine obtained 

using various computational schemes and the cc-pVTZ basis set in comparison with the 

previous results; complete basis set (CBS) correction, ; MP2 and CCSD adiabatic 

corrections to the vertical ionization energies, ad; MP2 00 correction to the adiabatic 

ionization energies, 00; the best estimates for 00 ionization energies, E00. All values are 

in eV. 

 7a1 (σN LP) 1a2 (π) 2b1 (π) 5b2 (σ) 

RHF/Koopmans' 11.37 9.44 10.42 14.10 

RHF/SCF 8.64 8.59 9.46 13.24 

UHF/SCF a 8.34 8.17 8.83 12.89 

MP2 10.73 10.19 11.43 14.27 

MP3 10.22  9.78 10.79 14.04 

MP4 10.33 9.95 10.99 13.74 

CCD 10.21 9.77 10.76 14.05 

CCSD 9.67 9.63 10.38 13.18 

CCSD(T) 9.71 9.76 10.51 12.92 

OVGF 9.80 9.60 10.36 12.83 

ADC(3) 10.06 9.65 10.39 13.06 

EOM-IP-CCSD 9.69 9.72 10.43 12.87 

EOM-EE-CC3 b 9.58 9.70 10.41 12.76 

EOM-IP-CCSDT 9.61 9.73 10.43 12.78 

EOM-IP-CCSDT
c
  9.72 9.85 10.56 12.88 

ADC(3) d 9.78 9.44 10.15 12.73 

SAC-CI e 9.23 9.36 10.12 12.48 

CASPT2 f 9.54 9.65 10.37  

MRD-CI g 8.84 9.53 10.13 12.91 

 (OVGF) h 0.11 0.12 0.13 0.10 

ad (MP2) i 0.66 0.16 0.30 j  

ad (CCSD) i 0.52 0.16 0.18 0.57 

00 (MP2) k 0.11 0.04 0.08 j  

E00 
l 9.31 9.65 10.30 12.31 

a The calculated S2 values are 0.89, 1.22, 1.12, and 1.35 for the 1a2
1(π), 7a1

1(σN LP), 

2b1
1(π), and 5b2

1(σ) states, respectively. 
b EOM-EE-CC3 method with continuum orbital approximation.82 
c Estimated CBS limit obtained by adding the   correction to the EOM-IP-CCSDT/cc-

pVTZ result. 
d Ref. 35. e Ref. 42. f Ref. 46. g Ref. 40. 
h See text for details (Sec. IV.F.1). 
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i See text for details (Sec. IV.F.2). 
j C2v molecular structure (saddle point, as indicated by the two imaginary frequencies).   
k See text for details (Sec. IV.F.2). 
l Obtained using the expression: E00 = Ev (EOM-IP-CCSDT) + ad (CCSD) + 

00 (MP2). For the 5b2(σ) transition the 00 (MP2) term is omitted, since the MP2 

geometry optimization failed for the final state. 
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Table VI.  Comparison of Mulliken atomic population in the four highest occupied molecular 

orbitals of pyridine in its singlet electronic ground state and the pyridine cation radicals in doublet 

electronic states obtained by ionization of the respective MOs (units are percent of the total 

orbital populations, equal to two and one, respectively). Calculations performed at the RHF/cc-

pVDZ level of theory. 

Atom 

Population in molecular orbitals 

Neutral ground state  Cation radicals 

7a1 

(σN LP) 

1a2 

(π) 

2b1 

(π) 

5b2 

(σ) 
 

7a1 

(σN LP) 

1a2 

(π) 

2b1 

(π) 

5b2 

(σ) 

N 62.0 0.5 29.5 8.0  88.0 0.0 29.0 3.0 

C2 7.5 23.5 4.5 10.0  3.0 23.0 4.0 3.0 

C3 6.0 26.0 13.5 12.5  2.0 26.0 12.0 21.0 

C4 1.5 1.0 34.0 14.5  0.0 1.0 40.0 27.0 

All ring atoms 91 100 100 68  98 100 100 78 
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Table VII.  Relaxation energies, RE (eV), and ionization potentials, 

IP (eV), for the highest occupied orbitals of pyridine, computed using the 

second-order perturbation-theoretical (PT2) approach and the SCF method. 

Contribution of the -type orbitals to the total relaxation energy, RE (eV). 

The percent of RE  in the total RE  is shown in parentheses. The HF IPs 

are also given for comparison. Calculations performed using the 6-31G* 

basis set. 

Quantity 
7a1 

(σN LP) 

1a2 

(π) 

2b1 

(π) 

5b2 

(σ) 

RE (PT2) 2.54 0.98 1.07 0.67 
RE (SCF) 2.63 0.77 0.86 0.77 

     

IP (PT2) 8.70 8.35 9.22 13.36 

IP (SCF) 8.60 8.56 9.42 13.27 

IP (HF) 11.23 9.33 10.28 14.03 

     
RE   (PT2) 1.38 (54) 0.11 (11) 0.11 (11) 0.19 (28) 
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Table VIII.  Five largest terms ( , )S k ia  in the second-order perturbation-theoretical expansion 

of the relaxation energy (Eq. (4)) for the highest occupied orbitals k of pyridine. The dominant 

S1 terms together with the (kk|ai) and ( )a i   quantities entering their nominator and 

denominator (Eq. (6)). All quantities are in eV; calculations performed using the 6-31G* basis 

set. 

k i a ( , )S k ia  1 ( , )S k ia  ( kk | ai ) ( )a i   

7a1 (N LP) 2b1 () 3b1 (*) 0.598 0.636 2.080 13.61 

1a2 () 2a2 (*) 0.182 0.183 -1.096 13.12 

1b1 () 3b1 (*) 0.134 0.144 1.137 17.89 

3b2 () 9b2 (*) 0.107 0.102 -1.271 31.60 

2b1 () 4b1 (*) 0.105 0.115 1.071 19.90 

       

1a2 () 4b2 () 6b2 (*) 0.127 0.130 -1.248 23.97 

4a1 () 8a1 (*) 0.084 0.086 -1.058 25.99 

5a1 () 10a1 (*) 0.058 0.062 -0.907 26.50 

5b2 () 7b2 (*) 0.054 0.055 0.795 22.91 

6a1 () 9a1 (*) 0.042 0.042 0.710 23.82 

       

2b1 () 4b2 () 6b2 (*) 0.089 0.089 -1.035 23.97 

4a1 () 8a1 (*) 0.085 0.088 -1.068 25.99 

6a1 () 9a1 (*) 0.060 0.061 0.854 23.82 

5a1 () 10a1 (*) 0.053 0.056 -0.860 26.50 

5b2 () 7b2 (*) 0.049 0.050 0.758 22.91 

       

5b2 () 4b2 () 6b2 (*) 0.064 0.065 -0.882 23.97 

1a2 () 3a2 (*) 0.060 0.061 0.978 31.46 

4a1 () 8a1 (*) 0.058 0.055 -0.847 25.99 

2b1 () 3b1 (*) 0.049 0.051 0.911 32.85 

5a1 () 10a1 (*) 0.045 0.043 -0.755 26.50 

 

http://dx.doi.org/10.1063/1.4986405


57 
 

Table IX.  The equilibrium geometrical parameters of pyridine (Figure 1) in its 

electronic ground-state, 1A1(GS), and the lowest cationic states, 2A1(7a1
1), 2A2(1a2

1), 

and 2B1(2b1
1), obtained using the MP2/cc-pVTZ approach (bond lengths in Å, angles in 

degrees). 

Parameter 1A1 (GS) 
2A1 (7a1

1) 

(N LP) 

2A2 (1a2
1) 

() 

2B1 (2b1
1) 

() 
Exp. a 

Bond lengths      

N-C2 1.340 1.294 1.328 1.369 1.344 

C2-С3 1.392 1.359 1.450 1.340 1.399 

С3-C4 1.391 1.369 1.375 1.423 1.398 

C2-H 1.083 1.082 1.083 1.080 1.094 

C3-H 1.081 1.080 1.082 1.080  

C4-H 1.081 1.082 1.079 1.081  

Angles      

N-C2-С3 123.8 115.2 123.7 121.7 124.6 

C2-С3-C4 118.7 118.2 119.9 118.0 117.8 

С3-C4-C5 118.3 122.0 116.6 120.2 119.1 

C6-N-C2 116.8 131.2 116.0 120.4 116.2 

N-C2-H 115.9 119.8 117.0 114.8 115.2 

a Equilibrium ground-state geometrical parameters of neutral pyridine.96  
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Table X.  The equilibrium geometrical parameters of pyridine (Figure 1) in its electronic ground-state, 1A1(GS), and 

the lowest cationic states, 2A1(7a1
1), 2A2(1a2

1), 2B1(2b1
1), and 2B2(5b2

1), obtained using the CCSD/cc-pVTZ 

approach (bond lengths in Å, angles in degrees). 

Parameter 1A1 (GS) 
2A1 (7a1

1) 

(N LP) 

2A2 (1a2
1) 

() 

2B1 (2b1
1) 

() 

2B2 (5b2
1) 

() 
Exp. (1A1) 

a Exp. (2A1) 
b 

Bond lengths        

N-C2 1.335 1.310 1.326 1.368 1.340 1.344 1.339 

C2-С3 1.391 1.393 1.451 1.367 1.392 1.399 1.392 

С3-C4 1.390 1.391 1.385 1.432 1.391 1.398 1.390 

C2-H 1.082 1.081 1.083 1.080 1.083 1.094 1.082 

C3-H 1.080 1.080 1.081 1.080 1.081  1.082 

C4-H 1.081 1.081 1.079 1.083 1.081  1.082 

Angles        

N-C2-С3 123.9 114.3 124.2 122.6 123.8 124.6 114.2 

C2-С3-C4 118.5 118.9 119.5 117.6 118.7 117.8 119.3 

С3-C4-C5 118.4 121.2 116.7 119.9 118.3 119.1 121.8 

C6-N-C2 116.9 132.5 116.0 119.7 116.8 116.2 131.2 

N-C2-H 115.9 119.9 116.8 115.3 115.9 115.2 119.7 

a Equilibrium ground-state geometrical parameters of neutral pyridine.96  
b Geometrical parameters of the pyridine cation-radical obtained from the MATI spectra using a Franck-Condon 

fitting procedure.39  
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Table XI.  The harmonic vibrational frequencies (cm1) of pyridine in its electronic ground-state, 
1A1(GS), and the lowest cationic states, 2A1(7a1

1), 2A2(1a2
1), and 2B1(2b1

1), computed using the 

MP2/cc-pVTZ approach. 

Vibrational modes  

and assignment a 
1A1(GS) 

2A1(7a1
1) 

(N LP) 

2A2(1a2
1) 

() 

2B1(2b1
1) 

() 

Exp. 

(1A1) 
b 

Exp. 

(2A1) 
c 

a1  modes        

6a r 602 662 587 594 603 604 

1 r 1009 980 1001 882 991 920 

12 r 1048 1135 1031 1016 1030 974 

18a CH 1093 1220 1197 1063 1069 995 

9a CH 1242 1234 1275 1266 1217 1119 

19a r 1508 1564 1552 1427 1483 1397 

8a r 1632 1832 1636 1891 1581 1492 

20a CH 3201 3240 3234 3240 3025  

13 CH 3219 3249 3243 3257 3057  

 CH 3244 3273 3268 3274 3070  

b1  modes        

16b r 414 403 334 326 406 409 

11 CH 726 647 506 2266 i 703 522 

4 r 759 879 748 762 747  

17b CH 953 1145 958 1004 941  

5 CH 1007 1242 1096 1150 1007  

b2  modes        

6b r 658 617 534 784 654 548 

18b CH 1079 1126 982 2267 i 1069  

15 CH 1171 1184 1148 1180 1146  

3 CH 1380 1262 1353 1218 1227  

14 r 1402 1359 1406 1399 1355  

19b r 1475 1602 1440 1474 1437  

8b r 1622 1989 1496 1650 1574  

7b CH 3199 3244 3230 3253 3034  

20b CH 3236 3271 3245 3270 3079  

a2  modes        

16a r 382 496 197 338 380 317 

10a CH 906 909 788 934 884  

17a CH 998 1187 1065 1151 980  

a The normal mode is numbered according to Langseth and Lord98 and its description is given in 

terms of the ring (r) and bonds stretching (), out-of-plane deformations (), in-plane deformations 

(), in-plan ring deformation (), and non-planar ring deformations ().100 
b Equilibrium ground-state vibrational frequencies of neutral pyridine.96  
c Vibrational frequencies obtained from the MATI spectra.39  
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FIGURE CAPTIONS 

Figure 1.  

Schematic representation of pyridine showing the atomic numbering. 

 

Figure 2.  

Plots of the 7a1(N LP), 1a2(), 2b1(), and 5b2() Dyson orbitals for ionization of pyridine 

computed at the ADC(3)/cc-pVDZ level of theory, and the total electron density difference 

plots Δρ in the respective cationic states and the pyridine ground-state computed at the 

CCD/cc-pVTZ level of theory for two positions of the plot plane (coinciding with the 

molecular plane and elevated by 0.5Å above the molecular plane). The molecular orientation 

in the contour plots is chosen with N at the lowest vertex; red and blue contours indicate 

increase and decrease of density, respectively. 

 

Figure 3. 

Contour plots of pyridine total electron density differences showing the effects of orbital 

relaxation and electron correlation for ionization from the 7a1(N LP) and 5b2() orbitals. The 

differences showing the relaxation effect were produced by subtracting the density obtained in 

the HF/cc-pVTZ calculations for the 1A1 ground-state from the densities obtained in the 

ROH/cc-pVTZ calculations for the cationic states. The differences showing electron 

correlation effects were obtained by subtracting the UHF/cc-pVTZ densities from the 

densities obtained in the CCD/cc-pVTZ calculations based on the UHF orbitals. The plot 

plane coincides with the molecular plane with the molecule orientated to place the N atom at 

the lowest vertex; the red and blue contours indicate increase and decrease of density, 

respectively. 

 

Figure 4. 

(a) The valence shell photoelectron spectrum of pyridine recorded at a photon energy of 80 

eV and at θ = 0°. (b) The theoretical photoelectron spectrum of pyridine obtained using the 

ADC(3) method. 
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Figure 5. 

The valence shell photoelectron spectrum of pyridine recorded at a photon energy of 40 eV 

for θ = 0° and θ = 90°. 

 

Figure 6. 

The experimental and theoretical (CMS-Xphotoelectron anisotropy parameters of pyridine 

associated with the 7a1(σN LP), 1a2(π), 2b1(π) and 5b2(σ) orbitals, corresponding to binding 

energy regions 1 – 3 specified in Table I. 

 

Figure 7. 

The experimental and theoretical (CMS-Xphotoionization partial cross-sections of pyridine 

associated with the 7a1(σN LP), 1a2(π), 2b1(π) and 5b2(σ) orbitals, corresponding to binding 

energy regions 1 – 3 specified in Table I. The experimental partial cross-sections have been 

obtained by combining the measured branching ratios with the absolute photoabsorption 

cross-section and the photoionization quantum efficiency determined by Tixier et al.93 See 

text for details. 
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