
Journal: New Phytologist Article type: Modeling /Theory

OpenSimRoot: Widening the scope and application of root architectural models

Postma, Johannes A.1, Kuppe, Christian1 , Owen, Markus R.2,3, Mellor, Nathan3,4, Griffiths,

Marcus3,4, Bennett, Malcolm J.3,4, Lynch Jonathan P.3,4,5, Watt, Michelle 1

1) Plant Sciences, Institute of Bio and Geosciences 2, Forschungszentrum Jülich, Wilhelm-Johnen

Straße 52425 Jülich, Germany

2) Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of

Nottingham, Nottingham, NG7 2RD, UK

3) Centre for Plant Integrative Biology, University of Nottingham, Nottingham, LE12 5RD, UK

4) Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Nottingham,

LE12 5RD, UK

5) Department of Plant Science, Pennsylvania State University, 102 Tyson Building, University

Park, PA 16802, USA

Author for correspondence: Johannes A. Postma, email: j.postma@fz-juelich.de, telephone:

+49(0)2461614333, twitter: @j_a_postma

Total word count: (regular research papers should not exceed 6500 words): Currently 6254

Word count Summary: 193

Word count Introduction: 669

Word count Description 3866

Word count Results 1075

Word count Discussion 451

Word count Acknowledgements & Author contributions: 217

Number of Figures: 6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Number of Tables: 129

Summary

 Research Conducted and Rationale: OpenSimRoot is an open sourced, functional-

structural plant model and mathematical description of root growth and function. We

describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the

plant science community.

 Description: OpenSimRoot is an extended version of SimRoot, established to simulate root

system architecture, nutrient acquisition, and plant growth. OpenSimRoot has a plugin,

modular infrastructure, coupling single plant and crop stands to soil nutrient, and water

transport models. It estimates the value of root traits for water and nutrient acquisition in

environments and plant species.

 Key results and unique features: The flexible OpenSimRoot design allows upscaling from

root anatomy to plant community to estimate 1) resource costs of developmental and

anatomical traits, 2) trait synergisms, 3) (inter species) root competition. OpenSimRoot can

model 3D images from MRI and X-ray CT of roots in soil. New modules include: 1) soil

water dependent water uptake and xylem flow, 2) tiller formation, 3) evapotranspiration, 4)

simultaneous simulation of mobile solutes, 5) mesh refinement, and 6) root growth

plasticity.

 Conclusion: OpenSimRoot integrates plant phenotypic data with environmental metadata to

support experimental designs and gain mechanistic understanding at system scales.

Keywords: Root system architecture, Functional Structural Plant Model, OpenSimRoot, Root

architectural traits, Simulation, Model driven Phenotyping, Plant nutrition

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

Introduction

Functional-structural plant models combine a representation of 3D plant structure with

physiological functions to advance plant science and its applications (Vos et al., 2010; Dunbabin et

al., 2013). Those that incorporate below-ground root parameters (Dunbabin et al., 2002; Pagès et

al., 2004; Wu et al., 2007; Pierret et al., 2007; Javaux et al., 2008; Leitner et al., 2010; Lobet et al.,

2014; Gérard et al., 2017), require significant time and expertise in biological, mathematical,

computational and digital image analyses, and therefore their development benefits greatly from an

open and global setting. SimRoot is one of the most feature-rich and highly cited functional-

structural root architectural models. However the last full description dates back twenty years

(Lynch et al., 1997), and subsequent papers report application of the model, with successive

changes embedded in methods sections (Postma & Lynch, 2011a,b; Dathe et al., 2013). Here we

describe fully a new, open source version, branded OpenSimRoot, that is freely available for

download (http://rootmodels.gitlab.io/ OpenSimRoot). New features in this version allow simulation

of more growth scenarios and crops, and its application has been widened to support emerging root

phenotyping technologies.

SimRoot was originally designed to reconstruct root system architecture (RSA, see Table 1) from

empirical data such as growth rates, angles and branching frequencies of different root classes. A

post-simulation analysis of root geometry, nutrient uptake, and carbon costs enabled comparison of

different RSAs with respect to their efficiency in taking up phosphorus relative to carbon costs

(Nielsen et al., 1994; Lynch & Beebe, 1995; Nielsen et al., 1997; Lynch et al., 1997; Ge et al.,

2000; Rubio et al., 2001; Walk et al., 2004, 2006). Later versions coupled physiological

mechanisms such as root respiration, nutrient uptake, canopy photosynthesis, and RSA to simulate

how the root phenotype dynamically interacts with the soil environment, and how this interaction

influences acquisition of soil resources and consequently plant growth (Postma & Lynch, 2011a,b,

2012; Dathe et al., 2013; Postma et al., 2014a; Dathe et al., 2016; York et al., 2016). The initial

focus was on phosphorus capture (Lynch & Beebe, 1995; Ge et al., 2000; Ma et al., 2001; Postma

& Lynch, 2011b), which was later expanded to include C (photosynthesis), N, K, and water (Postma

et al., 2008; Postma & Lynch, 2011a; Dathe et al., 2013). Microeconomic theory, in which resource

acquisition is compared to resource investment costs, has guided the interpretation of results

(Lynch, 2007; Postma et al., 2014b). Although SimRoot was designed as a heuristic model, i.e., a

tool for exploring implications of existing knowledge, and gaps in that knowledge, it proved

surprisingly accurate for predicting fitness outcomes of root phenotypes (Chen et al., 2011;

Saengwilai et al., 2014; Zhan et al., 2015).

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

http://rootmodels.gitlab.io/OpenSimRoot

SimRoot is one of several root models that have been developed. Dunbabin et al. (2013) presents an

exhaustive review of all root models to date and their capabilities. To our knowledge OpenSimRoot

is currently the only plant root model that is openly version controlled (GIT) and GPLv3 licensed,

allowing community-driven development. We envision that OpenSimRoot will be used and

expanded by both modelers and non-modelers to simulate RSA and nutrient and water uptake in an

ever widening scenario for species, environments and crop management practices to advance root-

based opportunities to increase resource-efficient agricultural productivity. A design goal of

OpenSimRoot is a flexible model structure that can be controlled by the user rather than the

programmer. This means that, through a plugin infrastructure, the user can directly vary components

of the model and compare the results. Model behavior can further be studied through sensitivity

analysis, which has been a major focus in past publications.

In this paper we initially provide a short description of the design of the OpenSimRoot model and

definitions, then present the major submodels in OpenSimRoot which simulate RSA, the shoot,

carbon, water and nutrient acquisition and utilization, root growth plasticity, and geometric

descriptors. After this model description we discuss model implementation, which is designed for

flexibility, extensibility, transparency and robust numerics. We conclude with several examples of

OpenSimRoot usage.

Model description

OpenSimRoot has, compared to other root models, a unique design which centers on coupling

various mini-models (For definitions see Table 1). The distinction between parameter and algorithm

has been, in line with object oriented programming, removed by encapsulating both within classes

which share a common interface for coupling and data exchange.

OpenSimRoot design

OpenSimRoot contains a command line interface (CLI), a simulation engine, a plugin library, and

classes responsible for reading and writing of data (Figure 1, Notes S1,2,3&4). The simulation

engine implements an application programming interface (API) through which different modules

can request information (See Note S1). The plugin infrastructure allows developers to implement

new modules with limited knowledge about the rest of the code. Each plugin establishes

dependencies between minimodels through the API and requests data of other minimodels in order

to compute the necessary information. At the start of execution the import module reads an XML

file (see below) and, based on that file, constructs a tree of minimodels. According to the

specification in the XML, the minimodels load (instantiate) appropriate algorithms from a registry

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

which lists all available plugins (Note S3). The plugin infrastructure not only allows the user to

implement new processes, but also to implement alternative algorithms and compare model results.

The behavior of the modules described below is thus not fixed but can be adapted to hypotheses.

Simulation is driven based on data requests that originate from the users request for output. Upon

instantiation of the object tree, the modules that write output start requesting information in order to

write the output files. The CLI has a small number of options (listed with –h) with the most

important one the input file name. Runs are non-interactive such that many runs with different

parameter combinations can be fully automated on a computational cluster. This capability is

important when large numbers of simulations are required, for example when exploring parameter

sensitivity or processing real root structures (see Results) from large numbers of plants.

Description of the various modules

Root growth and RSA. The root system is represented by vertices and edges in OpenSimRoot.

Every root tip has its own vertex with dynamic coordinates, and all other vertices have stationary

coordinates that are placed behind the root tip as it extends. The final discretization of the root

system can be coarser than the frequency of each growth point’s directional change. A fine scale

discretization request can automatically reduce the integration time step. In the case of a coarse

discretization, the length of a root segment is not the linear distance between two vertices, but the

true distance that the root grew, based on growth rate at that given time. We thus “simplify” the

growth trajectory for computational reasons, without losing the true root length.

To grow a root system, we need: 1) when and where root tips (primordia) are created, 2) how fast

root tips grow, and 3) in what direction. To start, we assume that, at a minimum, one primary root

and a hypocotyl are present in the seed embryo. The term hypocotyl is used here freely to include

any shoot axiles (stems) that are the origins of adventitious roots, whether simulating dicotyledons

or monocotyledons. Branch roots and their own branch roots (classed according to order), are

assumed to emerge from the primary root, based on rules that control the timing and placing of the

branches. Adventitious roots (crown or nodal roots in grasses) can branch from the stem according

to different schemes; the simplest defined by a starting time and position of a single whorl of roots.

Formation of branch roots from these axiles is typically based on branching frequencies, which can

be expressed in time, or space, or both, where the missing information is computed based on the

growth rate of the parent root. Roots can branch from either phloem or xylem poles, depending on

species (Casimiro et al., 2003). The number of poles determines number of positions of the radial

branching angle, while the axial branching angle (angle between parent root and branch) is given in

the parameter section (for detailed explanation see Lynch, 1997, and Figure 2).

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

Elongation rates of individual roots are predefined in the parameter space, but might be scaled

according to a “root vigor” scaling factor; for example drawn from a lognormal distribution of

elongation rates (scaled to unity), thus creating variation in length. The vigor factor can also scale

the root specific root diameter, to allow an allometric relation between elongation rate and root

diameter expansion within a root class (Pagès, 2000; Wu et al., 2016). Initial root diameter is

otherwise a root class specific input parameter.

While initial growth direction is set by specified radial and axial branching angles (Figure 2), the

direction can be changed with a tropism vector. The tropism vector is the sum of several vectors

representing gravitropism, random impedance, and nutrient tropisms and is added to the normalized

growth direction vector, to obtain the new direction.

Once the root is growing, its branching rules allow it to branch off new roots of different classes and

the whole process is repeated. Although OpenSimRoot currently does not simulate shoot

architecture, a simple tiller model is included. Tillers can form their own leaf area, and their own

root systems. In grasses, tillers produce nodal roots which can form a significant fraction of the total

root system, depending on species and environment (Atkinson et al., 2014; Sebastian et al., 2016).

Tiller formation is done on the basis of a table that indicates the time dependent delay till the next

tiller is formed. Dicotolydonous roots have secondary growth from cambia which thicken the stele

and periderm in the root. Secondary growth is simulated using a time dependent radial growth rate,

scaled to distance along the root.

Simulation of shoot growth and related processes. A simple shoot model can be constructed with

OpenSimRoot plugins. The shoot model is non-geometric and represents the shoot by the state

variables leaf area and leaf and stem dry weight. Increase in dry weights is based on carbon

allocated to leaves and stems, multiplied by a dry weight to carbon factor. Increase in leaf area is the

increase in leaf dry weight multiplied by the specific leaf area (SLA). Carbon partitioning can be

based on predefined time dependent values (van Ittersum et al., 2003). Carbon partitioning tables

are typically established from dry weight measurements, and thus instead of entering carbon

partitioning tables, OpenSimRoot can also compute partitioning directly from dry weight

measurements. This predefined growth represents “potential” growth under a well-watered and

fertilized condition, whereas nutrient or carbon limitations may alter carbon partitioning (see

below). Total carbon available for plant growth is computed by subtracting the carbon costs (for

example respiration, and root exudates) from the total carbon fixed in the leaves, and or available

from seed or non-structural carbon reserves. Carbon costs depend on rates of respiration or carbon

expenditure on exudates or nitrate uptake, and these are integrated over the whole plant or root

system. Total carbon fixation is based on a radiation use efficiency (RUE) model, whereby

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

intercepted light is converted linearly to carbon fixation. Intercepted light is computed from leaf

area index, assuming that the simulated plant is in a homogeneous canopy of equally spaced and

identical plants. Tillers are simulated as new plants with their own leaf area, but sharing resources.

Carbon allocation to roots. The root growth module can compute the carbon for growth for each

root segment (edge) using its volumetric increase, and a specific root volume (g cm-3). Volume

increases arise from primary and/or secondary growth, and root segments are assumed cylindrical

or, in the case of varying diameters, a truncated cone. OpenSimRoot compares available to required

carbon, and if source strength is greater than sink strength, stores the carbon left over into a labile

pool. OpenSimRoot thus considers that plant growth may be physiologically, not resource,

constrained (Postma et al., 2014b). The labile pool is depleted when sink strength (defined by

carbon needed for potential growth) is greater than source strength. Once stored carbon is depleted,

growth rates decline. Various rules for carbon allocation under source limiting conditions have been

implemented. The most used rule to date prioritizes shoot over roots, and within the root system,

secondary growth (root cambial thickening) over elongation, and within the root classes, elongation

of major bearing roots over branch roots. Consequently, when plant growth is carbon limited,

growth rates of branch roots are reduced more than the growth of the parent roots. These rules do

not have a physiological basis, rather a pragmatic basis in which source sink imbalances are seen as

errors in the parameterization and estimation of the growth rates, and the assumption is that these

errors are more likely in the branch root growth than in the shoot growth. However, other rules,

such as equal scaling of all organs have been implemented, and can be used if the user assumes that

all sinks compete equally for the available carbon.

 Although the inputs of the model are absolute growth rates, allometric scaling, based on the ratio

between actual and potential leaf area (not mass), can reduce the attainable growth rate of the

canopy and the rate of formation of new root branches. This implies that plants can never fully

recover from a stress. However, a recovery rate can be defined which allows the plant to grow, for

example, 10% faster when resources permit. Allometric scaling can also be used for the formation

of branches. For example, the number of nodal roots per whorl in maize is dependent on the size of

the shoot.

Hydrology. OpenSimRoot includes a hydrology module (Figure 3). The implementation of the

hydrology module involves the coupling of three models that simulate the movement of water

through soil, plant and into the atmosphere. OpenSimRoot includes a simplified C++

implementation of the SWMS model which is used to simulate soil water transport in Hydrus

(Diamantopoulos et al., 2013) and RSWMS (Šimunek et al., 1995). Water transport through the

xylem is simulated using a hydraulic network model (Alm et al., 1992; Doussan et al., 1998) and

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

evapotranspiration is simulated using the Penman-Monteith equation (Penman, 1948; Monteith,

1964). Small adjustments of these models, to achieve good coupling, are described in Note S5.

The hydrology module provides 3D water uptake profiles, drives convective nutrient transport, and

can simulate compensatory water uptake and hydraulic redistribution, which may occur when the

top soil dries out, causing nutrient uptake from dry soil domains to be reduced. It currently does not

simulate drought related growth responses.

Nutrients. OpenSimRoot has a nutrient module to simulate the simultaneous uptake of solutes,

originally implemented to simulate the impact of RSA on nutrient uptake, and to test tradeoffs for

acquisition of nutrients (Postma & Lynch, 2011a; Dathe et al., 2013). Postma et al. (2014a) showed

how the optimal branching density in maize depends on the relative availability of phosphorus and

nitrogen. The module involves three parts: 1) simulation of plant nutrient requirements, 2)

simulation of nutrient acquisition, and 3) stressors which define how suboptimal plant nutrient

concentrations affect physiology or growth (Figure 4). Nutrients are simulated independently of

each other, except that in step (3) the impact of suboptimal nutrient concentrations on a given state

variable is aggregated using a maximum or averaging function. For example, nitrogen might affect

photosynthesis more than phosphorus, but phosphorus might affect the leaf area expansion rate

more strongly (see Dathe et al., 2013).

The nutrient requirements of the plant are determined by integrating over the whole plant biomass

predefined optimal and minimal nutrient concentrations. The plant acquires nutrients through seed

reserves, uptake by the root system, and optional nitrogen fixation. Uptake of nutrients by the root

system is simulated by Michaelis-Menten kinetics, where movement of nutrients in the soil towards

roots is simulated through convection-dispersion-diffusion equations. OpenSimRoot includes two

different implementations for solving these equations: 1) The Barber-Cushman model (Itoh &

Barber, 1983), which simulates depletion zones around individual root segments at high resolution,

and is suitable for immobile nutrients like phosphorus; and 2) a reimplementation of the solute

model included in SWMS3D (Šimunek et al., 1995), which couples to the soil water model within

the hydrology module (above), simulates the whole soil domain and is suitable for mobile nutrients

like nitrate. More detailed descriptions of these models are given in Note S5.

When acquisition falls short of what is required, plant stress is assumed. Stress impact functions can

be defined for components such as leaf expansion rate, photosynthesis rates, respiration rates, and

root elongation rates or secondary growth. By making the initial response of the shoot stronger than

that of the roots, the plant decreases shoot to root ratios when nutrient deficient (Postma & Lynch,

2011a). OpenSimRoot will move towards a functional equilibrium, although, due to the inherent

slow nature of growth, and the relatively fast dynamics of other processes, this functional

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

equilibrium might not be reached (Postma & Lynch, 2011b; Postma et al., 2014b). The current

implementation assumes that, internally, reallocation of nutrients is fast and perfect, such that all

organs experience equal stress. This might be true for a nutrient like nitrogen, which typically

causes chlorosis everywhere in the shoot, but might not be correct for other nutrients. The

importance of simulation of nutrient redistribution in the plant still needs study, and would require

implementation of a shoot architectural model in which the age and position of individual leaves or

canopy strata are simulated.

Mineralization and rhizosphere processes. OpenSimRoot implements the Yang and Janssen

model for mineralization (Yang & Janssen, 2000). This model assumes exponential decline of a

carbon pool, via aging and decline in break down rate. Based on C/N ratios of the substrate and C/N

ratios of the microbial biomass, the net mineralization or immobilization of N can be computed.

OpenSimRoot assumes that ammonium is readily converted to nitrate, and soil water content and

temperature are currently ignored. The implementation of the Yang and Janssen model in

OpenSimRoot simulates mineralization for every FEM node independently and thus mineralization

rates may vary in space. The user can define a nitrogen fixation rate as a percentage of the nitrogen

requirements of the plant. Fixation will not directly reduce nitrogen uptake from soil, but improves

plant nitrogen status.

Root exudation is not explicitly simulated, but is instead described as a root class- and time-

dependent carbon cost. Furthermore, exudation may increase the soluble nutrient concentration in

the soil at the cost of the insoluble fraction and thereby increase nutrient availability locally

(Barber-Cushman model only).

Root growth plasticity. OpenSimRoot can define reaction curves to local environmental factors, to

simulate a localized growth behavior of roots (Figure 5), often termed “plasticity” (Bradshaw, 1965;

Palmer et al., 2001). 3D interpolation of available environmental data is used to define values at the

root surface. For example, a reaction curve (norm, (Pigliucci et al., 1996)) could describe how

gravitropism is scaled according to the local concentration of a nutrient. Similarly, branching

frequency or root elongation rates can be scaled according to a local soil variable. For example,

static fields for soil compaction can be defined in three dimensions, using lists of coordinates and

associated values in conjunction with a spatial interpolation algorithm. Root elongation can then be

defined as a function of local soil compaction.

Currently, only absolute values (scalars) of local environmental variables such as soil compaction or

nutrient concentrations can be used to simulate plasticity responses. Gradient sensing (i.e. relative

values or tensors) of environmental factors may be important for nutrient- or hydro-tropism, or root

proliferation responses into enriched patches. However, the biological mechanism for sensing

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

gradients is unclear, and currently no such mechanism has been implemented. OpenSimRoot does,

however, include a mechanism to scale the strength of the local plasticity response on the basis of

yet another reaction norm which might couple plasticity to whole plant status.

Root length distribution and virtual coring. OpenSimRoot can compute several geometric

metrics, specifically root length density profiles, virtual coring, root length below D90 for nitrate,

and overlap of depletion zones. Others, like explored soil volume, or fractal dimensions, can be

computed by the user on the basis of the geometric model output.

Root anatomy. Root anatomy is not simulated in 3D explicitly, but OpenSimRoot can represent the

stele diameter, thickness of the cortex, the degree of cortical senescence, the degree of root cortical

aerenchyma formation, and the length, diameter and density of root hairs. These anatomical traits

may influence processes at the root segment level, specifically nutrient content, respiration, nutrient

uptake and hydraulic conductivity (Fan et al., 2003; Hu et al., 2014).

Implementation

OpenSimRoot is written in C++, an object oriented programming language. OpenSimRoot couples

minimodels, which encapsulate the simulation of a single state variable. State variables are assumed

to be associated with time and space and always have a unit. Minimodels are implemented as single

C++ classes which inherit from the same base class (named SimulaBase), such that they all have the

same interface (API). This interface allows minimodels to connect to other minimodels and request

data. Minimodels might encapsulate a constant, an interpolation table, a random number generator

or may make use of helper functions for computation. These helper functions are of the class type

IntegrationBase and DerivativeBase and are registered under their specific names, such that, based

on the input, the correct helper function can be instantiated. Helper functions compute a variable,

and when associated with an integration function, can be integrated over time. The true

functionality of OpenSimRoot is thus dispatched to the helper functions. Through a plugin

framework, developers can add new helper functions and thus extend the functionality of the model.

Example code for a plugin is given in Note S4.

Thus, coupling of the state variables is done through a simple common interface guaranteeing that

minimodels are, from a programmer point of view, standalone objects. Computations are quite

indifferent as to how dependent variables are computed. This creates high flexibility in the input

files, where the state variables can be defined in a variety of ways, i.e. constant, stochastic,

interpolation table, or based on a plugin (Table 2, Note S6).

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

One big challenge in coupling independent (mini)models is the implementation of numerical

integration when different models have different time steps, and when implicit coupling is desired.

In OpenSimRoot we implemented a general framework for predictor corrected methods, by default

RungeKutta4, with three components: 1) Interpolation, 2) Prediction, and 3) Dependency tracking.

Each minimodel keeps a time table to interpolate between time steps and return historical

information. Different minimodels can run at different time steps, which are however synchronized

at every globally defined maximum time step. Since all data requests loop through the SimulaBase

API, OpenSimRoot tracks forward dependencies and predictions, to determine whether to keep the

step taken. Interdependent minimodels (For an exemplar graph of dependencies see Note S7) update

using a predictor corrector method with interpolation to ensure compatibility of time steps. Whilst

the precise order may have some influence on numerical accuracy or efficiency, there is typically no

rational basis on which to prefer any one order of evaluation and is therefore simply dependent on

the order of information requests (Typically breadth-first search, see hierarchical contextualization).

The independent minimodel approach can create a significant computational overhead. However,

simulations of RSA are still relatively fast compared to soil and we regard the ease with which new

functionality can be added with no or little programming effort or knowledge about the rest of the

code as more important than runtime.

The current implementation of OpenSimRoot only depends on the standard C++ libraries (ISO C+

+11, and a few system libraries for the CLI), and on our website (rootmodels.gitlab.io) we provide

directions for compilation and running on Linux, Mac and Windows operating systems.

Hierachical contextualization. Many dynamic models are structured along a sequence of events;

the 'time loop'. However, OpenSimRoot represents the plant as a hierarchy of interacting

components to allow the main purpose of understanding of the function of root traits for the whole

plant. Minimodels are placed in a simple hierarchy which provides them context, while the object

oriented paradigm “hides” the internal workings of each component.

Dynamic adding of components. OpenSimRoot adds (instantiates) new components during

simulation to represent newly grown roots. This contrasts with crop models that represent plant

growth by an increase in values of the state variables. Dynamic memory management, connected to

an object oriented programming paradigm, is a useful programming feature for adding new

components (Dingkuhn et al., 2005). Each minimodel can optionally have a class (inherited from

the class ObjectGeneratorBase) attached to it, which, when the children of the minimodel are

requested, is run to update the list of children. For example there are classes that will create new

branch roots or will insert new vertices (rootNodes) into the hierarchy. Most of these classes do this

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

by copying templates, which contain all the necessary minimodels that are defined in the input files.

An example of an ObjectGenerator plugin is given in Note S4.

Input files

OpenSimRoot uses a hierarchical file of parameter values, which not only contains parameter

values, but all state variables, and their metadata, such as names and units. Hierarchy provides

context, such that parameter lists can be specific for different root classes of different plant species.

Input files are implemented in XML, a general language for describing data together with metadata

that is also hierarchical, flexible, allows comments, is supported by many software tools, and can be

rendered in a browser as a more readable document. Note S6 gives an example of an input file that

simulates a simple relative growth model.

OpenSimRoot allows the user not only to enter initial values, but arrays of initial time series. This

way, part of the RSA can be predefined, based on measurements (also see examples in Results).

This approach may be different from most models, but creates the opportunity to use the model as

an extension to phenotyping as partial information derived from phenotypic measurements can be

directly entered into the input files (Fiorani & Schurr, 2013, Figure 6). Parameterizations exist for

maize, squash, bean, lupin, Arabidopsis, and barley, and are now being developed for wheat and

rice (Ma et al., 2001; Chen et al., 2011; Postma & Lynch, 2012). Input files for maize and bean, a

predefined root system, a small crop model and other testing scenarios are included in the source

code repository (https://gitlab.com/rootmodels/OpenSimRoot).

Output files

OpenSimRoot includes export modules that can be enabled or disabled to retrieve specified output

forms that include tables in text files, 3D models in various VTK (visual tool kit, www.vtk.org)

formats, 3D raster images, and a XML formatted dump of the model in the format of

OpenSimRoot’s own input files. For example: tables can be further processed with statistical

software (like R), VTK files can be opened with 3D data viewers (e.g. Paraview,

http://www.paraview.org/), and the model dump can be viewed in a web browser (Note S6).

License

OpenSimRoot is available under the GPLv3 Licence (https://www.gnu.org/licenses/gpl-3.0.en.html)

which is an opensource – copyleft license. The license enables the practice of “good science” by

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

https://gitlab.com/rootmodels/OpenSimRoot

making the model transparent and by facilitating contributions from a wider range of expertise in

the community. Access the version controlled code at https://gitlab.com/rootmodels/OpenSimRoot .

Application examples for OpenSimRoot

SimRoot has found useful application in several domains, including 1) geometric analysis of root

system form and function, 2) simulation of processes that are very difficult to measure empirically,

3) simulation of dynamic systems, 4) sensitivity analyses, and 5) simulation of hypothetical

systems. In addition, a new capability of OpenSimRoot to read in (partially) predefined RSA enables

application as an extension to 3D phenotyping techniques such as X-ray CT (Computed

tomography) and MRI (Magnetic Resonance Imaging). Examples of all of these applications are

provided below.

Studies on the function of RSA traits

A primary output of OpenSimRoot is the RSA phenotype emerging from input parameters

simulating specific phenes like gravitropic setpoint angle or lateral root initiation interacting with

environmental conditions. For example, due to spatio-temporal heterogeneity in soil nutrient

availability, growth angles may differentially affect phosphorus and nitrogen uptake but also affect

the degree of inter- versus intra-plant root competition (Ge et al., 2000; Rubio et al., 2001; Dathe et

al., 2013). Results of simulated maize-bean-squash intercropping systems showed that RSA and

nitrogen fixation (bean) work towards reduced competition and increased biomass (Postma &

Lynch, 2012; Zhang et al., 2014). Competition among branches of the same parent root may

become stronger when the root branching density increases, and since this increase results in greater

sink strength, but not greater source strength (in carbon available for growth), the individual roots

may stay shorter. Simulating these processes, Postma et al. (2014a) estimated that the optimal

branching density (assuming parent roots have the same root branching density) for maize was

lower when nitrogen availability decreased. The benefit of fewer but longer laterals in low nitrogen

soils was confirmed in a genotypic contrast study (Zhan et al., 2015). Walk et al. (Walk et al., 2006)

estimated the tradeoffs between basal root growth and adventitious root growth in bean and

concluded that adventitious roots might be of most benefit when phosphorus availability is low.

While these RSA traits represent tradeoffs, other traits may work in synergy towards greater

productivity on low nutrient soils (Ma et al., 2001; Postma & Lynch, 2011a; Miguel et al., 2015).

OpenSimRoot has also increased understanding of how integrated phenotypes function. This was

demonstrated by York et al.(2015) who used SimRoot to estimate how changes in maize RSA,

introduced by breeding over 100 years, might affect the nutrient uptake efficiency of modern

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

https://gitlab.com/rootmodels/OpenSimRoot

cultivars. New functionality described here will enable new studies of the function of whole plant

traits, such as tiller formation and its influence on RSA.

Relationships between RSA traits and root system descriptors.

Many researchers determine what might be called geometric descriptors of RSA: root length density

profiles, fractal geometry, specific root length, total root length, rooting depth and convex-hull

(Fitter & Stickland, 1992; Clark et al., 2011). These descriptors can be computed on simulated roots

and their relation to architectural, anatomical or functional traits can be inferred. For example,

differences in the specific root length of a root system may be related to anatomical changes, or a

different ratio of thick to finer roots. Nielsen et al. (1997) determined differences in fractal

dimensions between phosphorus efficient and inefficient genotypes, and Walk et al. (2004) applied

SimRoot to show how soil exploration for P related to the fractal dimensions of the root system.

Miguel et al (2015) applied SimRoot to do “virtual coring” in order to support the idea that

genotypic differences in rooting depth might best be seen when coring in between rows. These

studies show how the geometric aspects of the root system can be related to root traits and function,

something not easily derived from empirical measurements of actual root systems.

Scaling up from root anatomy to crop

At its smallest spatial scale, OpenSimRoot represents root anatomy, and at its largest scale it

simulates crop measures like biomass, nutrient uptake and root zone depletion and leaching. For

example, Ma et al., (2001) focused on root hairs in Arabidopsis thaliana and concluded that their

length and density contribute synergistically towards greater phosphorus uptake. Chen et al., (2011,

2013) used SimRoot and lupin phenotypic data to compute that the contribution of root hairs to total

phosphorus uptake might vary strongly among genotypes. Postma and Lynch (2011a,b) and

Schneider et al. (unpublished) simulated the root class- and time-dependent formation of Root

Cortical Aerenchyma (RCA) and Root Cortical Senescence (RCS) respectively, and determined that

RCA and RCS may be mechanisms underlying greater growth on low nutrient soils in maize, bean

and barley, possibly via efficient use and recycling of resources. Genotypic contrast studies on low

N soils concur with these simulation results (Saengwilai et al., 2014) which suggests that

OpenSimRoot can be used for scaling up from anatomy to crop stands.

OpenSimRoot as an extension to plant phenotyping

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Technologies like X-ray CT and MRI have been adapted to image root systems non-destructively

and provide non-invasive ways to phenotype whole root systems in 3D in soil (Mooney et al., 2012;

Mairhofer et al., 2013; van Dusschoten et al., 2016). The utility to feed such data to a model was

demonstrated by Stingaciu et al. (2013) for a non-growing lupin root system. Using time estimates,

OpenSimRoot can simulate the growth of a root system such that the RSA is identical to that

imaged. Figures 6a,b (for animation see Movie S1) show an MRI image, and the simulated root

system. The simulation does not include a small portion (~8%) of the roots visible in the 3D image

data because of limitations in image segmentation, rather than in the model. OpenSimRoot can add

“MRI-non-visible” finer roots to the simulation according to existing model rules, and the

simulation can be extended beyond the measured time, to predict continued growth of the root

system. Importantly, OpenSimRoot modules for nutrient and water uptake can be enabled with the

architectural phenotypes derived from measurements and simulation, and functions can be ascribed

to the traits. This may help researchers and breeders go from image to functional understanding of

the measured root systems, and compare genotypes not only on the basis of geometry, but also on

the basis of modeled ability to take up water and nutrients. For example, Figures 6c,d show a CT

image, and corresponding OpenSimRoot simulation of nitrate depletion zones around the root

system. Integration of the model into phenotyping pipelines is also likely to help find deficits of the

model, and give modelers a basis for improving parameterization and/or algorithms. This important

development considerably widens the scope of application of OpenSimRoot.

Discussion & Conclusions

We have described the first open source version of the RSA model SimRoot, which is now available

for use by biologists and modelers. New features that expand its use include hydrology to simulate

and understand root system hydraulic properties. A novel area of application includes simulation of

non-invasive 3D phenotypic data of RSA from MRI and X-ray CT, and their putative functions in

nutrient and water uptake. To our knowledge, OpenSimRoot is currently the most feature rich and

widely published multiplatform RSA model (Dunbabin et al., 2013) that is freely available for

direct download (http://rootmodels.gitlab.io/ OpenSimRoot). The new open-source implementation

combines features that will enable expansion of use for plant and crop science:

 a modular, plugin infrastructure for extending the model;

 a default predictor-corrected numerical scheme for integration and coupling;

 the ability to predefine any data that was measured, where the model will use the measured

data instead of its algorithm for simulation (e.g. the root system, and optionally its history,

may be partly pre-defined based on MRI or CT images);

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

http://rootmodels.gitlab.io/OpenSimRoot

 integration with a shoot model;

 ability to simulate competition among plants of different species;

 maintained by an international community of root researchers.

Relationships in crop models that are typically only defined empirically, such as competition among

roots for nutrients, or root length density profiles, are actually a result of RSA, and therefore, RSA

models provide insight into relations between measurable traits and emerging properties at the crop

level. We regard the heuristic value of the model, and its use as a tool for developing and testing of

concepts, and prediction of mechanisms and trends, as the more important motivation for model

studies with, and continued development of, OpenSimRoot. The model may have further utility in

extending phenotyping pipelines by estimating genotype performance based on measured root

phenotypes.

Future development will be community driven, and may include new processes such as root

signaling networks, drought responses, soil microbial interactions and soil chemistry. As our

mechanistic understanding of different processes increases, OpenSimRoot’s hierarchical structure

allows new empirical data to be represented by new algorithms. For example, gravitropism may be

simulated on the basis of understanding of differential cell elongation rather than on the current

empirically derived input. Open sourcing allows other modelers to couple OpenSimRoot to their

models. For example shoot architectural models might be coupled to OpenSimRoot, in order to

understand competition for light and shoot architectural traits in relation to RSA traits. Finally,

opening up the code enables developers of other RSA models to compare the results of

OpenSimRoot to those of their models, which may lead to constructive critique and improvements

of all RSA models, and by extension, discoveries for improvements in understanding of plant and

crop resource efficiencies.

Acknowledgements

We would like to acknowledge all the researchers who over the past 25 years have contributed to

the development of OpenSimRoot, in particular RD Davis, Kai L. Nielsen, Gerardo Rubio,

Zhenyang Ge, Raul Jaramillo, Tom Walk, Annette Dathe, Larry York, Eric Nord, Harini Rangajaran,

Vera Hecht, Hannah Schneider and Ernst Schäfer. We would also like to thank Darren Wells and

Dagmar van Dusschoten for contributing the CT and MRI images, respectively, and Daniel

Pflugfelder for assistance in segmenting and analyzing the MRI image.

This research received support from the Forschungszentrum Jülich in the Helmholtz Association,

and the German-Plant-Phenotyping Network that is funded by the German Federal Ministry of

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

Education and Research (project identification number: 031A053).

Author contributions

J.A.P. and M.W. planned the manuscript. J.P.L. conceived of SimRoot and led its development

through 2011, J.A.P. rewrote the code, expanded its capabilities, and has led its development since

2011, with mathematical support from C.K. since 2013. J.A.P., C.K., N.M. and M.R.O. programmed

various parts of the model code. All authors were involved in open sourcing of the code and

forming a development team. M.J.B., N.M., M.G. and M.R.O. contributed the CT image data and

the simulation output based upon that data. J.A.P., C.K., M.W., J.P.L. M.R.O. and M.J.B. wrote

various parts of the manuscript, with input from all authors.

Supplemental files

Note S1: Description of the SimulaBase API

Note S2: How to run OpenSimRoot: description of the comman line interface CLI.

Note S3: Overview of all classes that form OpenSimRoot, including list of plugins

Note S4: Example C++ code for a plugin

Note S5: Technical description of water and nutrient modules

Note S6: Example input file

Note S7: Example graph of state variables and their dependencies

Movie S1: Animation of Figure 6.

507

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

References

Alm DM, Cavelier J, Nobel PS. 1992. A finite-element model of radial and axial conductivities for
individual roots: development and validation for two desert succulents. Annals of Botany 69: 87–92.

Atkinson JA, Rasmussen A, Traini R, Voß U, Sturrock C, Mooney SJ, Wells DM, Bennett MJ.
2014. Branching Out in Roots: Uncovering Form, Function, and Regulation. Plant Physiology 166:
538–550.

Bradshaw AD. 1965. Evolutionary significance of phenotypic plasticity in plants (EWC and JM
Thoday, Ed.). Advances in Genetics 13: 115–155.

Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett
MJ. 2003. Dissecting Arabidopsis lateral root development. Trends in Plant Science 8: 165–171.

Chen YL, Dunbabin VM, Postma JA, Diggle AJ, Kadambot H. M. Siddique, Rengel Z. 2013.
Modelling root plasticity and response of narrow-leafed lupin to heterogeneous phosphorus supply.
Plant and Soil 372: 319–337.

Chen Y, Dunbabin V, Postma J, Diggle A, Palta J, Lynch J, Siddique K, Rengel Z. 2011.
Phenotypic variability and modelling of root structure of wild Lupinus angustifolius genotypes.
Plant and Soil 348: 345–364.

Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV.
2011. Three-dimensional root phenotyping with a novel imaging and software platform. Plant
Physiology 156: 455–465.

Dathe A, Postma JA, Lynch JP. 2013. Modeling resource interactions under multiple edaphic
stresses. In: Timlin D, Ahuja LR, eds. Advances in Agricultural Systems Modeling. Enhancing
Understanding and Quantification of Soil–Root Growth Interactions. Madison, Wis., USA:
American Society of Agronomy, Crop Science Society of America, Soil Science Society of
America. 273–294.

Dathe A, Postma JA, Postma-Blaauw MB, Lynch JP. 2016. Impact of axial root growth angles
on nitrogen acquisition in maize depends on environmental conditions. Annals of Botany 118: 401–
414.

Diamantopoulos E, Iden SC, Durner W. 2013. Modeling non-equilibrium water flow in multistep
outflow and multistep flux experiments. HYDRUS Software Applications to Subsurface Flow and
Contaminant Transport Problems: 69-76.

Dingkuhn M, Luquet D, Quilot B, de Reffye P. 2005. Environmental and genetic control of
morphogenesis in crops: towards models simulating phenotypic plasticity. Australian Journal of
Agricultural Research 56: 1289–1302.

Doussan C, Pagès L, Vercambre G. 1998. Modelling of the hydraulic architecture of root systems:
An integrated approach to water absorption - Model description. Annals of Botany 81: 213–223.

Dunbabin VM, Diggle AJ, Rengel Z, van Hugten R. 2002. Modelling the interactions between
water and nutrient uptake and root growth. Plant and Soil 239: 19–38.

526

Dunbabin VM, Postma JA, Schnepf A, Loïc Pagès, Mathieu Javaux, Lianhai Wu, Daniel
Leitner, Ying L. Chen, Zed Rengel, Art J. Diggle. 2013. Modelling root–soil interactions using
three–dimensional models of root growth, architecture and function. Plant and Soil 372: 93–124.

van Dusschoten D, Metzner R, Kochs J, Postma JA, Pflugfelder D, Buehler J, Schurr U,
Jahnke S. 2016. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance
imaging. Plant Physiology 170: 1176–1188.

Fan M, Zhu J, Richards C, Brown KM, Lynch JP. 2003. Physiological roles for aerenchyma in
phosphorus-stressed roots. Functional Plant Biology 30: 493–506.

Fiorani F, Schurr U. 2013. Future scenarios for plant phenotyping. Annual Review of Plant
Biology 64: 267–291.

Fitter AH, Stickland TR. 1992. Fractal characterization of root system architecture. Functional
Ecology 6: 632–635.

Ge ZY, Rubio G, Lynch JP. 2000. The importance of root gravitropism for inter-root competition
and phosphorus acquisition efficiency: results from a geometric simulation model. Plant and Soil
218: 159–171.

Gérard F, Blitz-Frayret C, Hinsinger P, Pagès L. 2017. Modelling the interactions between root
system architecture, root functions and reactive transport processes in soil. Plant and Soil 413: 161–
180

Hu B, Henry A, Brown KM, Lynch JP. 2014. Root cortical aerenchyma inhibits radial nutrient
transport in maize (Zea mays). Annals of Botany 113: 181–189.

Itoh S, Barber SA. 1983. A numerical solution of whole plant nutrient uptake for soil-root systems
with root hairs. Plant and Soil 70: 403–413.

van Ittersum MK, Leffelaar PA, van Keulen H, Kropff MJ, Bastiaans L, Goudriaan J. 2003.
On approaches and applications of the Wageningen crop models. European Journal of Agronomy
18: 201–234.

Javaux M, Schroeder T, Vanderborght J, Vereecken H. 2008. Use of a three-dimensional
detailed modeling approach for predicting root water uptake. Vadose Zone Journal 7: 1079–1088.

Leitner D, Klepsch S, Bodner G, Schnepf A. 2010. A dynamic root system growth model based
on L-Systems. Plant and Soil 332: 177–192.

Lobet G, Pagès L, Draye X. 2014. A modeling approach to determine the importance of dynamic
regulation of plant hydraulic conductivities on the water uptake dynamics in the soil-plant-
atmosphere system. Ecological Modelling 290: 65–75.

Lynch J. 1995. Root Architecture and Plant Productivity. Plant Physiology 109: 7–13

Lynch JP. 2007. Rhizoeconomics: The roots of shoot growth limitations. HortScience 42: 1107–
1109.

Lynch JP, Beebe SE. 1995. Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus
availability. HortScience 30: 1165–1171.

Lynch JP, Nielsen KL, Davis RD, Jablokow AG. 1997. SimRoot: Modelling and visualization of
root systems. Plant and Soil 188: 139–151.

Ma Z, Walk TC, Marcus A, Lynch JP. 2001. Morphological synergism in root hair length,
density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: A modeling
approach. Plant and Soil 236: 221–235.

Mairhofer S, Zappala S, Tracy S, Sturrock C, Bennett MJ, Mooney SJ, Pridmore TP. 2013.
Recovering complete plant root system architectures from soil via X-ray μ-Computed Tomography.
Plant Methods 9: 8.

Miguel MA, Postma JA, Lynch JP. 2015. Phene synergism between root hair length and basal
root growth angle for phosphorus acquisition. Plant Physiology 167: 1430–1439.

Monteith JL. 1964. Evaporation and environment. Symposia of the society for experimental
biology 19: 205–234.

Mooney SJ, Pridmore TP, Helliwell J, Bennett MJ. 2012. Developing X-ray computed
tomography to non-invasively image 3-D root systems architecture in soil. Plant and soil 352: 1–
22.

Nielsen KL, Lynch JP, Jablokow AG, Curtis PS. 1994. Carbon cost of root systems: an
architectural approach. Plant and Soil 165: 161–169.

Nielsen KL, Lynch JP, Weiss HN. 1997. Fractal geometry of bean root systems: correlations
between spatial and fractal dimension. American Journal of Botany 84: 26–33.

Pagès L. 2000. How to include organ interactions in models of the root system architecture? The
concept of endogenous environment. Annals of Forest Science 57: 535–541.

Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Le Bot J. 2004. RootTyp: A generic
model to depict and analyse the root system architecture. Plant and Soil 258: 103–119.

Palmer CM, Bush SM, Maloof JN. 2001. Phenotypic and developmental plasticity in plants. eLS.
John Wiley & Sons, Ltd.

Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the
Royal Society of London. Series A. Mathematical and Physical Sciences 193: 120–145.

Pierret A, Doussan C, Capowiez Y, Bastardie F, Pagès L. 2007. Root functional architecture: A
framework for modeling the interplay between roots and soil. Vadose Zone Journal 6: 269–281.

Pigliucci M, Schlichting CD, Jones CS, Schwenk K. 1996. Developmental reaction norms: the
interactions among allometry, ontogeny and plasticity. Plant Species Biology 11: 69–85.

Postma JA, Dathe A, Lynch JP. 2014a. The optimal lateral root branching density for maize
depends on nitrogen and phosphorus availability. Plant Physiology 166: 590–602.

Postma JA, Jaramillo RE, Lynch JP. 2008. Towards modeling the function of root traits for
enhancing water acquisition by crops. In: Ahuja LR, Reddy VR, Saseendran SA, Yu Q, eds.
Advances in Agricultural Systems Modeling. Response of Crops to Limited Water: Understanding
and Modeling Water Stress Effects on Plant Growth Processes. Madison, Wis., USA: ASA-CSSA-
SSSA, 251–276.

Postma JA, Lynch JP. 2011a. Root cortical aerenchyma enhances the growth of maize on soils
with suboptimal availability of nitrogen, phosphorus, and potassium. Plant Physiology 156: 1190–
1201.

Postma JA, Lynch JP. 2011b. Theoretical evidence for the functional benefit of root cortical
aerenchyma in soils with low phosphorus availability. Annals of Botany 107: 829–841.

Postma JA, Lynch JP. 2012. Complementarity in root architecture for nutrient uptake in ancient
maize/bean and maize/bean/squash polycultures. Annals of Botany 110: 521–534.

Postma JA, Schurr U, Fiorani F. 2014b. Dynamic root growth and architecture responses to
limiting nutrient availability: linking physiological models and experimentation. Biotechnology
Advances 32: 53–65.

Rubio G, Walk T, Ge Z, Yan X, Liao H, Lynch JP. 2001. Root gravitropism and below-ground
competition among neighbouring plants: A modelling approach. Annals of Botany 88: 929–940.

Saengwilai P, Nord E, Chimungu J, Brown K, Lynch J. 2014. Root cortical aerenchyma
enhances nitrogen acquisition from low nitrogen soils in maize (Zea mays L.). Plant Physiology
166: 726–735.

Sebastian J, Yee M-C, Viana WG, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T,
Jiang H, Baxter I, et al. 2016. Grasses suppress shoot-borne roots to conserve water during
drought. Proceedings of the National Academy of Sciences 113: 8861–8866.

Šimunek J, Huang K, van Genuchten MT. 1995. The SWMS 3D code for simulating water flow

and solute transport in three-dimensional variably-saturated media. California: U. S. Salinity
laboratory, USDA.

Stingaciu L, Schulz H, Pohlmeier A, Behnke S, Zilken H, Javaux M, Vereecken H. 2013. In
Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Water Uptake
Modeling. Vadose Zone Journal 12: 9.

Vos J, Evers JB, Buck-Sorlin GH, Andrieu B, Chelle M, Visser PHB de. 2010. Functional–
structural plant modelling: A new versatile tool in crop science. Journal of Experimental Botany 61:
2101–2115.

Walk TC, Jaramillo R, Lynch JP. 2006. Architectural tradeoffs between adventitious and basal
roots for phosphorus acquisition. Plant and Soil 279: 347–366.

Walk TC, vanErp E, Lynch JP. 2004. Modelling applicability of fractal analysis to efficiency of
soil exploration by roots. Annals of Botany 94: 119–128.

Wu L, McGechan MB, McRoberts N, Baddeley JA, Watson CA. 2007. SPACSYS: Integration
of a 3D root architecture component to carbon, nitrogen and water cycling--Model description.
Ecological Modelling 200: 343–359.

Wu Q, Pagès L, Wu J. 2016. Relationships between root diameter, root length and root branching
along lateral roots in adult, field-grown maize. Annals of Botany 117:379–390.

Yang HS, Janssen BH. 2000. A mono-component model of carbon mineralization with a dynamic
rate constant. European Journal of Soil Science 51: 517–529.

York LM, Galindo-Castañeda T, Schussler JR, Lynch JP. 2015. Evolution of US maize (Zea
mays L.) root architectural and anatomical phenes over the past 100 years corresponds to increased
tolerance of nitrogen stress. Journal of Experimental Botany 66: 2347–2358.

York LM, Silberbush M, Lynch JP. 2016. Spatiotemporal variation of nitrate uptake kinetics
within the maize (Zea mays L.) root system is associated with greater nitrate uptake and
interactions with architectural phenes. Journal of Experimental Botany 67: 3763–3775.

Zhan A, Schneider H, Lynch JP. 2015. Reduced lateral root branching density improves drought
tolerance in maize. Plant Physiology 168: 1603–1615.

Zhang C, Postma JA, York LM, Lynch JP. 2014. Root foraging elicits niche complementarity-
dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Annals of

Botany 114: 1719–1733.

527

Tables

Term Definition

State variable A quantity that has a unit and may depend on time and or space.

Minimodel An object that encapsulates a state variable and is of a type derived from

SimulaBase (Note S3). Minimodels place state variables in a context, give them

a lifetime, a name, a unit and provide a general API for coupling of minimodels.

Module A set of minimodels that form together a major component, like the carbon,

nutrient or water modules.

Plugin A class which adds functionality to the model without changing the main code

(For example see Note S4). Plugins can be of derived type ObjectGenerator,

DerivativeBase, or IntegrationBase

ObjectGenerator plugin which instantiates new minimodels

DerivativeBase Base classes for plugins that add new computational ability and/or new

dependencies among minimodels

IntegrationBase Base classes for plugins that add new integration procedures.

CLI Command line interface, as opposed to a graphical user interface.

Root segment,

root, root system,

root system

architecture

(RSA)

Root segment is a short piece of root that can be represented by two

coordinates, root is a single root axis, without branches, unless it stands in

contrast to shoot, whereby it represents the whole root system (as in “root to

shoot ratios”). Root system is a system of connected roots. Root system

architecture is the spatio-temporal arrangement of the root system (Lynch,

1995) and is characterized by RSA traits such as branching frequencies or root

gravitropism. RSA is often described by its geometric attributes, such as depth,

width, specific root length, etc.

Table 1: Definition of terms.

528

529

530

531

Declaration of minimodel Explanation

<SimulaDerivative name="root-

GrowthRate" function="usePath"

unit="cm/day">

Declaration of a minimodel named rootGrowthRate which

uses the plugin “usePath” to simulate a growth rate with the

unit cm/day.

<SimulaConstant name="path"

type="string"> rootGrowth </Simula-

Constant>

Declaration of a minimodel named “path” which contains a

string of the path to which “rootGrowthRate” needs to be

coupled

<SimulaConstant name="multiplier">

0.1 </SimulaConstant>

Declaration of a minimodel named “multiplier” which is a

simple constant with which the result of minimodel named by

“path” should be multiplied with.

</SimulaDerivative> Closing of the declaration of minimodel “rootGrowthRate”,

so it is clear that “path” and “multiplier” are owned by it.

<SimulaVariable name="rootGrowth"

function="useName+Rate" integra-

tionFunction="RungeKutta4"

unit="cm" > 1. </SimulaVariable>

Declaration of minimodel named rootGrowth, which will use

function “useName+Rate” to retrieve data and will integrate

that data with the default integration function, RungeKutta4.

Start value is 1.

Table 2: A simple example of how a simple relative growth rate model can be constructed with

OpenSimRoot by coupling two minimodels, one simulating the rate of growth (rgr=0.1*length), and

one that integrates that rate (analytical result would be length=exp(0.1*t)). The rate calculation is

done using the plugin “usePath” which simply retrieves the length using the declared path and uses

the multiplier to calculate the fraction (0.1). The integration is done by the default integration

method, RungeKutta4, which integrates the result computed by the plugin “useName+Rate”. This

plugin simply retieves the values of minimodel “rootGrowthRate”. If the user would like the

relative growth rate to be time dependent, the minimodel “multiplier” can be declared as an

interpolation table, i.e. <SimulaTable name=”multiplier” …> 0 0.1 10 0.05 </SimulaTable>.

Alternatively, stochasticity could be introduced by declaring the multiplier as of class

SimulaStochastic. This model is obviously superfluous, and most plugins will implement more

complex computations, with more dependencies (see also Note S6).

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

Figure legends

Figure 1: Schematic representation of the OpenSimRoot code. Code encompasses three major

components, the command line interface (CLI), different types of minimodels and a library of

plugins. The class hierarchy for each component is given in Note S3.

Figure 2: Simulated root system of bean (left) and maize (right) as rendered with ParaView. Root

systems are made up of different root classes, each with their own root diameter, branching rules,

growth direction and growth rates. Root cross-sections are not simulated but illustrate root segment

traits that are represented in OpenSimRoot.

Figure 3: Schematic representation of the coupling of the Evapotranspiration, xylem transport and

soil water modules. a) Soil pedon with the hydraulic head indicated in pseudo color (left) and three

barley root systems (right) taking up water from that column. At the dry top water uptake is

negative, meaning that some hydraulic lift occurred in this scenario. b) The Penman-Monteith

equation for simulating transpiration and evaporation. c) Zoomed version of roots, showing the

edges and vertices. d) Network model for simulating water flow through the roots. e) Water

transport in three dimensions in the soil is simulated by solving the Richards equation, which

combines Darcy’s law with mass conservation, using the Finite Element Method.

Figure 4: Schematic representation of the nutrient uptake, nutrient requirements and growth

regulation modules. a) Root nutrient uptake coupled to model for solute transport in the soil. b)

Schematic representation of the radial 1D Barber-Cushman model used for simulating P uptake. (c)

summary of how the ratio between nutrient requirements and nutrient uptake determines plant

physiology and/or growth.

Figure 5: Simulation results for plastic and non-plastic root systems. Root plasticity was defined as

increasing lateral branching density with increasing nutrient availability. Phosphorus availability

(left two root systems) was high in the top soil, causing branching density to be high in the top as

well. At the same time, the reduced branching density deeper down, due to plasticity, allows the

plant to grow the individual laterals longer. Pseudo colors show the local phosphorus availability.

Nitrate moves throughout the soil, and thereby the plasticity effect is less pronounced and difficult

to trace (right two root systems).

Figure 6: Simulation of imaged root phenotypes. a) Rendering of an MRI image of a two week old

maize root system and b) the simulation of that root system by OpenSimRoot (right). Pseudo colors

in 6b show the root segment age as estimated based on root topology, linear interpolation and the

assumption that emergence of laterals takes two days. C) Rendering of segmented X-ray CT image

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

of a 10 day old wheat root system. Soil has been sliced to make roots visible. D) OpenSimRoot

simulation of the predicted nitrate depletion zone of in C imaged root phenotype. We assumed an

initially homogeneous distribution of Nitrate within the simulated soil domain. Pseudo colors show

the nitrate concentration on a plane cut approximately through the center of the root system.

580

581

582

583

Figure 1: Schematic representation of the OpenSimRoot code. Code encompasses three major

components, the command line interface (CLI), different types of minimodels and a library of

plugins. The class hierarchy for each component is given in Note S3.

Figure 2: Simulated root system of bean (left) and maize (right) as rendered with ParaView. Root

systems are made up of different root classes, each with their own root diameter, branching rules,

growth direction and growth rates. Root cross-sections are not simulated but illustrate root segment

traits that are represented in OpenSimRoot.

584

585

586

587

588

589

590

591

592

Figure 3: Schematic representation of the coupling of the Evapotranspiration, xylem transport and

soil water modules. a) Soil pedon with the hydraulic head indicated in pseudo color (left) and three

barley root systems (right) taking up water from that column. At the dry top water uptake is

negative, meaning that some hydraulic lift occurred in this scenario. b) The Penman-Monteith

equation for simulating transpiration and evaporation. c) Zoomed version of roots, showing the

edges and vertices. d) Network model for simulating water flow through the roots. e) Water

transport in three dimensions in the soil is simulated by solving the Richards equation, which

combines Darcy’s law with mass conservation, using the Finite Element Method.

593

594

595

596

597

598

599

600

601

602

Figure 4: Schematic representation of the nutrient uptake, nutrient requirements and growth

regulation modules. a) Root nutrient uptake coupled to model for solute transport in the soil. b)

Schematic representation of the radial 1D Barber-Cushman model used for simulating P uptake. (c)

summary of how the ratio between nutrient requirements and nutrient uptake determines plant

physiology and/or growth.

603

604

605

606

607

608

609

610

Figure 5: Simulation results for plastic and non-plastic root systems. Root plasticity was defined as

increasing lateral branching density with increasing nutrient availability. Phosphorus availability

(left two root systems) was high in the top soil, causing branching density to be high in the top as

well. At the same time, the reduced branching density deeper down, due to plasticity, allows the

plant to grow the individual laterals longer. Pseudo colors show the local phosphorus availability.

Nitrate moves throughout the soil, and thereby the plasticity effect is less pronounced and difficult

to trace (right two root systems).

611

612

613

614

615

616

617

618

Figure 6: Simulation of imaged root phenotypes. a) Rendering of an MRI image of a two week old

maize root system and b) the simulation of that root system by OpenSimRoot (right). Pseudo colors

in 6b show the root segment age as estimated based on root topology, linear interpolation and the

assumption that emergence of laterals takes two days. C) Rendering of segmented X-ray CT image

of a 10 day old wheat root system. Soil has been sliced to make roots visible. D) OpenSimRoot

simulation of the predicted nitrate depletion zone of in C imaged root phenotype. We assumed an

initially homogeneous distribution of Nitrate within the simulated soil domain. Pseudo colors show

the nitrate concentration on a plane cut approximately through the center of the root system.

619

620

621

622

623

624

625

626

627

628

New Phytologist Suppor�ng Informa�on

Ar�cle �tle: OpenSimRoot: Widening the scope and applica�on of root architectural models

Authors: Postma, J.A.1, Kuppe, C.1 , Owen, M.R.2,3, Mellor, N.3,4, Gri'ths, M.3,4, Benne), M.J.3,4,

Lynch J.P.3,4,5, Wa), M. 1

1) Plant Sciences, Ins�tute of Bio and Geosciences 2, Forschungszentrum Jülich, Wilhelm-Johnen Straße 52425 Jülich, Germany

2) Centre for Mathema�cal Medicine and Biology, School of Mathema�cal Sciences, University of No7ngham, UK

3) Centre for Plant Integra�ve Biology, University of No7ngham, UK

4) Plant & Crop Sciences Division, School of Biosciences, University of No7ngham, UK

5) Department of Plant Science, Pennsylvania State University, USA

Ar�cle acceptance date:

The following Suppor�ng Informa�on is available for this ar�cle:

Supplement 1 Descrip�on of the SimulaBase API

Supplement 2 How to run OpenSimRoot: descrip�on of CLI

Supplement 3 Example C++ code for a plugin

Supplement 4 Example C++ code for a plugin

Supplement 5 Technical descrip�on of water and nutrient modules

Supplement 6 Example input @le

Supplement 7 Example graph of state variables and their dependencies

Supplemental movie 1 Anima�on of Figure 6b.

Supplement 1: Application programming interface (API) of the SimulaBase
class

This interface is used by the plugins to navigate the hierarchy and retrieve necessary data. For an
example see, Supplement 4. Developers that would like to develop a new plugin, will need this
interface in order to retrieve data from other minimodels. These minimodels are in a hierarchy.
The methods listed here can be used to find those minimodels in the hierarchy, and to request
data from them. Minimodels are instantiations (objects) of class (type) SimulaBase.

//Method to retrieve meta data on a given minimodel such as its name, path in the
hierarchy, lifetime of the object, and its units.

std::string getName()const; //name of object
std::string getPrettyName()const; //some what more humen readable name
std::string getPath()const; //path to the object
virtual std::string getType()const; //What type this object has
bool evaluateTime(const Time &t)const; //check if t is within lifetime
Time getEndTime()const; //get the end time of object
Time getStartTime()const; //get the start time of object
virtual Unit getUnit(); //get the unit
void checkUnit(const Unit& unit)const; //check if unit equals given unit
void setUnit(const Unit &newUnit); //change unit
virtual void getXMLtag(Tag &tag); //get the object as tag (xml output)

//Methods to navigate the minimodel hierarchy

The difference between the get() and existing() methods is that when the object does not exist
get() will throw an error and terminate the simulation, whereas existing() will return a NULL
pointer. The getPath() methods will navigate a symbolic path just as a path in a filesystem is
navigated. For example
getPath(“../mySib”) translates to getSibling(“mysib”), where the later is more efficient.

SimulaBase* getParent()const;
SimulaBase* getParent(const unsigned int i) const;
int getNumberOfChildren()const;//does not update!
int getNumberOfChildren(const Time &t);//does update
SimulaBase* getChild(const std::string & name,const Time & t);
SimulaBase* existingChild(const std::string & name,const Time & t);
SimulaBase* getChild(const std::string & name);
SimulaBase* existingChild(const std::string & name);
SimulaBase* getChild(const std::string & name,const Unit & u);
SimulaBase* existingChild(const std::string & name,const Unit & u);
SimulaBase* getSibling(const std::string & name,const Time & t);
SimulaBase* existingSibling(const std::string & name,const Time & t);
SimulaBase* getSibling(const std::string & name);
SimulaBase* existingSibling(const std::string & name);
SimulaBase* getSibling(const std::string & name,const Unit & u);
SimulaBase* existingSibling(const std::string & name,const Unit & u);

 //Sibling can be retrieved in alphabetic order.
SimulaBase* getNextSibling(const Time &t);
SimulaBase* getNextSibling()const;

SimulaBase* getPreviousSibling(const Time &t);
SimulaBase* getPreviousSibling()const;
SimulaBase* getFirstChild(const Time &t);
SimulaBase* getFirstChild()const;
SimulaBase* getLastChild()const;

SimulaBase* getPath(const std::string &name);
SimulaBase* getPath(const std::string &name, const Time &t);
SimulaBase* getPath(const std::string &name, const Unit &u);
SimulaBase* existingPath(const std::string &name);
SimulaBase* existingPath(const std::string &name, const Time &t);
SimulaBase* existingPath(const std::string &name, const Unit &u);

typedef std::vector<SimulaBase*> List;
void getAllChildren(List&, const Time &t);
void getAllChildren(List&)const;

//Method for walking along a root axis. Retrieves the minimodel with the same

 name associated with the next vertex.
virtual SimulaBase* followChain(const Time & t);

//Methods to retrieve specific subsets of minimodels based on position

typedef std::multimap<Coordinate,SimulaBase*> Positions;
static void getAllPositions(const Time & t, Positions& list);
static void getAllPositions(Positions& list);
void getYSlice(const Time &, const double, const double, Positions&);
void getPositionsWithinRadius(const Time &, const Coordinate& c, const
double & r, Positions&);
void getPositionsInsideBox(const Time &, const Coordinate&, const
Coordinate &, Positions&);

//Methods for retrieving data

virtual void get(const Time &t, int &returnConstant);
virtual void get(const Time &t, std::string &returnConstant);
virtual void getRate(const Time &t, Time &var);
virtual void get(const Time &t, Coordinate &point);
virtual void get(const Time &t, MovingCoordinate &point);
virtual void getAbsolute(const Time &t, Coordinate &point);
virtual void getBase(const Time &t, Coordinate &point);
virtual void getRate(const Time &t, Coordinate &point);
virtual void getAbsolute(const Time &t, MovingCoordinate &point);
virtual void get(int &returnConstant);
virtual void get(std::string &returnConstant);
virtual void get(bool &returnConstant);
virtual void get(const Time &x, Time &y);
virtual void get(Time &x);
virtual void get(const Time &t, const Coordinate & pos, double &y);
virtual void get(const Time &t, const Coordinate & pos, Coordinate &y);
virtual void getRate(const Time &t, const Coordinate & pos, double &y);
virtual void get(Coordinate &point);

virtual void getAverageRate(const Time &t1, const Time &t2, double &var);
virtual void getAverageRate(const Time &t1, const Time &t2, Coordinate
&var);

//reverse data look up: returns time that object was nearest to given
value or position. Only works if the object is not garbage collected
virtual void getTime(const Coordinate &p, Time &t, Time tmin=-1, Time
tmax=0);
virtual void getTime(const double &p, Time &t, Time tmin=-1, Time tmax=0);

//Method for setting data, probably only implemented for timetables.

virtual void set(const double &x, const double &y);

//Methods to retrieve info on timestepping of a minimodel

virtual Time &minTimeStep();
virtual Time &maxTimeStep();
virtual Time &preferedTimeStep();
virtual Time lastTimeStep();

//Methods to control garbage collection, which will basically clean up the simulation history

virtual void collectGarbage(const Time&); //clean up history
virtual void garbageCollectionOff(); //keep history of this object always

//Other methods

void stopUpdatefunction(); //When implementing an objectgenerator signal
 it has
 finished creating all objects for all times, and can be deleted.

static void updateAll(const Time &); //update whole tree
void updateRecursively(const Time &); //update subtree
static void signalMeAboutNewObjects(SimulaBase* me); //if plugin has the
addObject() implemented, it will be signaled when new objects are being
instantiated by any of the object generators.

Supplement 2: Command line interface (CLI) of OpenSimRoot: How to run
and use the model

OpenSimRoot has a command line interface, which means that you operate the model from a
terminal using commands, not with a graphical interface and the mouse.

Step 1: Open a terminal (under windows 10 you may use the program named CMD)

Step 2: Go to the folder where you want to run the model, use the command cd to navigate, for
example: cd MyRunFolder

Step 3: We assume that the folder contains the OpenSimRoot executable. With the “ls” command
you can list all folders (or on windows the command is “dir”). Here we see that my folder
contains the executable OpenSimRoot (conveniently made green, as it is executable) and a XML
input file.

Step 4: OpenSimRoot has a small build in help which we we can run by typing ./OpenSimRoot
-h (on windows you do not type the path “./” in front of the executable).

The help shows how to run OpenSimRoot, and gives you some options and their explanation.

Step 5: Like the help shows, running the model is done by appending the input file:
./OpenSimRoot SimpleCropModel.xml

Again with ls (dir) you can list the filer, the model created two new files, one containing
warnings, one containing the simulation results.

Step 6: The results of the simulation are in the tabled_output.tab file which can be viewed with
any program that opens text files. Here we simply show the first lines with the command head:

The file contains a header in the first row, and 6 columns listing the name of the state variable,
the time, the value, the rate of change of that state variable (if simulated), the unit of the state
variable, and the path in the hierarchy to this state variable.

Real time hours: minutes : seconds

Results file

One warning

Simulation time

Command

Step 7: The tabled_output.tab file is also easily imported into a spreadsheet program. By
enabling the auto filter and selecting leafArea, we can easily create a plot.

8. The same can be achieved in R using this script:
d<-read.table("tabled_output.tab",header=T)
f=d$name=="leafArea"
plot(value~time,data=d[f,],ylab=~"leaf area (cm"^2*")", xlab="time (d.a.g)")

step 9: Editing the input file can be done with any text file editor. Here I opened the file with the
command nano tabled_output.tab and the result is an xml formatted file in which we can change
the numbers, save and rerun. In white you see the numbers, and scrolling to the bottom you
would see more.

step 10: You see several functions listed that are used to simulate a state variable. To get a list of
all functions that are included in your OpenSimRoot version use the command OpenSimRoot -l.
This will list all plugins that are included with OpenSimRoot.

Supplement 3: Class hierarchy of OpenSimRoot code

This document lists the class hierarchy for the most important classes in OpenSimRoot.

Minimodels

Minimodels are of type SimulaBase and encapsulate one time and location dependent state
variable. The inhertance diagram for all SimulaX classes is given in Supplemental Figure 3.1.

Supplemental Figure 3.1: Inheritance diagram for all SimulaBase classes.

• SimulaConstant encapsulates a constant of various types.
• SimulaDerivative encapsulates an algorithm. Available algorithms are all the

DerivativeBase derived plugins.
• SimulaTable encapsulate an array of time,value combinations. Values are interpolated.
• SimulaExternal provides a mechanism for encapsulating other dynamic simulation

models.
• SimulaPoint simulates a point and its movement through space.
• SimulaVariable simulates a value and change over time using numerical integration.
• SimulaGrid simulates a static, 3D field using a list of Coordinates with values and a 3D

interpolation algorithm
• SimulaLink simply bridges to another minimodel in the hierarchy of minimodels.
• SimulaStochastic draws numbers from a random number generator.

Inherited from DerivativeBase

Below is a list of all the plugins that directly, or indirectly, inherit from DerivativeBase and can
be used by SimulaVariable, SimulaPoint or SimulaDerivative for computation.

ActualTranspiration
ActualVaporPressure
AerodynamicResistance
AirDensity
AirPressure
BFMmemory
BiologicalNitrogenFixation
CarbonAllocation2Leafs
CarbonAllocation2Roots
CarbonAllocation2Shoot
CarbonAllocation2Stems
CarbonAvailableForGrowth
CarbonCostOfBiologicalNitrogenFixation
CarbonCostOfNutrientUptake
CarbonReserves
CinDryWeight
ConstantRootGrowthRate
D95
ETbaseclass
Grass_reference_evapotranspiration
Penman
PenmanMonteith
PriestleyTaylor
Stanghellini
Tall_reference_Crop
GetValuesFromPlantWaterUptake
GetValuesFromSWMS
Imax
Interception
InterceptionV2
LeafArea
LeafAreaIndex
LeafAreaReductionCoe/cient
LeafDryWeight
LeafDryWeight2
LeafPotentialCarbonSinkForGrowth
LeafRespirationRate
LightInterception
LocalNutrientResponse
MeanLeafAreaIndex
NumberOfRoots
NumberOfTillers
NutrientStressFactor
NutrientStressFactorV2
PhotosynthesisLintul
PhotosynthesisLintulV2
PlantCarbonBalance
PlantCarbonIncomeRate
PlantTotal

PointSensor
PotentialLeafArea
PotentialTranspirationCrop
Proximity
Radiation
RadiusDepletionZoneBarberCushman
RadiusDepletionZoneSimRoot4
RandomGravitropism
RandomImpedence
RelativeCarbonAllocation2LeafsFromInputFile
RelativeCarbonAllocation2RootsFromInputFile
RelativeCarbonAllocation2RootsOneMinusSho
ot
RelativeCarbonAllocation2RootsPotentialGrow
th
RelativeCarbonAllocation2RootsScaledGrowth
RelativeCarbonAllocation2ShootFromInputFile
RelativeCarbonAllocation2ShootPotentialGrow
th
RelativeCarbonAllocation2ShootScaledGrowth
RelativeCarbonAllocation2ShootSwitch
RelativeCarbonAllocation2StemsOneMinusLea
fs
RemainingProportion
Reserves
ReservesSinkBased
RootCircumference
RootClassID
RootDryWeight
RootGrowthDirection
RootGrowthScalingFactor
RootLength2Base
RootLengthDensity
RootLengthPro2le
RootNodePotentialCarbonSinkForGrowth
RootPotentialCarbonSinkForGrowth
RootsBelowD95Solute
RootSegmentAge
RootSegmentRespirationRate
RootSegmentRootHairSurfaceArea
RootSegmentSpeci2cWeight
RootSystemTotal
RootTotal
RootTotal2
SaturatedVaporPressure
ScaledRootGrowthRate
ScaledWaterUptake
ShootDryWeight
ShootOptimalNutrientContent

SimplePotentialTranspiration
SimpleSoilTemperature
SlopeVaporPressure
SoluteMassBalanceTest
Speci2cHeatCapacityOfAir
StemDryWeight
StemPotentialCarbonSinkForGrowth
StemRespirationRate
StomatalResistance
StressAdjustedPotentialLeafArea
StressFactor
SumCarbonCosts
SumOverPlants
SumOverPlantsShoot
SuperCoring
Swms3d
ThermalConductivity
TotalBase
CarbonCostOfExudates
CortexDiameter
IntegrateOverSegment
PotentialSecondaryGrowth
RootDiameter
RootSegmentDryWeight
RootSegmentLength
RootSegmentSurfaceArea
RootSegmentVolume
RootSegmentVolumeCortex
SecondaryGrowth
SumSteelCortex
TotalBaseLabeled
Barber_cushman_1981_nutrient_uptake
Barber_cushman_1981_nutrient_uptake_explic
it
MichaelisMenten
OptimalNutrientContent
RootSegmentNutrientDepletionVolume
SegmentMaxNutrientUptakeRate
Tropisms
UseDerivative
UseParameterFromParameterSection
UseRootClassAndNutrientSpeci2cTable
VolumetricHeatCapacity
WaterMassBalanceTest
WaterUptakeFromHopmans

List of plugins for simulating various processes

Note that these are a list of classes, as they appear in the code. Registration of the plugins may
occur under different names. Inputfiles use the registered names, not the class names. Use
OpenSimRoot -l to get that list. See also operation manual in Supplement 2.

Integration functions

The SimulaVariable and SimulaPoint classes use helper functions for integrating the result.
Several integration methods have been implemented (Supplemental figure 3.2). New integration
functions can be added and registered, using the plugin framework, similar to the classes that
inherit from DerivativeBase.

Supplemental figure 3.2: Inheritance diagram for the integration classes

Object generators

Object generators are plugins that can be associated with any SimulaX object and update the list
of children when a child is requested.

Supplemental figure 3.3: Inheritance diagram for the object

generators

Supplement 4: Plugin example code

Here we give example code for a simple plugin and the code needed to register this plugin with
OpenSimRoot. Once the code has been put into a text file, it can be compiled and linked to
OpenSimRoot.

1) For new algorithms

//Class declaration. Class should inherit from DerivativeBase, have a constructor, and
implements two virtual methods, getName() and calculate(). The example class presented here has
two SimulaBase pointers as private members, which will be used to connect to the minimodels that
simulate length and diameter of a root segment and to retrieve their values.

class RootSegmentSurfaceArea:public DerivativeBase{
public:
 RootSegmentSurfaceArea(SimulaDynamic* pSD);
 std::string getName()const;
protected:
 void calculate(const Time &t,double &var);
private:
 SimulaBase *diameter,*length;
};

//the constructor of our class. pSD is the pointer to the minimodel that uses the plugin for
computation
RootSegmentSurfaceArea::RootSegmentSurfaceArea(SimulaDynamic* pSD):DerivativeBase(pSD)
{
//We check that the user set the unit right
 pSD->checkUnit("cm2");
//We retrieve the pointers
 length=pSD->getSibling("rootSegmentLength","cm");
 diameter=pSD->getSibling("rootDiameter","cm");
}

//the computation
void RootSegmentSurfaceArea::calculate(const Time &t,double &area){
//first we retrieve data
 double d,l;
 diameter->get(t,d);
 length->get(t,l);
//second we compute
 area=l*d*PI;
}

//the name under which the plugin will be registered, make sure it is unique, use OpenSimRoot
-l to see what names are already taken
std::string RootSegmentSurfaceArea::getName()const{
 return "rootSegmentSurfaceArea.v3";
}

//Now we create a function for instantiating our class
DerivativeBase * newInstantiationRootSegmentSurfaceArea(SimulaDynamic* const pSD){
 return new RootSegmentSurfaceArea(pSD);
}

//And we register this plugin using a static instantiation of a class which guarantees that the
constructor is when OpenSimRoot is started
static class AutoRegisterMyNewPlugin {
public:
 AutoRegisterMyNewPlugin() {
//this line does the registration. Make sure you register under the same name as the getName()
method returns. This important for the model dump being loadable again.
 BaseClassesMap::getDerivativeBaseClasses()["rootSegmentSurfaceArea.v3"] =
newInstantiationRootSegmentSurfaceArea;
} rf9843hh923h; //the one static instance of this class

2) For new integration functions

//class declaration, must inherit from IntegrationBase, has a constructor,
// a getName() method and at least one integrate method
class BackwardEuler:public IntegrationBase{
public:
 BackwardEuler();
 std::string getName()const;
protected:
 virtual void integrate(SimulaVariable::Table & data, DerivativeBase & rateCalculator);
 virtual void integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator);
};

BackwardEuler::BackwardEuler():IntegrationBase(){}

void BackwardEuler::integrate(SimulaVariable::Table & data, DerivativeBase &rateCalculator){
 //...Your new algorithm here which should extend the data table, the derivative (rates) that
should be used are retrieved from the rateCalculator. For examples see code.
}

void BackwardEuler::integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator){
 //...Your new algorithm here, but then suitable for Coordinates, not doubles. Intended to
allow the simulation of a point moving through space. Mostly used to simulate the growth
trajectory of the root tip
};

std::string BackwardEuler::getName()const{
 return "BackwardEuler";
}

//function for instantiating the class
IntegrationBase * newInstantiationBackwardEuler(){
 return new BackwardEuler();
}

//Register the instantiation function
static class AutoRegisterIntegrationFunctions {
public:
 AutoRegisterIntegrationFunctions() {
 BaseClassesMap::getIntegrationClasses()["BackwardEuler"] = newInstantiationBackwardEuler;
 }
}p44608510843540385;//the one static instance of this class

3) For object generators

//class declaration for an object generator
class MyGenerator: public ObjectGenerator {
public:
 void initialize(const Time &t);
 void generate(const Time &t);
 MyGenerator(SimulaBase* const pSB);
};

//construction is delayed. Code is in the initialize method
MyGenerator::MyGenerator(SimulaBase* const pSB) :
 ObjectGenerator(pSB) {
}

//collecting of info, and or construction of minimodels at the start of the simulation
void MyGenerator::initialize(const Time &t) {
 //collect some info about planting time
 Time plantingTime;
 SimulaBase *pt=pSB->existingChild("plantingTime");
 if (pt) {
 //read planting time from file
 pt->get(t, plantingTime);
 } else {
 //copy from parent
 plantingTime = pSB->getStartTime();
 }

 //generate new plant by copying the template
 pSB->copyAttributes(plantingTime, ORIGIN->getChild("plantTemplate"));

 //we are done
 pSB->stopUpdatefunction();
}

void MyGenerator::generate(const Time &t) {
 //add code if there is time dependent generation of objects, not just at the start
}

//the function for instantiation of the class
ObjectGenerator * newInstantiationMyGenerator(SimulaBase* const pSB) {
 return new MyGenerator(pSB);
}

//register the instantiation function
static class AutoRegisterMyGeneratorInstantiationFunctions {
public:
 AutoRegisterMyGeneratorInstantiationFunctions() {
 BaseClassesMap::getObjectGeneratorClasses()["MyGenerator"] =
 newInstantiationMyGenerator;
 }
} p4595582386;

Supplement 5: Detailed description of the water and nutrient submodules

Watermodule

Plant transpiration is simulated by OpenSimRoot, assuming that water availability is not limiting

and stomatal conductance is constant. Transpiration and evaporation need to be separated within

OpenSimRoot. Transpiration can be estimated from a fixed water use efficiency parameter

(which simply links carbon fixation linearly to transpiration), or from the Penman-Monteith

model, which computes evapotranspiration based on weather conditions (Penman, 1948;

Monteith, 1964). When transpiration is calculated based on a water use efficiency parameter, the

user needs to provide evaporation values; when the Penman-Monteith model is used,

transpiration and evaporation are separated by OpenSimRoot solving the Penman-Monteith

model twice, once for full crop cover, and once for a bare soil. Based on the percent light capture

by the crop OpenSimRoot scales evaporation and the transpiration terms assuming evaporation is

negligible and small under full crop cover (Leaf Area Index ~3).

To simulate the soil hydrology, OpenSimRoot has a submodule that solves the Richards equation

in three dimensions using finite element method (FEM) on a Cartesian grid. The soil water

submodule is a simplified and modified C++ rewrite of the SWMS3D model, which is the basis

of Hydrus and R-SWMS (Šimunek et al., 1995; Diamantopoulos et al., 2013).

Certain exceptional circumstances such as drainage or water ponding at top soil, are excluded.

The top boundary condition is a water flux that is the difference between precipitation and

evaporation. Evaporation, as computed by the Penman-Monteith equation, is assumed to be

potential evaporation (i.e. appropriate for wet soils), and assumed to be equal across the soil

surface, shoot geometry is not simulated. Potential evaporation is scaled back to an actual

evaporation by including a smooth scaling function which causes evaporation to decrease

smoothly from potential, when the top soil is wet, to equal the soil conductivity when the soil is

not able to sustain higher evaporation rates. If the top soil is not necessarily uniformly wet, actual

evaporation will be non-uniform across the soil surface in OpenSimRoot. The water retention

curve and soil hydraulic conductivity are computed using the van Genuchten and Mualem

equations.

The Richards equation can include a sink term, which in OpenSimRoot represents water uptake

by roots (as described evaporation sink is handled as dynamic boundary condition). To do so we

need to know 1) how much water is taken up by each root segment at a given moment in time,

and 2) how that uptake is coupled to the FEM nodes of the grid on which the Richards equation

is solved. Assuming that root uptake equals transpiration, i.e. we ignore temporal water storage

in the plant, OpenSimRoot can either divide the water uptake of the whole root system by

assuming each root segment contributes equally to uptake relative to its length (as in Hopmans,

(Hopmans & Bristow, 2002)) or by solving the hyrdraulic architecture represented by a network

model and using a circuit analogy likewise motivated by finite element theory (Alm et al., 1992;

Doussan et al., 1998). The network model is novel in OpenSimRoot implemented to work with a

growing root and used in the study of Schneider (Unpublished). This model requires axial and

radial hydraulic conductivities for each root segment, which can be defined in the input files as a

function of root age and class, and are scaled (i.e. normalized) with the inverse of the root

segment length (axial), or the root segment surface area (radial). The coupling of the root model

to the FEM model enables each root segment to have a soil water content at the root surface. The

next step is to make sure that water uptake by the root system equals the transpiration which is

achieved by changing the water potential at the root collar (top of the hypocotyl). Getting the
root collar potential is a parabolic optimization function which is solved with a newton solver,
typically in three steps. The water potential at the top of the hypocotyl is not allowed to drop
below a given threshold. If the threshold is reached, OpenSimRoot assumes that water uptake is
less than potential transpiration and will write a warning. Further simulation results might not be
correct as currently no effects of drought on photosynthesis, leaf expansion etc have been
implemented. However, the model should correctly deal with compensatory uptake of water
when soil water distribution is heterogeneous. And this model can show water loss of roots while
the same conductivity from xylem to soil is assumed.
Mapping the root model to the FEM model is done based on a neighborhood search. All FEM
nodes surrounding the root segment are considered. Sink terms, and local environment are
computed based on inverse distance weighted average of the FEM nodes surrounding the root
node. An alternative mapping algorithm, by which every FEM node is assigned with every root
node has been implemented, in order to ignore root architecture completely in the water and
nutrient uptake simulations. This was for example used in Postma and Lynch (2012) where it was
concluded that the positioning of the root, that is root architecture, is necessary for simulating
niche differentiation for nitrate uptake among maize, bean and squash plants, whereas if roots
would be able to take up nutrients from everywhere in the soil, there would be no niche
differentiation.

Nutrient module
OpenSimRoot has a nutrient module to simulate the uptake solutes, and in the new version
theoretically simultaneously for various nutrients. This module was implemented to simulate the
function of root architectural traits for nutrient uptake, and test tradeoffs for acquisition of
different nutrients. Time dependent optimal and minimal nutrient content (µmol/g) have to be
defined for leaves, stems and all root classes, for to be simulated solutes. These amounts are used
to compute nutrient requirements of the plant, and compared to total uptake amounts, including
initial seed reserves (for uptake see below). When uptake is less than demand, plant stress is
assumed, with maximum stress being defined as uptake equal to minimal nutrient content
(stress(uptake) = max(0, min((uptake-minimal)/(optimal-minimal),1)). Stress modifying impact
functions can be defined for components such as leaf expansion rate, photosynthesis rates,
respiration rates, and root elongation rates or secondary growth. Typically, they should be
defined such that, when stress=0, growth ceases altogether. For example, by making the initial
response of the shoot stronger than that of the root, the plant will decrease shoot to root ratios
when nutrient deficient. Thus OpenSimRoot will move towards a functional equilibrium,
although due to the inherent slow nature of growth, and the relative fast dynamics of other
processes, this functional equilibrium might not be reached, and oscillatory behavior might occur
(Postma & Lynch, 2011; Postma et al., 2014b). The current implementation assumes that
internally, reallocation of nutrients is fast and perfect, such that all organs experience equal
stress. This might be true for a nutrient like nitrogen, which typically causes chlorosis
everywhere in the shoot, but might not be correct for other nutrients. The importance of
simulation of nutrient redistribution in the plant still needs study, and would require
implementation of a shoot architectural model in which the age and position of individual leafs is
tracked.
Nutrient uptake from soil to root is simulated independently of utilization of nutrients within the
plant. Two options for simulation are provided: 1) The Barber-Cushman model and 2) a 3D FEM

model. One is a C++ implementation of the original Barber-Cushman model with root hairs. The
model is described as radial 1D PDE (Partial Differential Equation) which corresponds to the
rhizosphere around the root. It assumes nutrient uptake to be described by a Michealis-Menten
term, and the nutrient transport in the soil to be driven by convection (water flow) and diffusion.
A buffer constant replaces a reaction term. The Barber-Cushman model is suitable for immobile
nutrients like phosphorus. Phosphorus uptake causes steep gradients in concentrations around the
root. These depletion zones are typically only 2-4 mm in diameter, and thereby would require a
computationally unacceptably high resolution of the 3D finite element model (~0.1 mm
resolution of a 1 m3 soil pedon would result in 1e12 elements or 8 petabytes to hold a single
double precision array).
Competition between roots is computed based on a local average root density which determines
the outer boundary of the Barber-Cushman model. OpenSimRoot updates this boundary when
new roots grow in the vicinity of other roots and corrects the initial nutrient concentration for
new roots with the uptake of nutrients of older roots. Nevertheless, this handling of root
competition is only acceptable when the overlap of depletion zones, which can be computed
based on raster images of the root system, is relatively small. For crops, overlap in phosphorus
depletion zones is typically below 20% because of its low mobility. Inter and intra root
competition plays a much more important role in the uptake of mobile nutrients such as nitrate.
Nitrate might form diffuse or no depletion zones around the root and for this reason is better
simulated using a 3D FEM. SimRoot solved the convection-dispersion equation on the same
FEM grid as the water transport is solved which can be restricting, OpenSimRoot alternatively
can solve it on a refined grid, where the refinement factor is yet fixed to 2nd, 4th, 8th or the 16th
of a reference grid. For each solute a new FEM model is instantiated and linked to the water
model. The 3D FEM model for solute transport is coupled to the root systems using the same
method as used for the hydraulic model, where the uptake of solutes by the root segments is
based on Michaelis Menten kinetics, as in the Barber-Cushman model. Buffering and diffusion
coefficients are dependent on the soil water content, and might thereby deviate from the constant
coefficients used in the Barber-Cushman model. The effects must be considered when comparing
the output of both models (Postma and Lynch, 2011).
When simulating more than one solute, solutes do not influence each other directly in
OpenSimRoot. Indirect effects occur through the influence of nutrient uptake on root growth.
Each solute has a stress function to determine how each impacts, for example, photosynthesis. A
user specified aggregation function determines the aggregate impact (Dathe et al., 2012). For
example, Postma et al., (2014a) showed how the optimal lateral branching density in maize
depends on the relative availability of phosphorus and nitrogen.

References
Alm DM, Cavelier J, Nobel PS. 1992. A finite-element model of radial and axial conductivities
for individual roots: development and validation for two desert succulents. Annals of Botany 69:
87–92.

Dathe A, Postma JA, Lynch JP. 2012. Modeling resource interactions under multiple edaphic
stresses. In: Ahuja LR,, In: Reddy VR,, In: Saseendran SA,, In: Yu Q, eds. Advances in
Agricultural Systems Modeling. Accepted for publication in. Madison, Wis., USA: ASA-CSSA-
SSSA, .

Diamantopoulos E, Iden SC, Durner W. 2013. Modeling non-equilibrium water flow in
multistep outflow and multistep flux experiments. HYDRUS Software Applications to Subsurface
Flow and Contaminant Transport Problems: 69.

Doussan C, Pagès L, Vercambre G. 1998. Modelling of the hydraulic architecture of root
systems: An integrated approach to water absorption - Model description. Annals of Botany 81:
213–223.

Hopmans JW, Bristow KL. 2002. Current capabilities and future needs of root water and
nutrient uptake modeling. Advances in Agronomy 77: 103–183.

Monteith JL. 1964. Evaporation and environment. Symposia of the society for experimental

biology 19: 205–234.

Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal
Society, 120–145.

Postma JA, Dathe A, Lynch JP. 2014a. The optimal lateral root branching density for maize
depends on nitrogen and phosphorus availability. Plant Physiology 166: 590–602.

Postma JA, Lynch JP. 2011. Theoretical evidence for the functional benefit of root cortical
aerenchyma in soils with low phosphorus availability. Annals of Botany 107: 829–841.

Postma JA, Lynch JP. 2012. Complementarity in root architecture for nutrient uptake in ancient
maize/bean and maize/bean/squash polycultures. Annals of Botany 110: 521–534.

Postma JA, Schurr U, Fiorani F. 2014b. Dynamic root growth and architecture responses to
limiting nutrient availability: linking physiological models and experimentation. Biotechnology
Advances 32: 53–65.

Šimunek J, Huang K, van Genuchten MT. 1995. The SWMS 3D code for simulating water

flow and solute transport in three-dimensional variably-saturated media. California: U. S.
Salinity laboratory, USDA.

Supplement 6: Example of a simple OpenSimRoot input file

The XML below is an example of an OpenSimRoot input file that constructs a simple crop
model, without any roots. All the SimulaX tags will instantiate a minimodel of the corresponding
type, for example a constant (time independent parameter) is declared as <SimulaConstant ...>.
Metadata for the minimodels, such as name and unit, are given in the attributes lists.

General rules for XML documents
1) The document has tags which are between brackets like <>
2) Tags correspond to minimodels in OpenSimRoot and therefore carry different names, such as
SimulaBase, SimulaConstant, etc.
3) Tags need to be closed either by putting a / before the closing bracket, or if data is nested
inside the tag with a corresponding closing tag which is recognized by </. For example
<SimulaConstant></SimulaConstant>
4) Between opening and closing tags you will find data, and or declarations of minimodels which
are at the next level in the hierarchy
5) Tags carry attributes which describe metadata. Attributes are always listed as
attribute=”something”. In OpenSimRoot all tags have at least a name attribute.
6) An XML document is plain text and recognized by a special declaration at the top of the
document. <?xml version="1.0" encoding="UTF-8"?>

7) XML documents can have stylesheets associated with them so the the browser knows how to
render the document. Here we have <?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>

8) Comments are between <!-- and -->.
9) All XML documents of a document type tag. For OpenSimRoot the document type is declared
as <SimulationModel></SimulationModel>. All other tags must be in between these tags.

Here follows an example input file. The comments in black give more explanation as to how a
simple crop model is being constructed by this input file. Input files for full root architectural
models can be found in the software repository on gitlab:
https://gitlab.com/rootmodels/OpenSimRoot

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>
<!--
Copyright © 2016 Forschungszentrum Jülich GmbH
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
under the GNU General Public License v3 and provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

Disclaimer
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You should have received the GNU GENERAL PUBLIC LICENSE v3 with this file in license.txt but it
can also be found at http://www.gnu.org/licenses/gpl-3.0.en.html -->

<!--This XML constructs a simple, radiation use efficiency based crop model.

Roots and stems are only presented as Carbon (dry weight) pools
Leaf dry weight is converted to leaf area based on specific leaf area (SLA)
Leaf area is converted to light interception using an extinction coefficient.
Light interception is converted to photosynthesis using radiation use efficiency (RUE).
Photosynthesis is converted to structural carbon using a conversion factor (multiplier) which
represents relative losses due to respiration
Fixed allocation causes structural carbon to be divided over root, stem and leafs.

Behavior, is simple exponential growth for which
RGR = SLA * C2Leafs * photosynthesis * multiplier
However, as the light interception with increasing leaf area
reaches an asymptote, the model will move towards linear growth.-->

<SimulationModel>

<!-- SimulaBase is a simple container, that holds other SimulaX objects. SimulaBase is thus a
minimodel that does not hold or simulate data. It should, like all mini models, have a name. So
here we declare a container in which we are going to put all our plants. Inside it we put a
container for our plant, named arbitrarily “myPlant”. -->

 <SimulaBase name="plants">
 <SimulaBase name="myplant">

<!-- Here follow three SimulaConstant declarations. SimulaConstant is a minimodel that holds time
and space independent data of different types. Possible types are double, int, string,
Coordinate. Besides the name attribute they must have a unit, and if the data is not a double, a
type declaration.

A plant should be of a given species/genotype. The model will look for a parameter set in
roottypeParameters with the corresponding type. Here we declare that we want to simulate a plant
of type mySpecies -->

 <SimulaConstant name="plantType" type="string">
 mySpecies
 </SimulaConstant>

<!-- The time that the plant is planted. 0. is at the start of the simulation. -->

 <SimulaConstant name="plantingTime" unit="day">
 0.
 </SimulaConstant>

<!-- Location in space where the seed is planted. -->

 <SimulaConstant name="plantPosition" type="Coordinate">
 0 -2 0

<!-- Container that hold all the minimodels that will simulate shoot
related parameters. The shoot and root are inside plantPosition, as OpenSimRoot works with a
relative Coordinate system. We achieve that all coordinates that belong to our plant are relative
to plantPosition. -->

 <SimulaBase name="shoot">

<!-- Licht interception is simulated by the light interception module. SimulaDerivative declares
a minimodel that wil use the lightInterception plugin to compute light interception. Attributes
are name of what is being computed (name="lightInterception"), the unit of what is being computed
(unit="umol/cm2/day"), and the plugin that should be used to compute it
(function="lightInterception"). The plugin lightInterception requires leafAreaIndex and from the
parameter section and extinctionCoefficient (kdf). Further it needs irradiation levels from the
environmental section. All have been declared further down. -->

http://www.gnu.org/licenses/gpl-3.0.en.html

 <SimulaDerivative name="lightInterception" unit="umol/cm2/day"
 function="lightInterception" />

<!--Simulation of photosynthesis rates can be done by the plugin registered as
photosynthesisLintulV2. However, since we want to know the total photosynthesis, the rates need
to be integrated over time. SimulaVariable does this. Thus unit is not g/day, but g. Attributes
are otherwise same as for a SimulaDerivative tag. Optional attributes that control the method of
integration and the timestep can be given. For example integrationFunction=”ForwardEuler” will
use the forward euler plugin for integrating. List of all integration methods can be obtained by
running OpenSimRoot -L. maximumTimeStep=”0.1” would reduce the maximum timestep from the default
0.2 to 0.1.
-->
 <SimulaVariable name="photosynthesis" unit="g"
 function="photosynthesisLintulV2" />

<!--Declaration of how leafAreaIndex should be simulated, as it is needed by the
lightInterception plugin. -->

 <SimulaDerivative name="leafAreaIndex" unit="cm2/cm2"
 function="leafAreaIndex" />

<!--Declaration of how leafArea should be simulated, as it is needed by the leafAreaIndex plugin.
Here the initial leaf area is given. More time value pairs can be entered in order to specify a
predefined initial leaf area. The leafArea plugin will simulate increases in leaf area on the
basis of carbon allocation to the leafs, the specificLeafArea and the carbonToDryweight ratio,
all declared later on.--->

 <SimulaVariable name="leafArea" unit="cm2" function="leafArea">
 0. 1. </SimulaVariable>

<!--Same as leafArea, but then for leafDryWeight. -->

 <SimulaVariable name="leafDryWeight" unit="g"
 function="leafDryWeight.v2"> 0. 0.001 </SimulaVariable>

<!--Here follow more minimodels, all with their respective plugins declared -->

 <SimulaDerivative name="relativeCarbonAllocation2Leafs"
 unit="100%"
 function="relativeCarbonAllocation2LeafsFromInputFile" />
 <SimulaVariable name="carbonAllocation2Leafs" unit="g"
 function="carbonAllocation2Leafs" />
 <!-- optional to have stem weight -->
 <SimulaDerivative name="relativeCarbonAllocation2Stems"
 unit="100%"
 function="relativeCarbonAllocation2StemsOneMinusLeafs" />
 <SimulaVariable name="carbonAllocation2Stems" unit="g"

function="carbonAllocation2Stems" />
 <SimulaVariable name="stemDryWeight" unit="g"

function="stemDryWeight" />
 </SimulaBase>
 </SimulaConstant>

<!--In this simulation it was decided to declare the carbonToDryWeight ratio as a simple
constant. -->

 <SimulaConstant name="carbonToDryWeightRatio" unit="100%">
 0.45
 </SimulaConstant>

<!--Carbon allocation -->

 <SimulaDerivative name="relativeCarbonAllocation2Shoot"
 unit="100%"
 function="relativeCarbonAllocation2ShootFromInputFile" />
 <SimulaVariable name="carbonAllocation2Shoot" unit="g"
 function="carbonAllocation2Shoot" />

<!--Instead of using a process specific plugin to simulate the carbon available for growth, here
we use a general plugin named usePath which simply couples the carbon available for growth to
photosynthesis. Since this declaration as a child called “multiplier” the photosynthesis rates is
halved, so it is assumed that half of all carbon fixed by photosynthesis is converted to plant
dry mass, the rest is respired. -->

 <SimulaDerivative name="carbonAvailableForGrowth"
 unit="g" function="usePath">
 <SimulaConstant name="path" type="string">
 plantPosition/shoot/photosynthesis
 </SimulaConstant>
 <!-- half of carbon assumed to be respired -->
 <SimulaConstant name="multiplier">0.5</SimulaConstant>
 </SimulaDerivative>

<!--Some declarations related to roots -->

 <SimulaDerivative name="relativeCarbonAllocation2Roots" unit="100%"
function="relativeCarbonAllocation2RootsOneMinusShoot" />

 <SimulaVariable name="carbonAllocation2Roots" unit="g"
function="carbonAllocation2Roots" />

 <SimulaVariable name="rootDryWeight" unit="g" function="rootDryWeight" />

<!--The closing tags for the myPlant and Plants containers. -->

 </SimulaBase>
 </SimulaBase>

<!-- Environmental data needs to be declared, here all we need is irradiation in order to know
how much light is being captured for photosynthesis -->

 <SimulaBase name="environment">
 <SimulaBase name="atmosphere">
 <SimulaTable name_column1="time" name_column2="irradiation"
 unit_column1="day" unit_column2="umol/cm2/day">
 0 3000
 100 3000
 </SimulaTable>
 </SimulaBase>
 </SimulaBase>

<!-- here a parameter section for our plant is specified. -->

 <SimulaBase name="rootTypeParameters">
 <SimulaBase name="mySpecies">
 <SimulaBase name="resources">

<!--relativeCarbonAllocation to leafs (see above) uses a plugin in that simply looks up data from
a table. The table is declared here. SimulaTables have two columns. Each column has a name and a
unit declared in the attribute list. Here, as will be often the case, the first column is time.
This is time since the plant started growing, not since the start of the simulation. First all
carbon that is going to the shoot is allocated to leafs, later on more carbon is going to the
stems. Values in the table are interpolated linearly, unless a different interpolation method is
declared. Currently, only interpolation=”step” is implemented as alternative method. -->

 <SimulaTable name_colum1="time" unit_colum1="day"
 name_colum2="carbonAllocation2LeafsFactor" unit_colum2="100%">
 0 1
 10 0.8
 40 0.5
 60 0.
 80 0.
 </SimulaTable>

<!--How much carbon should go to the root. The rest goes to the shoot. -->

 <SimulaTable name_colum1="time" unit_colum1="day"
 name_colum2="carbonAllocation2RootsFactor" unit_colum2="100%">

 0 0.8

 10 0.2

 40 0.2

 80 0.2

 </SimulaTable>

 </SimulaBase>

<!--Declaration of several well known shoot related parameters. -->

 <SimulaBase name="shoot">

 <SimulaConstant name="areaPerPlant" unit="cm2">

 100

 </SimulaConstant>

 <SimulaConstant name="extinctionCoefficient" unit="noUnit">

 0.6

 </SimulaConstant>

 <SimulaConstant name="lightUseEfficiency" unit="g/umol">

 0.4E-6

 </SimulaConstant>

 <SimulaTable name_colum1="time" name_colum2="specificLeafArea"

 unit_colum1="day" unit_colum2="g/cm2" note="SLA in lintul">

 0 0.001

 10 0.002

 40 0.003

 80 0.003

 </SimulaTable>

 </SimulaBase>

 </SimulaBase>

 </SimulaBase>

<!--This section gives the user some control over the output.-->

 <SimulaBase name="simulationControls">

 <SimulaBase name="outputParameters">

 <SimulaBase name="table">

<!--A table should be written containing values for each minimodel, for every half day from day 0

to 80. Hierarchy will be traversed up to depth 10 -->

 <SimulaConstant name="run" type="bool"> 1 </SimulaConstant>

 <SimulaConstant name="searchingDepth" type="int"> 10

 </SimulaConstant>

 <SimulaConstant name="startTime" type="time"> 0.

 </SimulaConstant>

 <SimulaConstant name="endTime" type="time"> 80.

 </SimulaConstant>

 <SimulaConstant name="timeInterval" type="time"> 0.5

 </SimulaConstant>

 </SimulaBase>

 </SimulaBase>

 </SimulaBase>

<!--We are done -->

</SimulationModel>

User friendly viewing of XML input files
A webbrowser can transform this into more human friendly presentation using the attached tree-
view.xsl transformation style sheet (available for download at the gitlab repository
https://gitlab.com/rootmodels/OpenSimRoot). The result when you open this file in a browser is
given below.

https://gitlab.com/rootmodels/OpenSimRoot

 |___ Origin
 |___ 'plant'
 | |___ 'myplant'
 | |___ 'plantType' = mySpecies
 | |___ 'plantingTime' = 0 (day)
 | |___ 'plantPosition' = 0 -2 0
 | | |___ 'shoot'
 | | |___ 'lightInterception' (umol/cm2/day)
 | | |___ 'photosynthesis' (g)
 | | |___ 'leafAreaIndex' (cm2/cm2)
 | | |___ 'leafArea' (cm2) initial value = 1.
 | | |___ 'leafDryWeight' (g)
 | | |___ 'relativeCarbonAllocation2Leafs' (100%)
 | | |___ 'carbonAllocation2Leafs' (g)
 | | |___ 'relativeCarbonAllocation2Stems' (100%)
 | | |___ 'carbonAllocation2Stems' (g)
 | | |___ 'stemDryWeight' (g)
 | |___ 'carbonToDryWeightRatio' = 0.45 (100%)
 | |___ 'relativeCarbonAllocation2Shoot' (100%)
 | |___ 'carbonAllocation2Shoot' (g)
 | |___ 'carbonAvailableForGrowth' (g)
 | | |___ 'path' = plantPosition/shoot/photosynthesis
 | | |___ 'multiplier' = 0.5
 | |___ 'relativeCarbonAllocation2Roots' (100%)
 | |___ 'carbonAllocation2Roots' (g)
 | |___ 'rootDryWeight' (g)
 |___ 'environment'
 | |___ 'atmosphere'
 | |___ x,y pairs :{ 0 3000 100 3000 }
 |___ 'rootTypeParameters'
 | |___ 'mySpecies'
 | |___ 'resources'
 | | |___ 'carbonAllocation2LeafsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 1 10 0.8 40 0.5 60 0. 80 0. }
 | | |___ 'carbonAllocation2RootsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 0.8 10 0.2 40 0.2 80 0.2 }
 | |___ 'shoot'
 | |___ 'areaPerPlant' = 100 (cm2)
 | |___ 'extinctionCoefficient' = 0.6 (noUnit)
 | |___ 'lightUseEfficiency' = 0.4E-6 (g/umol)
 | |___ 'specificLeafArea' (g/cm2)=f{'time'} (day) x,y pairs :{ 0 0.001 10 0.002 40 0.003 80 0.003 }
 |___ 'simulationControls'
 |___ 'outputParameters'
 |___ 'table'
 |___ 'run' = 1
 |___ 'searchingDepth' = 10
 |___ 'startTime' = 0.
 |___ 'endTime' = 80.
 |___ 'timeInterval' = 0.5

User friendly editing of XML input files

Besides attaching a transformation sheet for transforming xml to html and view it in a
webbrowser, a XML schema (xsd) is available, which allows schema aware editors to provide
auto completion and validation of the input file. Below is a screenshot from an XML editor
(plugin in www.eclipse.org) which shows the declaration of the schema, and a pop down menu
for the available arguments for SimulaTable, and the different values that the objectGenerator
argument can have.

http://www.eclipse.org/

Supplemental figure 6.1: Screenshot of XML editor in eclipse in which a new file was created,
using the new file wizard. The schema is declared with
“xsi:noNamespaceSchemaLocation="../scripts/XML/SimulaXMLSchema.xsd"”
and the black and the black and white pop up boxes show sugges�ons, as de@ned in the

schema.

Supplement 7: Diagram of all state variables and their dependencies in an
exemplar bean simulation

We drew a graph which contains the various state variables in an example simulation and the
dependencies among them. Each state variable is simulated by a SimulaObject, here we depicted
SimulaConstants, SimulaTables and SimulaStochastic as wedges, whereas all others are depicted
as a rounded boxes. The arrows indicate information flow, that is the result of one minimodel
goes into the computation of another. The network is strongly dependent on the input file, and
somewhat dependent on time, given that computations might switch on given conditions and
should thereby be regarded as exemplar. To properly view the graph, enlarge the pdf strongly.

Supplemental figure 7.1: Graph representing all the state variables in a bean simulation, and their
connections at day 12. For better viewing, enlarge by about 1200%.

OpenSimRoot

D90

roots below d90 for nutrient

stress factor:impact on:root potential longitudinal growth multiplier

Swms3d

top boundary �ux rate bottom boundary �ux rate total sink rate total mineralization rate nutrient concentration at the root surface volumetric water content at the root surface

top boundary �ux bottom boundary �ux total sink total mineralization

root water uptake

carbon allocation to #roots

root growth scaling factor

root growth scaling factor;major axissecondary root growth scaling factor

carbon allocation to #shoot

carbon allocation to #leafs carbon allocation to #stems

carbon available for growth

relative carbon allocation to #shoot

carbon reserves

carbon to dry weight ratio

plant carbon income

reserves

leaf area

leaf potential carbon sink for growth

stem dry weight

root segment potential carbon sink for growth

root segment secondary potential carbon sink for growth

nutrient stress factor

stress factor stress factor:impact on:leaf area expantion rate stress factor:impact on:leaf respirationstress factor:impact on:photosynthesis stress factor:impact on:root segment carbon cost of exudates stress factor:impact on:root segment respirationstress factor:impact on:root segment secondary growth stress factor:impact on:stem respiration

plant minimal nutrient content

plant nutrient &xation

root carbon cost of biological nitrogen &xation

plant nutrient uptake

root carbon cost of nutrient uptake

plant optimal nutrient content

plant dry weight

plant potential carbon sink for growth

plant respiration

relative carbon allocation to #roots

root carbon costs

root carbon cost of exudates

root dry weight

root longitudinal growth

root length

root potential carbon sink for growth

root respiration

root secondary potential carbon sink for growth

growthpoint

root nutrient uptake

root optimal nutrient content

root segment optimal nutrient content

root length to #base

root segment length

root segment water uptake

root potential carbon sink for growth;major axis root surface area root volume

root diameter

shoot dry weight

shoot potential carbon sink for growth

shoot respiration

stress adjusted potential leaf area

leaf respiration

photosynthesis

root segment carbon cost of exudates root segment respiration

stem respiration

leaf area index leaf area reduction coe'cient leaf dry weight

light interception root potential secondary growth leaf minimal nutrient content leaf optimal nutrient content

stem potential carbon sink for growth

stem minimal nutrient contentstem optimal nutrient content

potential transpiration

potential leaf area

relative carbon allocation to #leafs

relative carbon allocation to #stems

root minimal nutrient content

root segment minimal nutrient content

root segment surface area root segment volume

root segment nutrient uptake

root potential longitudinal growth

ImaxKm

root segment dry weight

spatial root density

root hair surface area

threshold

planting time

default spatial integration length

start timetime interval total solute in column total solute change total water in column total water change in columnbulk density

irradiation

carbon content CNratio speed of aging initial relative mineralisation rate assimilation e'ciency microbes CNRatio microbes time o,set

impact by:phosphorus

initial hydraulic head residual water content saturated water content van genuchten:alpha van genuchten:n saturated conductivity

volumetric water content in barber cushman

PAR/ RDD

precipitation evaporation concentration

carbon cost of nitrate uptake

saturated di,usion coe'cient longitudinal dispersivity transverse dispersivity adsorption coe'cient

di,usion coe'cient bu,er power r1-r0 increase time step

impact by:nitrate

carbon cost of biological nitrogen &xation

relative reliance on BNF

max carbon allocation to #secondary growth

max carbon allocation to #shoot

seed size seed reserve duration

carbon allocation to #leafs factor

Cto dry weight ratio

relative potential transpiration

extinction coe'cient

speci&c leaf area

light use e'ciency

area per plant

branching frequency

branching delay

density

length root tip longitudinal growth rate multiplier

leaf area expantion rate

growth rate

diameter

secondary growth rate secondary growth scaling factor

initial nutrient uptake

leaf optimal nutrient concentrationleaf minimal nutrient concentration

stem optimal nutrient concentration stem minimal nutrient concentration

optimal nutrient concentrationminimal nutrient concentration

Cmin

relative respiration rate leafs relative respiration rate stems

relative respirationrelative carbon cost of exudation

root hair length root hair diameter root hair density

soil impedence.v2 gravitropism.v2 branching angle

leaf nutrient uptake stem nutrient uptake

growth rate multiplier

	Summary
	Keywords: Root system architecture, Functional Structural Plant Model, OpenSimRoot, Root architectural traits, Simulation, Model driven Phenotyping, Plant nutrition

	Introduction
	Model description
	OpenSimRoot design
	Description of the various modules
	Implementation
	Input files
	Output files
	License

	Application examples for OpenSimRoot
	Studies on the function of RSA traits
	Relationships between RSA traits and root system descriptors.
	Scaling up from root anatomy to crop
	OpenSimRoot as an extension to plant phenotyping

	Discussion & Conclusions
	Acknowledgements
	Author contributions
	Supplemental files
	References
	Tables
	
	Figure legends

	Date Field 1:

