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Abstract

This paper proposes a procedure to estimate the number of common factors k in a static approx-

imate factor model. The building block of the analysis is the fact that the first k eigenvalues of the

covariance matrix of the data diverge, whilst the others stay bounded. On the grounds of this, we

propose a test for the null that the i -th eigenvalue diverges, using a randomised test statistic based

directly on the estimated eigenvalue. The test only requires minimal assumptions on the data, and no
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employed in a sequential procedure to determine k.
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1 Introduction

This paper proposes a procedure to determine the number of factors in a static approximate factor

model, viz.

Xi ,t =φ′
i Ft +ui ,t , 1 ≤ i ≤ N ,1 ≤ t ≤ T, (1)

where φi and Ft are column vectors of finite dimension k.

Starting from the seminal contribution by Chamberlain and Rothschild (1983), inference on (1) has

been the subject of several studies. In recent years, many contributions have focused on the case of

panel data, where both N and T are large - see, inter alia, the review of Bai and Ng (2008). The first step

in the analysis of (1) is, arguably, the determination of the number of common factors, k. To this end,

the literature has developed numerous techniques, which are usually based on a well-established fact:

the first k eigenvalues of the covariance matrix of the Xi ,t s diverge to infinity whereas the other ones

stay bounded. Two main approaches have been developed. The first one is based on finding a threshold

for the eigenvalues of the covariance matrix of the Xi ,t s, which can be used to decide which eigenvalues

are finite and which ones are not; the information criteria proposed by Bai and Ng (2002) belong in this

category. The second possible approach is based on computing the ratio of adjacent eigenvalues, again

exploiting the fact that such ratio eventually diverges: this is the rationale employed by Onatski (2009,

2012) and Ahn and Horenstein (2013), inter alia. Neither approach is free from problems. Typically,

eigenvalue thresholding requires the choice of a penalty function, as is customary in the context of in-

formation criteria (see Bai and Ng, 2002). However, such choice is not unique, which is bound to affect at

least the finite sample properties of the estimated k; note however that, building on an idea in Hallin and

Liska (2007), Alessi, Barigozzi and Capasso (2010) propose a robust, data-driven methodology to tune

the choice of the penalty function which works very well in simulations. Moreover, existing techniques

also require comparing the goodness of fit of different versions of (1), for 1 ≤ k ≤ kmax; results seem to

be rather sensitive to the specification of the upper bound kmax for at least some of the proposed ap-

proaches (see the Monte Carlo evidence in Ahn and Horenstein, 2013). On the other hand, the use of the

eigenvalues ratio ameliorates such arbitrariness; nonetheless, existing contributions make extensive use

of (large) random matrix theory (see Bai, 1999, for a complete and insightful review), which requires sev-

eral constraints on the form and amount of serial and cross sectional dependence. Moreover, a standard

requirement is that the sample sizes N and T are not too different from each other, usually assuming

that, as min{N ,T } →∞, N
T → c ∈ (0,∞).

Hypotheses of interest and testing approach
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Let X t ≡
[

X1,t , ..., XN ,t
]′: in this paper, we propose a test for the null that the p-th eigenvalue (say

λ(p)) of E
(
X t X ′

t

)
diverges to positive infinity, versus the alternative that it is bounded:

 H0 :λ(p) →∞
HA :λ(p) <∞

. (2)

The tests are then employed as part of a sequential procedure to determine k.

From a methodological point of view, the test statistic employed in this paper mimics the behaviour

of λ(p) - that is, it diverges to positive infinity under H0. Owing to such lack of randomness under the

null, we base our tests on randomising the test statistic. This approach is not new, per se, in the litera-

ture: the original idea dates back to Pearson (1950), and it has been recently introduced in econometrics

- see e.g. Corradi and Swanson (2006). In particular, in this paper we follow the approach used in Cor-

radi and Swanson (2006), where randomisation is employed in conjunction with sample conditioning:

randomness is added to the basic statistic, and then the asymptotics is derived conditional on the sam-

ple, showing its validity for all samples, save for a zero measure set. Therefore, as explained in Corradi

and Swanson (2006), the notion of size is different from the standard one: classically, the level α of a test

means that, if a researcher applies the test B times and the null is valid, then (s)he will reject the null

with frequency α - that is, (s)he will be wrong αB times. Conversely, in this context α means that out of

J researchers who apply the test, αJ of them will reject the null when this is true. Still, in our paper we

obtain a test statistic which, for a given level α, rejects the null with probability α (when true), and with

probability 1 (when false).

Although randomisation is still not widely employed in econometrics, it has several advantages in

this context. To begin with, it affords to actually test for the existence of common factors, rather than

being a diagnostics. Also, no restrictions are required on the relative rate of divergence of N and T

as they pass to infinity: the number of factors can be estimated for any values of N and T as long as

min{N ,T } →∞. This feature makes the test applicable in virtually any context, and it may be helpful

in several applications where one dimension is much larger than the other - examples include such

diverse fields as accounting (where data are often recorded on an annual basis and are available for many

companies, but for a limited number of years), finance (where e.g. data on hedge funds performance

are available for thousands of funds, which are live for a relatively short span), microeconometrics with

firm level data, marketing studies (where revealed preferences are often recorded over a limited period

of time for many consumers), and genomics (where usually thousands of genomes are observed for tens

of patients). Finally, it is important to note that the approach adopted in this paper relies on a well-
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known asymptotic representation result: on account of (1), the process Xi ,t is decomposed into two

subspaces, the one spanned by (eigenvectors associated with) the spiked eigenvalues of the covarianc

ematrix of the data, and its orthogonal complement. Thus, the observations decompose into the sum

of their projections onto these subspaces: such decomposition always exists and is unique (we refer to

the comments in Hallin and Lippi, 2013). As a consequence, the theory in this paper uses assumptions

spelt out directly on the observable quantities Xi ,t , rather than on Ft or ui ,t .

The remainder of the paper is organised as follows. In Section 2, we spell out the main assumptions

and derive preliminary results. The test and its properties (null distribution and consistency) are dis-

cussed in Section 3; in particular, in Section 3.3, we discuss the sequential procedure to determine k.

Section 4 contains a set of simulations to verify the properties of the test for no factor structure, and of

the whole procedure to determine k. Section 5 concludes. Extensions to the case of weak factors and

proofs are in the Supplemental Material to the paper (Trapani, 2016).

NOTATION We denote the ordinary limits as “→”, and use the symbol “³” to indicate that two se-

quences, say aN ,T and bN ,T , have the same order of magnitude, i.e. aN ,T = Op
(
bN ,T

)
and bN ,T =

Op
(
aN ,T

)
. We use “a.s.” as short-hand for “almost surely”, and “≡” for definitional equality. The no-

tation M (and, where needed, M ′, M ′′, etc...) denotes a finite, generic constant that may differ from line

to line. Other relevant notation is introduced in the remainder of the paper.

2 Assumptions and preliminary theory

Consider the matrix form of (1)

X t =ΦFt +ut ; (3)

in (3), ut ≡
[
u1,t , ...,uN ,t

]′ andΦ is an N ×k matrix whose i -th row isφ′
i . Henceforth, we assume, without

loss of generality, that the data have mean zero, and also that common factors and idiosyncratic errors

are orthogonal, as is typical in this literature.

Assumption 1. It holds that (i) E
(
Xi ,t

)= 0 for 1 ≤ i ≤ N and 1 ≤ t ≤ T ; (ii) E
(
F j ,t u′

i ,t

)
= 0 for 1 ≤ j ≤ k,

1 ≤ i ≤ N and 1 ≤ t ≤ T .

Assumption 1(ii) is actually a consequence of the asymptotic representation in (1). By Assumption 1,

T −1 ∑T
t=1 E

(
X t X ′

t

)≡ΣX =ΦΣFΦ
′ +Σu , having definedΣF ≡ T −1 ∑T

t=1 E
(
Ft F ′

t

)
andΣu ≡ T −1 ∑T

t=1 E
(
ut u′

t

)
.

The following notation will also be used extensively henceforth: the p-th largest eigenvalue of ΣX is

denoted as λ(p); the p-th eigenvalue ofΦΣFΦ
′ as γ(p); and, finally, the p-th eigenvalue of Σu as ω(p).
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Assumption 2. It holds that (i) γ(p) = mp N for 1 ≤ p ≤ k and some mp > 0; (ii) ω(p) ≤ M for all

1 ≤ p ≤ N ; (iii) N−1 ∑N
i=1γ

(p) ≤ M for all N .

Assumption 2 adds some structure to the spectra of ΦΣFΦ
′ and Σu , and it is similar, in spirit, to

Assumptions 4, 5 and 8 in Forni, Giannone, Lippi and Reichlin (2009). As far as the ω(p)s are concerned,

we require that they all be finite; however, they do not need to be distinct or bounded away from zero,

and some or all of them could indeed be zero.

As far as the non-zero γ(p)s are concerned, part (i) of the assumption requires that they diverge to

positive infinity, as N → ∞, at a rate O (N ). This assumption is typical of factor analysis: e.g. Bai and

Ng (2002) require that, in addition to ΣF being positive definite, N−1Φ′Φ tends to a positive definite

matrix, which is tantamount to assuming that γ(p) passes to infinity at a rate O (N ). Such behaviour of

the common factors is often referred to, in the literature, as having “strong” or “pervasive” factors (see

Onatski, 2015, in particular Assumption 2 and the discussion thereafter). However, weaker factors also

could be considered, where γ(p) is allowed to diverge at a rate slower than N . For the time being, and in

order to make the presentation of results easier to follow, we focus on the case of strong factors only; in

the Supplement (Trapani, 2016), we investigate the more general case of γ(p) = mp N 1−νp with νp ∈ [0,1).

Finally, note that Assumption 2 does not require that the λ(p)s be distinct, or that the diverging

eigenvalues be well-separated, which are typical requirement in this literature (see e.g. Wang and Fan,

2017, and also Forni, Giannone, Lippi and Reichlin, 2009).

The following well-known result characterizes the eigenvalues of ΣX .

Lemma 1 Let c(p) be a set of nonnegative finite numbers, which are strictly positive for p ≤ k. Then,

under Assumptions 1 and 2(i)-(ii), it holds that, as N →∞


λ(p)
N → c(p) for 1 ≤ p ≤ k

λ(p) → c(p) for k +1 ≤ p ≤ N
. (4)

Further, define

λN ≡ 1

N

N∑
p=1

λ(p); (5)

under Assumptions 1 and 2, it holds that

 limsupN→∞λN =λsup <∞
liminfN→∞λN =λinf > 0

. (6)
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According to Lemma 1, λ(p) either diverges at a rate O (N ), or it converges to a finite constant (which

may well be equal to zero) according as p ≤ k or not. Basically, the behaviour of the eigenvalues of ΣX as

N passes to infinity is the same as that of the eigenvalues ofΦΣFΦ
′.

2.1 Estimation of λ(p)

Consider Σ̂X ≡ 1
T

∑T
t=1 X t X ′

t , and let λ̂(p) denote the p-th largest eigenvalue of Σ̂X . In order to derive the

asymptotics of λ̂(p), we need the following assumption.

Assumption 3. It holds that (i) E
∣∣Xi ,t

∣∣4+ε ≤ M for 1 ≤ i ≤ N , 1 ≤ t ≤ T and some ε> 0; (ii) E
[

max1≤t̃≤T

∣∣∣∑t̃
t=1 Xh,t X j ,t

−E
(
Xh,t X j ,t

)∣∣2
]
≤ MT for 1 ≤ h, j ≤ N .

Assumption 3(ii) is a high-level condition which deserves more comments. In essence, it poses a

constraint on the amount of serial correlation that one can have in the process
{

Xh,t X j ,t
}T

t=1 - and there-

fore, albeit indirectly, in Xi ,t . According to the assumption, Xi ,t does not need to be independent across

t , which is a requirement in “classical” Random Matrix Theory (see Bai, 1999). On the other hand, simi-

lar restrictions to Assumption 3(ii) are customarily employed in the literature on factor models (see e.g.

Bai and Ng, 2002; Forni, Giannone, Lippi and Reichlin, 2009; and Onatski, 2015). However, Assumption

3(ii) differs from the assumptions typically made in this literature since it restricts the amount of serial

dependence directly in the Xi ,t s, as opposed to considering the unobservable quantities Ft and ui ,t (see

however Forni, Giannone, Lippi and Reichlin, 2009). In this respect, Assumption 3(ii), on account of its

involving observable quantities only, should be easier to understand and verify.

Two examples are reported below to illustrate how Assumption 3(ii) can be verified from more prim-

itive conditions.

EXAMPLE 1. Assumption 3(ii) holds if the data are independent. Indeed, assuming that
{

Xh,t , X j ,t
}

is

independent across t , Burkholder’s inequality (see Lin and Bai, 2010) and Assumption 3(i) yield E
∣∣∑T

t=1 Xh,t X j ,t
∣∣2+ε

≤ MT 1+ε/2. Theorem B in Serfling (1970, p. 1231) thus entails that Assumption 3(ii) holds.

EXAMPLE 2. To consider more general cases of (weak) dependence, assume that Xi ,t is a stationary

process with the representation Xi ,t = fi
(
εi ,t ,εi ,t−1, ...

)
for some measurable function fi :R∞ →R and an

i.i.d. sequence
{
εi ,t

}
. We say that Xi ,t is L2-NED (Near Epoch Dependent; see Ling, 2007) of size %i ≥ 3

2

on the basis
{
εi ,t

}
if ∥∥Xi ,t −E

(
Xi ,t |F s,t

i

)∥∥
2
≤ ci ,t s−%i , (7)

where F s,t
i is the σ-field generated by

{
εi ,t ,εi ,t−1, ...,εi ,t−s

}
, ‖·‖2 denotes the L2-norm and ci ,t is a se-

quence of non-negative numbers. Condition (7) is very popular when considering non-linear trans-

6



formations, and it holds for a wide variety of processes, including linear processes, ARCH and GARCH

processes and data from dynamical systems and Volterra series (see Davidson, 2002, inter alia). By As-

sumption 3(i), it follows that Xh,t X j ,t is L2-NED of size 1
2 (see Example 17.17 in Davidson, 1994, p. 273).

Thus, by Theorem 17.5 in Davidson (1994, p. 204), Xh,t X j ,t is an L2-mixingale of size 1
2 ; hence, Assump-

tion 3(ii) follows from McLeish’s maximal inequality (McLeish, 1975).

The rate of convergence of λ̂(p) is in the following lemma.

Lemma 2 Under Assumptions 1 and 3, it holds that

λ̂(p) =λ(p) +Oa.s.

[
Np

T

(
ln1+ε N

)(
ln

1+ε
2 T

)]
, (8)

for 1 ≤ p ≤ min{N ,T }, where ε> 0.

Lemma 2 contains a strong rate for λ̂(p)−λ(p), and it can be viewed as the sample counterpart to the

population result in Lemma 1. The rate is valid for any combination of N and T , and for all estimated

eigenvalues. Further, the lemma does not require Assumption 2, and therefore it does not require any

assumptions on the λ(p)s: these do not need to be distinct or (when they diverge) well-separated; some

of the eigenvalues may be equal to zero; and the eigenvalues that diverge do not need to do it at any

special rate. In essence, the lemma states that eigenvalues are estimated with an error which depends on

the dimensions of the dataset, N and T ; in light of (8), the estimation error is quite large. It is, however,

comparatively small for 1 ≤ p ≤ k, since λ(p) is of order O (N ). Conversely, the estimation error is very

large when k +1 ≤ p ≤ min{N ,T }, compared to λ(p), which is bounded. As shown in Section 3, the rates

in (8), whilst not necessarily sharp for all estimated eigenvalues, afford the construction of a test statistic

for (2).

Albeit only incidental to the main arguments in the paper, the result in (8) can be compared with

related findings in the literature. In the context of “classical” Random Matrix Theory, it has been shown

that, under the assumptions that Xi ,t is i.i.d. across i and t and that N
T → c ∈ (0,∞), it holds that

λ̂(p) −λ(p) = Oa.s. (1) - see Bai and Yin (1993). Lemma 2 illustrates what happens in the presence of

common factors, which introduce a spiked eigenvalue structure, with some of the λ(p) diverging. Us-

ing different assumptions (chiefly, N > T and a restriction on the rate at which λ(p) passes to infinity),

Wang and Fan (2017; see Theorem 3.1) derive the limiting distribution of λ̂(p) for 1 ≤ p ≤ k, showing

asymptotic normality at a rate Np
T

. This suggests that the strong rate in (8) should be optimal, modulo

the logarithmic terms, at least for 1 ≤ p ≤ k; note however that Lemma 2 holds for all eigenvalues, not

only for the spiked ones. Similarly, in a different context and with slightly more stringent assumptions
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on the eigenvalues, Forni, Giannone, Lippi and Reichlin (2009, see Lemma 2(a)) show that λ̂(p) −λ(p) =
OP

(
max

{
1, Np

T

})
. Lemma 2 (which is an almost sure result) yields essentially the same rate when N and

T are of comparable magnitude.

3 The test

In this section, we define the test statistic and study its asymptotics under the null and the alternative:

 H0 :λ(p) = mp N

HA :λ(p) = mp <∞
,

for some 0 < mp <∞ and finite.

3.1 The test statistic

Let β≡ ln N
lnT , and define δ ∈ [0,1) such that

δ

 > 0

> 1− 1
2β

according as
β≤ 1

2

β> 1
2

. (9)

Finally, consider the following estimator of λN

λ̂N ≡ 1

N

N∑
p=1

λ̂(p). (10)

We are now ready to introduce the test. Define

ϕ(p) ≡ exp

{
N−δ λ̂(p)

λ̂N

}
. (11)

Under the null that λ(p) = mp N , ϕ(p) →∞ at a rate exp
{

N 1−δ}; conversely, ϕ(p) converges to a finite

number under the alternative that λ(p) < ∞. We now provide a full-fledged explanation of the latter

statement. In order to understand the need for rescaling by N−δ, note that under the alternative it is

required that ϕ(p) = oa.s. (1). In essence, this follows as long as N−δλ̂(p) = oa.s. (1); in turn, this follows

if, on the right-hand side of N−δλ̂(p) = N−δλ(p) +N−δ
(
λ̂(p) −λ(p)

)
, both terms are oa.s. (1). The term

N−δλ(p) is oa.s. (1) by assumption. As far as N−δ
(
λ̂(p) −λ(p)

)
is concerned, this should also be oa.s. (1).

When Np
T
→ 0, this is immediately implied by Lemma 2. When β > 1

2 , we have N−δ Np
T

ln
1+ε

2 T ln1+ε N
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= N 1−δT − 1
2 ln

1+ε
2 T ln1+ε N = β1+εT − 1

2 +β(1−δ) ln
3
2 (1+ε) T ; on account of (9), it holds that − 1

2 +β (1−δ) < 0,

which yields the desired result. Hence, under the alternative, it follows that ϕ(p) = oa.s. (1). Note that,

under the null, N−δλ̂(p) diverges, given that N−δλ(p) = mp N 1−δ and δ < 1 by construction. Finally,

we point out that λ̂N makes the argument of the exponential scale-free; in principle, any statistic that

ensures scale invariance may also be used.

Given that ϕ(p) →∞ under the null, we cannot use it directly and we instead propose a randomised

version of it. We present the construction of the test statistic as a four step algorithm.

Step 1 Generate an artificial sample
{
ξ

(p)
j

}R

j=1
as i.i.d. N (0,1), and define the sequence

√
ϕ(p) × ξ(p)

j ,

1 ≤ j ≤ R;

Step 2 Define the sample
{
ζ

(p)
j (u)

}R

j=1
as

ζ
(p)
j (u) ≡ I

[√
ϕ(p) ×ξ(p)

j ≤ u

]
, (12)

with u extracted from a distribution F (u) with support U ⊂ R\{0};

Step 3 Compute

ϑ(p) (u) ≡ 2p
R

R∑
j=1

[
ζ

(p)
j (u)− 1

2

]
; (13)

Step 4 Define the test statistic

Θ(p) ≡
∫
U

[
ϑ(p) (u)

]2
dF (u) . (14)

We give a heuristic preview of how the test statistic works. Under the null, ϕ(p) passes to infinity, so

that the variance of
√
ϕ(p) × ξ(p)

j should be ∞; consequently, the i.i.d. sequence
{
ζ

(p)
j (u)

}R

j=1
follows

a Bernoulli distribution with E
[
ζ

(p)
j (u)

]
= 1

2 . Therefore, in (13) a CLT should hold whereby, as R →∞,

ϑ(p) (u) should be N (0,1). Conversely, under the alternative, ϕ(p) should remain finite, and therefore

it can be expected that, for any u 6= 0, E
[
ζ

(p)
j (u)

]
6= 1

2 . Thus, in (13), there is a sum of i.i.d. random

variables with nonzero mean, which diverges to positive infinity at a speed
p

R.

3.2 Asymptotic properties

We now discuss the null distribution and the power versus HA : λ(p) ≤ mp < ∞. Henceforth, we fre-

quently employ the following notation: P∗ is the probability law of
{
ζ

(p)
j (u)

}R

j=1
conditional on the

sample, and “
D∗
→” denotes convergence in distribution according to P∗.
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The following theorem characterizes the null distribution ofΘ(p).

Theorem 1 Let Assumptions 1-3 hold. Then, under H0 :λ(p) = mp N , as min{N ,T,R} →∞ with

R exp
{
−εN 1−δ

}
→ 0, (15)

for some 0 < ε< mp

λN
, it holds thatΘ(p) D∗

→ χ2
1 a.s.-P∗ conditionally on the sample.

Theorem 1 states that, under the null, Θ(p) follows a chi-squared distribution with one degree of

freedom; the result holds for all samples, save for a zero measure set, and no restrictions are needed on

the relative rate of divergence of N and T as they pass to infinity.

In order for Theorem 1 to hold, it is necessary that R →∞, which is natural since equation (13) is an

application of the CLT; equation (15) provides an upper bound for R.

Define cα such that, as min{N ,T,R} → ∞, it holds that P
[
Θ(p) ≤ cα

]
= α under H0. The following

theorem states that the test is consistent versus the alternative HA :λ(p) ≤ mp .

Theorem 2 Let Assumptions 1-3 hold. Under HA , as min{N ,T,R} → ∞, it holds that P
[
Θ(p) > cα

]
= 1

a.s.-P∗ conditionally on the sample.

In the proofs of Theorems 1 and 2, we show that ϑ(p) (u) has a non-centrality parameter asymptoti-

cally equal to

2p
R

R∑
j=1

|u|∫
0

1√
2πϕ(p)

exp

{
−1

2

t 2

ϕ(p)

}
d t =

√
2R

π

 |u|√
ϕ(p)

− 1

6
ũ3

 ,

where ũ ∈
(
0, |u|p

ϕ(p)

)
. Under the null, this term should go to zero, whence (15). Under the alternative,

the term is bounded from below by

√
2R

π

|u|√
ϕ(p)

[
1− 1

6

u2

ϕ(p)

]
; (16)

this expression has a local maximum at |u| =
√

2ϕ(p), and if δ > 0, then ϕ(p) converges to 1; these

heuristic considerations point towards choosing u =±p2.

3.3 Determining k

In this section we study how the individual tests for H0 : λ(p) →∞ can be used, in a sequential proce-

dure, in order to determine the number of common factors. The estimator of k (say k̂) is the output of
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the following algorithm:

Step 1 Run the test for H0 : λ(1) =∞ based on Θ(1). If the null is rejected, set k̂ = 0 and stop, otherwise

go to the next step.

Step 2 Starting from p = 1, run the test for H0 :λ(p+1) =∞ based onΘ(p+1), constructed using an artifi-

cial sample
{
ξ

(p+1)
j

}R

j=1
generated independently of

{
ξ(1)

j

}R

j=1
, ...,

{
ξ

(p)
j

}R

j=1
. If the null is rejected,

set k̂ = p and stop; otherwise repeat the step until the null is rejected (or until a pre-specified

maximum number, say kmax, is reached).

As can be expected, in this context a pivotal role is played by the level of the individual tests,α, which

should be chosen so that k̂ is a good approximation of k, at least asymptotically.

Theorem 3 Let Assumptions 1-3 hold, and define the level of each individual test as α = α (N ,T ). As

min{N ,R,T } →∞ under (15), if kmax ≥ k and α (N ,T ) → 0, then it holds that P
[
k̂ = k

]= 1 a.s.-P∗ condi-

tionally on the sample.

Theorem 3 states that k̂ is consistent, as long as the level α of the individual tests is chosen so as to

converge to zero: no specific rates are required (see also Kapetanios, 2010). Further, the theorem does

not require any special choice of kmax: as long as this value is “large enough” (that is, as long as kmax ≥ k),

the theorem holds. It is worth noting that usually the literature uses the Schwert’s rule (Schwert, 1989;

see also the comments in Bai and Ng, 2002, p. 203), although other choices are also possible. Indeed,

simulations show that the estimation procedure is not sensitive to the choice of kmax.

4 Simulations

We evaluate the performance of the sequential procedure to determine k, using synthetic data. Data are

generated as

Xi ,t =
k∑

j=1
λi , j F j ,t +

p
θui ,t , (17)

where F j ,t ∼ i .i .d . N (0,1) for 1 ≤ t ≤ T and 1 ≤ j ≤ k; similarly, λi , j ∼ i .i .d . N (1,1) for 1 ≤ i ≤ N and

1 ≤ j ≤ k. The design in (17) is very similar to Bai and Ng (2002) and Ahn and Horenstein (2013). The

idiosyncratic error ui ,t is generated as

ui ,t =
√

1−ρ2

1+2bC
ei ,t , (18)

ei ,t = ρei ,t−1 + vi ,t +b

(
i−1∑

h=max{i−C ,1}
vh,t +

min{i+C ,N }∑
h=i+1

vh,t

)
. (19)
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In (19), vi ,t ∼ i .i .d . N (0,1) for 1 ≤ i ≤ N . The coefficient ρ is used to introduce serial dependence in

the error term ui ,t ; similarly, the component b
(∑i−1

h=max{i−C ,1} vh,t +
∑max{i+C ,N }

h=i+1 vh,t

)
in (19) introduces

cross-sectional dependence among the ui ,t s. By (18), for most of the units it holds that V ar
(
ui ,t

) = 1;

thus, in (17), θ−1 represents the signal-to-noise ratio of the common factors.

Data are generated according to three different schemes, which correspond to different levels of

serial and cross-sectional correlation:

(a) i.i.d. data: corresponding to ρ = b =C = 0;

(b) serially dependent, but cross-sectionally uncorrelated data: ρ = 0.5, b =C = 0;

(c) serially and cross-sectionally correlated data: ρ = 0.5, b = 0.5 and C = max
{
10, N

20

}
.

Case (c) is arguably the most interesting (and problematic) one: the presence of strong cross-sectional

dependence in the idiosyncratic term ui ,t is observationally equivalent to having a weak common factor

whose associated eigenvalue diverges at a rate N 1−ν for ν close to 1.

We report experiments for several combinations of (N ,T ) ∈ {(25,50,100,200)× (25,50,100,200)}. The

cases where all, or most, estimators are uniformly good are not reported to save space.

The test statisticsΘ(p) are specified as follows. Based on (9) we set

δ=

 0.01

1.01×
(
1− 1

2β

) according as
β≤ 1

2

β> 1
2

. (20)

The estimated eigenvalues are rescaled by λ̂N as suggested in (11) when N ≤ T ; this choice also works

for N > T , but in this case better results are found using

ϕ̃(p) ≡ exp

N−δ λ̂(p)

λ̂N ,(p)

 , (21)

with λ̂N ,(p) ≡ N−1 ∑N
j=p λ̂

( j). We use u = ±p2, chosen with equal weight. Finally, based on Theorem

3, the level of each test should be chosen so as to go to zero as min{N ,T } → ∞; we have employed

0.01/min{N ,T }, which is in the spirit of Bonferroni-type approaches. As a general comment, this (con-

servative) choice may result in overstating rather than understating k, which could be more desirable.

The procedure suggested here is compared against the methodologies suggested in Bai and Ng (2002;

referred to as IC1, IC2, PC1, PC2 below), considering also the refinements developed by Alessi, Barigozzi
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and Capasso (2010); Onatski (2010; referred to as ON), and Ahn and Horenstein (2013; referred to as ER

and GR):

IC 1 = arg min
0≤k≤kmax

[
lnV (k)+C0k

N +T

N T
ln

(
N T

N +T

)]
IC 2 = arg min

0≤k≤kmax

[
lnV (k)+C0k

N +T

N T
ln(min{N ,T })

]
PC 1 = arg min

0≤k≤kmax

[
V (k)+C0σ̂

2k
N +T

N T
ln

(
N T

N +T

)]
PC 2 = arg min

0≤k≤kmax

[
V (k)+C0σ̂

2k
N +T

N T
ln(min{N ,T })

]
ON = arg max

0≤k≤kmax

[
k|λ̂(k) > (

1+N−1/3) û
]

ER = arg max
0≤k≤kmax

λ̂(k)

λ̂(k+1)

GR = arg max
0≤k≤kmax

ln
[
1+ λ̂(k)/v (k)

]
ln

[
1+ λ̂(k+1)/v (k +1)

]
where

V (k) = 1

N T

N∑
i=1

T∑
t=1

(
Xi ,t − φ̂′

i F̂t
)2

,

with φ̂i and F̂t the estimators of φi and Ft studied in Bai (2003) under exactly k factors. We define

σ̂2 = V (kmax), û = 2.7λ̂(kmax+1) − 1.7λ̂(2kmax+1) and v (k) = ∑min{N ,T }
j=k+1 λ̂( j). In their contribution, Alessi,

Barigozzi and Capasso (2010) recommend to employ different values of the tuning constant C0, and

to evaluate the estimated number of factors over a whole range of values of C0, thereby selecting the

optimal one, identified as the value which yields a stable estimate of k. We implemented this procedure

by searching for the optimal value of C0 over the grid [0,13], using intervals of width 0.005; results are

reported for PC 1, which was the best performing criterion across all exercises. We do not report the

criteria proposed by Bai and Ng (2002) since the results are usually worse than those obtained using the

refinement proposed by Alessi, Barigozzi and Capasso (2010); they are anyway reported in the tables in

the Supplement (Trapani, 2017).

We consider two different experiments.

Experiment I: (testing for) no factor structure

We start by considering the case k = 0 - that is, the case of no factor structure. In this context, scheme

(c) is particularly interesting, since it allows for the existence of cross sectional correlation among the

data, but not due to common factors. This part of the analysis is related to the papers by Castagnetti,

Rossi and Trapani (2015a, 2015b), who propose tests for the null of no factor structures (see also the
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discussion in Bai, 2009). All the criteria described above are able, in principle, to determine whether

k = 0; specifically, the ones designed by Ahn and Horenstein (2013) require an initialisation which we

base on λ̂(0) = max
{

N−1/2,T −1/2
}
. As far as our test is concerned, we recommend that the first step in

the analysis should be to carry out a test, at level α (we choose α = 0.05), for H0 : λ(1) =∞ versus HA :

λ(1) <∞; upon rejecting the null, the conclusion can be reached that k = 0; conversely, if the null is not

rejected, then the procedure described in Section 3.3 should be employed, thus casting the estimation

of k into a two-stage procedure. We implement the test with the (very simple) specification R = 200,

which works well for all cases considered.

[Insert Figure 1 somewhere here]

The results in Figure 1 show that the test proposed here has excellent power for all cases considered,

being able to detect whether k = 0 or not. Note that in the worst case scenario, corresponding to serial

and cross sectional dependence, with (N ,T ) = (25,100), the power is anyway in the region of 95%. In-

deed, when there is cross sectional dependence, the test proposed in this paper clearly dominates all

other approaches.

All other criteria also work very well when there is neither serial nor cross sectional dependence -

a possible exception, shown in the Supplement (Trapani, 2017), are the criteria developed by Bai and

Ng (2002), but the correction by Alessi, Barigozzi and Capasso (2010) dramatically improves their per-

formance, especially when N ≥ 50. In presence of serial dependence, the performance of other criteria

is also very good, at least in moderate to large samples: in particular, the tests developed by Ahn and

Horenstein (2013) works extremely well when max{N ,T } ≥ 100, whereas the test developed by Onatski

(2010) yields accurate results as long as T ≥ 100. All criteria, however, systematically overstate the num-

ber of factors in presence of cross-sectional dependence, thereby leading to think that there is a factor

structure in the data, when in fact this is absent.

As a final note, we tried the same experiment setting θ = 2; results for k̂ are the same as for θ = 1, and

thus we do not report them.

Experiment II: determining the number of (strong) common factors

We evaluate the procedure to determine k considering the cases k = 1,3 and 5. In the first set of

results (Figure 2), we set θ = 1. As far as the implementation of the test is concerned, the test works very

well when using R = 400 for all cases considered; indeed, unreported experiments show that the less

costly choice R = 200 also works well, at least for N ≥ 50.
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[Insert Figure 2 somewhere here]

We do not report results corresponding to scheme (a) - no serial or cross sectional dependence -

since all estimators perform very well. Figure 2 also shows that results are good all across the board

when there is only serial dependence; in this case, there is a slight worsening of IC 1, IC 2, PC 1 and PC 2

(see the Supplement), which is however limited to when either dimension (N or T ) is very small - the

impact of small T seems more acute in such case, although the refinement proposed by Alessi, Barigozzi

and Capasso (2010) makes these criteria as good as the other ones in this case. Conversely, k̂ and both

ER and GR perform very well in this case too. Remarkably, k̂ is the best criterion when N is small - see

the cases (N ,T ) = (25,100) and (50,50) - and it k̂ also works well in the opposite case (N ,T ) = (200,25),

although it tends to understate the true number of factors when k = 5. However, when (N ,T ) = (200,50),

k̂ becomes very good even when k = 5, which seems to suggest that k̂ performs well for a wide spectrum

of values of N , especially when T ≥ 50.

When there is cross sectional dependence, conclusions become more mixed; the only exception is

the criteria developed by Bai and Ng (2002; see the tables in the Supplement), which are systematically

wrong and tend to overstate k in all possible cases, irrespective of the values of (N ,T ) and of the true k.

However, when tuning the penalty function as suggested in Alessi, Barigozzi and Capasso (2010), even

these estimators become very reliable, especially when T ≥ 50. As far as the other estimators are con-

cerned, there is no clear winner among the methodologies employed: k̂ fares better than the other crite-

ria when N is quite small - see the cases (N ,T ) = (25,100), and (50,50), especially under cross sectional

dependence and k ≤ 3. When k = 5 and T is small, k̂ has a tendency to understate k; indeed, all estima-

tors fare worse as k increases - one interesting exception is the criterion developed by Onatski (2010),

whose performance actually improves as k increases (considering especially the cases where N > T ).

Finally, the criteria developed by Ahn and Horenstein (2013) also work well across all cases considered,

with the same exceptions detailed above.

We now turn to the case of a weaker factor structure, which we simulate by using the same design as

above but with θ = 2.

[Insert Figure 3 somewhere here]

The figure shows that results are far less clear cut in this case, especially when there is cross sectional

dependence: no technique dominantly outperforms the other ones. As a general comment, k̂ is bet-

ter when k is small, but its performance deteriorates when k increases; similar results are found when
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considering the techniques developed by Ahn and Horenstein (2013); similarly to the results in Figure

2, however, the estimator developed by Onatski (2009) works better for large values of k. The estimator

developed by Alessi, Barigozzi and Capasso (2010) performs also very well, as long as N is sufficiently

large (at least for the case of cross sectional dependence). As far as k̂ is concerned, note that it breaks

down, for large values of k, when T is small - the case (N ,T ) = (200,25) is exemplary in this respect.

However, when T increases the estimator improves rapidly - see the case (N ,T ) = (200,50).

5 Conclusions

We develop a procedure to estimate the number of common factors in a stationary panel factor model.

As is typical in this literature, we exploit the fact that the first k eigenvalues of the data covariance matrix

diverge as N → ∞, whilst the other ones stay bounded. We therefore derive a test statistic, based on

sample eigenvalues, which diverges or converges according as the corresponding population eigenvalue

is unbounded or finite. Given that, under H0, the test statistic diverges, we suggest a randomised tests

in order to recover standard normal inference. The individual tests are then used as part of a sequential

procedure to determine k. Results are derived under minimal assumptions; we show that the estimator

of k is robust to a wide variety of data features, including serial and cross sectional dependence, presence

of weak factors and several combinations of N and T . A noteworthy feature of the proposed test is that

it is very good at determining whether a factor structure does actually exist in the data or not. The setup

developed in this paper hinges on a static factor model; however, it would be desirable to consider also

dynamic factor models. A possible approach would be based on casting the dynamic factor model into

a static one, following the approach proposed by Bai and Ng (2007).

Finally, a word of warning on the meaning of the hypotheses tested for. As is natural to think, the

question whether an eigenvalue is infinity or not is clearly ill-posed (see Trzincka, 1986). However, the

test proposed here is a test on the divergence rate of estimated eigenvalues: despite the asymptotic

characterization of the test, the purpose of the analysis in this paper is to assess the magnitude of an

eigenvalue, rather than its actual behaviour at infinity, thus allowing a researcher to decide whether the

p-th eigenvalue of the covariance matrix of the data is “large enough” so that a model with at least p

common factors is a good characterization of the Xi ,t s or not.
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