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Summary 

 Research Conducted and Rationale: OpenSimRoot is an open sourced, functional-

structural plant model and mathematical description of root growth and function. We 

describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the 

plant science community.

 Description: OpenSimRoot is an extended version of SimRoot, established to simulate root 

system architecture, nutrient acquisition, and plant growth. OpenSimRoot has a plugin, 

modular infrastructure, coupling single plant and crop stands to soil nutrient, and water 

transport models. It estimates the value of root traits for water and nutrient acquisition in 

environments and plant species.

 Key results and unique features: The flexible OpenSimRoot design allows upscaling from 

root anatomy to plant community to estimate 1) resource costs of developmental and 

anatomical traits, 2) trait synergisms, 3) (inter species) root competition. OpenSimRoot can 

model 3D images from MRI and X-ray CT of roots in soil. New modules include: 1) soil 

water dependent water uptake and xylem flow, 2) tiller formation, 3) evapotranspiration, 4) 

simultaneous simulation of mobile solutes, 5) mesh refinement, and 6) root growth 

plasticity. 

 Conclusion: OpenSimRoot integrates plant phenotypic data with environmental metadata to 

support experimental designs and gain mechanistic understanding at system scales. 

Keywords: Root system architecture, Functional Structural Plant Model, OpenSimRoot, Root 

architectural traits, Simulation, Model driven Phenotyping, Plant nutrition
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Introduction

Functional-structural plant models combine a representation of 3D plant structure with 

physiological functions to advance plant science and its applications (Vos et al., 2010; Dunbabin et 

al., 2013). Those that incorporate below-ground root parameters (Dunbabin et al., 2002; Pagès et 

al., 2004; Wu et al., 2007; Pierret et al., 2007; Javaux et al., 2008; Leitner et al., 2010; Lobet et al., 

2014; Gérard et al., 2017), require significant time and expertise in biological, mathematical, 

computational and digital image analyses, and therefore their development benefits greatly from an 

open and global setting. SimRoot is one of the most feature-rich and highly cited functional-

structural root architectural models. However the last full description dates back twenty years 

(Lynch et al., 1997), and subsequent papers report application of the model, with successive 

changes embedded in methods sections (Postma & Lynch, 2011a,b; Dathe et al., 2013). Here we 

describe fully a new, open source version, branded OpenSimRoot, that is freely available for 

download (http://rootmodels.gitlab.io/  OpenSimRoot). New features in this version allow simulation 

of more growth scenarios and crops, and its application has been widened to support emerging root 

phenotyping technologies. 

SimRoot was originally designed to reconstruct root system architecture (RSA, see Table 1) from 

empirical data such as growth rates, angles and branching frequencies of different root classes. A 

post-simulation analysis of root geometry, nutrient uptake, and carbon costs enabled comparison of 

different RSAs with respect to their efficiency in taking up phosphorus relative to carbon costs 

(Nielsen et al., 1994; Lynch & Beebe, 1995; Nielsen et al., 1997; Lynch et al., 1997; Ge et al., 

2000; Rubio et al., 2001; Walk et al., 2004, 2006). Later versions coupled physiological 

mechanisms such as root respiration, nutrient uptake, canopy photosynthesis, and RSA to simulate 

how the root phenotype dynamically interacts with the soil environment, and how this interaction 

influences acquisition of soil resources and consequently plant growth (Postma & Lynch, 2011a,b, 

2012; Dathe et al., 2013; Postma et al., 2014a; Dathe et al., 2016; York et al., 2016). The initial 

focus was on phosphorus capture (Lynch & Beebe, 1995; Ge et al., 2000; Ma et al., 2001; Postma 

& Lynch, 2011b), which was later expanded to include C (photosynthesis), N, K, and water (Postma 

et al., 2008; Postma & Lynch, 2011a; Dathe et al., 2013). Microeconomic theory, in which resource 

acquisition is compared to resource investment costs, has guided the interpretation of results 

(Lynch, 2007; Postma et al., 2014b). Although SimRoot was designed as a heuristic model, i.e., a 

tool for exploring implications of existing knowledge, and gaps in that knowledge, it proved 

surprisingly accurate for predicting fitness outcomes of root phenotypes (Chen et al., 2011; 

Saengwilai et al., 2014; Zhan et al., 2015). 
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SimRoot is one of several root models that have been developed. Dunbabin et al. (2013) presents an 

exhaustive review of all root models to date and their capabilities. To our knowledge OpenSimRoot 

is currently the only plant root model that is openly version controlled (GIT) and GPLv3 licensed, 

allowing community-driven development. We envision that OpenSimRoot will be used and 

expanded by both modelers and non-modelers to simulate RSA and nutrient and water uptake in an 

ever widening scenario for species, environments and crop management practices to advance root-

based opportunities to increase resource-efficient agricultural productivity. A design goal of 

OpenSimRoot is a flexible model structure that can be controlled by the user rather than the 

programmer. This means that, through a plugin infrastructure, the user can directly vary components 

of the model and compare the results. Model behavior can further be studied through sensitivity 

analysis, which has been a major focus in past publications. 

In this paper we initially provide a short description of the design of the OpenSimRoot model and 

definitions, then present the major submodels in OpenSimRoot which simulate RSA, the shoot, 

carbon, water and nutrient acquisition and utilization, root growth plasticity, and geometric 

descriptors. After this model description we discuss model implementation, which is designed for 

flexibility, extensibility, transparency and robust numerics. We conclude with several examples of 

OpenSimRoot usage.

Model description

OpenSimRoot has, compared to other root models, a unique design which centers on coupling 

various mini-models (For definitions see Table 1). The distinction between parameter and algorithm 

has been, in line with object oriented programming, removed by encapsulating both within classes 

which share a common interface for coupling and data exchange.

OpenSimRoot design

OpenSimRoot contains a command line interface (CLI), a simulation engine, a plugin library, and 

classes responsible for reading and writing of data (Figure 1, Notes S1,2,3&4). The simulation 

engine implements an application programming interface (API) through which different modules 

can request information (See Note S1). The plugin infrastructure allows developers to implement 

new modules with limited knowledge about the rest of the code. Each plugin establishes 

dependencies between minimodels through the API and requests data of other minimodels in order 

to compute the necessary information. At the start of execution the import module reads an XML 

file (see below) and, based on that file, constructs a tree of minimodels. According to the 

specification in the XML, the minimodels load (instantiate) appropriate algorithms from a registry 
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which lists all available plugins (Note S3). The plugin infrastructure not only allows the user to 

implement new processes, but also to implement alternative algorithms and compare model results. 

The behavior of the modules described below is thus not fixed but can be adapted to hypotheses. 

Simulation is driven based on data requests that originate from the users request for output. Upon 

instantiation of the object tree, the modules that write output start requesting information in order to 

write the output files. The CLI has a small number of options (listed with –h) with the most 

important one the input file name. Runs are non-interactive such that many runs with different 

parameter combinations can be fully automated on a computational cluster. This capability is 

important when large numbers of simulations are required, for example when exploring parameter 

sensitivity or processing real root structures (see Results) from large numbers of plants. 

Description of the various modules

Root growth and RSA. The root system is represented by vertices and edges in OpenSimRoot. 

Every root tip has its own vertex with dynamic coordinates, and all other vertices have stationary 

coordinates that are placed behind the root tip as it extends. The final discretization of the root 

system can be coarser than the frequency of each growth point’s directional change. A fine scale 

discretization request can automatically reduce the integration time step. In the case of a coarse 

discretization, the length of a root segment is not the linear distance between two vertices, but the 

true distance that the root grew, based on growth rate at that given time. We thus “simplify” the 

growth trajectory for computational reasons, without losing the true root length. 

To grow a root system, we need: 1) when and where root tips (primordia) are created, 2) how fast 

root tips grow, and 3) in what direction. To start, we assume that, at a minimum, one primary root 

and a hypocotyl are present in the seed embryo. The term hypocotyl is used here freely to include 

any shoot axiles (stems) that are the origins of adventitious roots, whether simulating dicotyledons 

or monocotyledons. Branch roots and their own branch roots (classed according to order), are 

assumed to emerge from the primary root, based on rules that control the timing and placing of the 

branches. Adventitious roots (crown or nodal roots in grasses) can branch from the stem according 

to different schemes; the simplest defined by a starting time and position of a single whorl of roots. 

Formation of branch roots from these axiles is typically based on branching frequencies, which can 

be expressed in time, or space, or both, where the missing information is computed based on the 

growth rate of the parent root. Roots can branch from either phloem or xylem poles, depending on 

species (Casimiro et al., 2003). The number of poles determines number of positions of the radial 

branching angle, while the axial branching angle (angle between parent root and branch) is given in 

the parameter section (for detailed explanation see Lynch, 1997, and Figure 2). 
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Elongation rates of individual roots are predefined in the parameter space, but might be scaled 

according to a “root vigor” scaling factor; for example drawn from a lognormal distribution of 

elongation rates (scaled to unity), thus creating variation in length. The vigor factor can also scale 

the root specific root diameter, to allow an allometric relation between elongation rate and root 

diameter expansion within a root class (Pagès, 2000; Wu et al., 2016). Initial root diameter is 

otherwise a root class specific input parameter.

While initial growth direction is set by specified radial and axial branching angles (Figure 2), the 

direction can be changed with a tropism vector. The tropism vector is the sum of several vectors 

representing gravitropism, random impedance, and nutrient tropisms and is added to the normalized 

growth direction vector, to obtain the new direction. 

Once the root is growing, its branching rules allow it to branch off new roots of different classes and 

the whole process is repeated. Although OpenSimRoot currently does not simulate shoot 

architecture, a simple tiller model is included. Tillers can form their own leaf area, and their own 

root systems. In grasses, tillers produce nodal roots which can form a significant fraction of the total 

root system, depending on species and environment (Atkinson et al., 2014; Sebastian et al., 2016). 

Tiller formation is done on the basis of a table that indicates the time dependent delay till the next 

tiller is formed. Dicotolydonous roots have secondary growth from cambia which thicken the stele 

and periderm in the root. Secondary growth is simulated using a time dependent radial growth rate, 

scaled to distance along the root. 

Simulation of shoot growth and related processes. A simple shoot model can be constructed with 

OpenSimRoot plugins. The shoot model is non-geometric and represents the shoot by the state 

variables leaf area and leaf and stem dry weight. Increase in dry weights is based on carbon 

allocated to leaves and stems, multiplied by a dry weight to carbon factor. Increase in leaf area is the 

increase in leaf dry weight multiplied by the specific leaf area (SLA). Carbon partitioning can be 

based on predefined time dependent values (van Ittersum et al., 2003). Carbon partitioning tables 

are typically established from dry weight measurements, and thus instead of entering carbon 

partitioning tables, OpenSimRoot can also compute partitioning directly from dry weight 

measurements. This predefined growth represents “potential” growth under a well-watered and 

fertilized condition, whereas nutrient or carbon limitations may alter carbon partitioning (see 

below). Total carbon available for plant growth is computed by subtracting the carbon costs (for 

example respiration, and root exudates) from the total carbon fixed in the leaves, and or available 

from seed or non-structural carbon reserves. Carbon costs depend on rates of respiration or carbon 

expenditure on exudates or nitrate uptake, and these are integrated over the whole plant or root 

system. Total carbon fixation is based on a radiation use efficiency (RUE) model, whereby 
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intercepted light is converted linearly to carbon fixation. Intercepted light is computed from leaf 

area index, assuming that the simulated plant is in a homogeneous canopy of equally spaced and 

identical plants. Tillers are simulated as new plants with their own leaf area, but sharing resources. 

Carbon allocation to roots. The root growth module can compute the carbon for growth for each 

root segment (edge) using its volumetric increase, and a specific root volume (g cm-3). Volume 

increases arise from primary and/or secondary growth, and root segments are assumed cylindrical 

or, in the case of varying diameters, a truncated cone. OpenSimRoot compares available to required 

carbon, and if source strength is greater than sink strength, stores the carbon left over into a labile 

pool. OpenSimRoot thus considers that plant growth may be physiologically, not resource, 

constrained (Postma et al., 2014b). The labile pool is depleted when sink strength (defined by 

carbon needed for potential growth) is greater than source strength. Once stored carbon is depleted, 

growth rates decline. Various rules for carbon allocation under source limiting conditions have been 

implemented. The most used rule to date prioritizes shoot over roots, and within the root system, 

secondary growth (root cambial thickening) over elongation, and within the root classes, elongation 

of major bearing roots over branch roots. Consequently, when plant growth is carbon limited, 

growth rates of branch roots are reduced more than the growth of the parent roots. These rules do 

not have a physiological basis, rather a pragmatic basis in which source sink imbalances are seen as 

errors in the parameterization and estimation of the growth rates, and the assumption is that these 

errors are more likely in the branch root growth than in the shoot growth. However, other rules, 

such as equal scaling of all organs have been implemented, and can be used if the user assumes that 

all sinks compete equally for the available carbon.

 Although the inputs of the model are absolute growth rates, allometric scaling, based on the ratio 

between actual and potential leaf area (not mass), can reduce the attainable growth rate of the 

canopy and the rate of formation of new root branches. This implies that plants can never fully 

recover from a stress. However, a recovery rate can be defined which allows the plant to grow, for 

example, 10% faster when resources permit. Allometric scaling can also be used for the formation 

of branches. For example, the number of nodal roots per whorl in maize is dependent on the size of 

the shoot.

Hydrology. OpenSimRoot includes a hydrology module (Figure 3). The implementation of the 

hydrology module involves the coupling of three models that simulate the movement of water 

through soil, plant and into the atmosphere. OpenSimRoot includes a simplified C++ 

implementation of the SWMS model which is used to simulate soil water transport in Hydrus 

(Diamantopoulos et al., 2013) and RSWMS (Šimunek et al., 1995). Water transport through the 

xylem is simulated using a hydraulic network model (Alm et al., 1992; Doussan et al., 1998) and 
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evapotranspiration is simulated using the Penman-Monteith equation (Penman, 1948; Monteith, 

1964). Small adjustments of these models, to achieve good coupling, are described in Note S5. 

The hydrology module provides 3D water uptake profiles, drives convective nutrient transport, and 

can simulate compensatory water uptake and hydraulic redistribution, which may occur when the 

top soil dries out, causing nutrient uptake from dry soil domains to be reduced. It currently does not 

simulate drought related growth responses.

Nutrients. OpenSimRoot has a nutrient module to simulate the simultaneous uptake of solutes, 

originally implemented to simulate the impact of RSA on nutrient uptake, and to test tradeoffs for 

acquisition of nutrients (Postma & Lynch, 2011a; Dathe et al., 2013). Postma et al. (2014a) showed 

how the optimal branching density in maize depends on the relative availability of phosphorus and 

nitrogen. The module involves three parts: 1) simulation of plant nutrient requirements, 2) 

simulation of nutrient acquisition, and 3) stressors which define how suboptimal plant nutrient 

concentrations affect physiology or growth (Figure 4). Nutrients are simulated independently of 

each other, except that in step (3) the impact of suboptimal nutrient concentrations on a given state 

variable is aggregated using a maximum or averaging function. For example, nitrogen might affect 

photosynthesis more than phosphorus, but phosphorus might affect the leaf area expansion rate 

more strongly (see Dathe et al., 2013). 

The nutrient requirements of the plant are determined by integrating over the whole plant biomass 

predefined optimal and minimal nutrient concentrations. The plant acquires nutrients through seed 

reserves, uptake by the root system, and optional nitrogen fixation. Uptake of nutrients by the root 

system is simulated by Michaelis-Menten kinetics, where movement of nutrients in the soil towards 

roots is simulated through convection-dispersion-diffusion equations. OpenSimRoot includes two 

different implementations for solving these equations: 1) The Barber-Cushman model (Itoh & 

Barber, 1983), which simulates depletion zones around individual root segments at high resolution, 

and is suitable for immobile nutrients like phosphorus; and 2) a reimplementation of the solute 

model included in SWMS3D (Šimunek et al., 1995), which couples to the soil water model within 

the hydrology module (above), simulates the whole soil domain and is suitable for mobile nutrients 

like nitrate. More detailed descriptions of these models are given in Note S5. 

When acquisition falls short of what is required, plant stress is assumed. Stress impact functions can 

be defined for components such as leaf expansion rate, photosynthesis rates, respiration rates, and 

root elongation rates or secondary growth. By making the initial response of the shoot stronger than 

that of the roots, the plant decreases shoot to root ratios when nutrient deficient (Postma & Lynch, 

2011a). OpenSimRoot will move towards a functional equilibrium, although, due to the inherent 

slow nature of growth, and the relatively fast dynamics of other processes, this functional 
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equilibrium might not be reached (Postma & Lynch, 2011b; Postma et al., 2014b). The current 

implementation assumes that, internally, reallocation of nutrients is fast and perfect, such that all 

organs experience equal stress. This might be true for a nutrient like nitrogen, which typically 

causes chlorosis everywhere in the shoot, but might not be correct for other nutrients. The 

importance of simulation of nutrient redistribution in the plant still needs study, and would require 

implementation of a shoot architectural model in which the age and position of individual leaves or 

canopy strata are simulated. 

Mineralization and rhizosphere processes. OpenSimRoot implements the Yang and Janssen 

model for mineralization (Yang & Janssen, 2000). This model assumes exponential decline of a 

carbon pool, via aging and decline in break down rate. Based on C/N ratios of the substrate and C/N 

ratios of the microbial biomass, the net mineralization or immobilization of N can be computed. 

OpenSimRoot assumes that ammonium is readily converted to nitrate, and soil water content and 

temperature are currently ignored. The implementation of the Yang and Janssen model in 

OpenSimRoot simulates mineralization for every FEM node independently and thus mineralization 

rates may vary in space. The user can define a nitrogen fixation rate as a percentage of the nitrogen 

requirements of the plant. Fixation will not directly reduce nitrogen uptake from soil, but improves 

plant nitrogen status. 

Root exudation is not explicitly simulated, but is instead described as a root class- and time-

dependent carbon cost. Furthermore, exudation may increase the soluble nutrient concentration in 

the soil at the cost of the insoluble fraction and thereby increase nutrient availability locally 

(Barber-Cushman model only). 

Root growth plasticity. OpenSimRoot can define reaction curves to local environmental factors, to 

simulate a localized growth behavior of roots (Figure 5), often termed “plasticity” (Bradshaw, 1965; 

Palmer et al., 2001). 3D interpolation of available environmental data is used to define values at the 

root surface. For example, a reaction curve (norm, (Pigliucci et al., 1996)) could describe how 

gravitropism is scaled according to the local concentration of a nutrient. Similarly, branching 

frequency or root elongation rates can be scaled according to a local soil variable. For example, 

static fields for soil compaction can be defined in three dimensions, using lists of coordinates and 

associated values in conjunction with a spatial interpolation algorithm. Root elongation can then be 

defined as a function of local soil compaction. 

Currently, only absolute values (scalars) of local environmental variables such as soil compaction or 

nutrient concentrations can be used to simulate plasticity responses. Gradient sensing (i.e. relative 

values or tensors) of environmental factors may be important for nutrient- or hydro-tropism, or root 

proliferation responses into enriched patches. However, the biological mechanism for sensing 
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gradients is unclear, and currently no such mechanism has been implemented. OpenSimRoot does, 

however, include a mechanism to scale the strength of the local plasticity response on the basis of 

yet another reaction norm which might couple plasticity to whole plant status. 

Root length distribution and virtual coring. OpenSimRoot can compute several geometric 

metrics, specifically root length density profiles, virtual coring, root length below D90 for nitrate, 

and overlap of depletion zones. Others, like explored soil volume, or fractal dimensions, can be 

computed by the user on the basis of the geometric model output.

Root anatomy. Root anatomy is not simulated in 3D explicitly, but OpenSimRoot can represent the 

stele diameter, thickness of the cortex, the degree of cortical senescence, the degree of root cortical 

aerenchyma formation, and the length, diameter and density of root hairs. These anatomical traits 

may influence processes at the root segment level, specifically nutrient content, respiration, nutrient 

uptake and hydraulic conductivity (Fan et al., 2003; Hu et al., 2014). 

Implementation

OpenSimRoot is written in C++, an object oriented programming language. OpenSimRoot couples 

minimodels, which encapsulate the simulation of a single state variable. State variables are assumed 

to be associated with time and space and always have a unit. Minimodels are implemented as single 

C++ classes which inherit from the same base class (named SimulaBase), such that they all have the 

same interface (API). This interface allows minimodels to connect to other minimodels and request 

data. Minimodels might encapsulate a constant, an interpolation table, a random number generator 

or may make use of helper functions for computation. These helper functions are of the class type 

IntegrationBase and DerivativeBase and are registered under their specific names, such that, based 

on the input, the correct helper function can be instantiated. Helper functions compute a variable, 

and when associated with an integration function, can be integrated over time. The true 

functionality of OpenSimRoot is thus dispatched to the helper functions. Through a plugin 

framework, developers can add new helper functions and thus extend the functionality of the model. 

Example code for a plugin is given in Note S4. 

Thus, coupling of the state variables is done through a simple common interface guaranteeing that 

minimodels are, from a programmer point of view, standalone objects. Computations are quite 

indifferent as to how dependent variables are computed. This creates high flexibility in the input 

files, where the state variables can be defined in a variety of ways, i.e. constant, stochastic, 

interpolation table, or based on a plugin (Table 2, Note S6). 
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One big challenge in coupling independent (mini)models is the implementation of numerical 

integration when different models have different time steps, and when implicit coupling is desired. 

In OpenSimRoot we implemented a general framework for predictor corrected methods, by default 

RungeKutta4, with three components: 1) Interpolation, 2) Prediction, and 3) Dependency tracking. 

Each minimodel keeps a time table to interpolate between time steps and return historical 

information. Different minimodels can run at different time steps, which are however synchronized 

at every globally defined maximum time step. Since all data requests loop through the SimulaBase 

API, OpenSimRoot tracks forward dependencies and predictions, to determine whether to keep the 

step taken. Interdependent minimodels (For an exemplar graph of dependencies see Note S7) update 

using a predictor corrector method with interpolation to ensure compatibility of time steps. Whilst 

the precise order may have some influence on numerical accuracy or efficiency, there is typically no 

rational basis on which to prefer any one order of evaluation and is therefore simply dependent on 

the order of information requests (Typically breadth-first search, see hierarchical contextualization). 

The independent minimodel approach can create a significant computational overhead. However, 

simulations of RSA are still relatively fast compared to soil and we regard the ease with which new 

functionality can be added with no or little programming effort or knowledge about the rest of the 

code as more important than runtime. 

The current implementation of OpenSimRoot only depends on the standard C++ libraries (ISO C+

+11, and a few system libraries for the CLI), and on our website (rootmodels.gitlab.io) we provide 

directions for compilation and running on Linux, Mac and Windows operating systems. 

Hierachical contextualization. Many dynamic models are structured along a sequence of events; 

the 'time loop'. However, OpenSimRoot represents the plant as a hierarchy of interacting 

components to allow the main purpose of understanding of the function of root traits for the whole 

plant. Minimodels are placed in a simple hierarchy which provides them context, while the object 

oriented paradigm “hides” the internal workings of each component. 

Dynamic adding of components. OpenSimRoot adds (instantiates) new components during 

simulation to represent newly grown roots. This contrasts with crop models that represent plant 

growth by an increase in values of the state variables. Dynamic memory management, connected to 

an object oriented programming paradigm, is a useful programming feature for adding new 

components (Dingkuhn et al., 2005). Each minimodel can optionally have a class (inherited from 

the class ObjectGeneratorBase) attached to it, which, when the children of the minimodel are 

requested, is run to update the list of children. For example there are classes that will create new 

branch roots or will insert new vertices (rootNodes) into the hierarchy. Most of these classes do this 
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by copying templates, which contain all the necessary minimodels that are defined in the input files. 

An example of an ObjectGenerator plugin is given in Note S4. 

Input files

OpenSimRoot uses a hierarchical file of parameter values, which not only contains parameter 

values, but all state variables, and their metadata, such as names and units. Hierarchy provides 

context, such that parameter lists can be specific for different root classes of different plant species. 

Input files are implemented in XML, a general language for describing data together with metadata 

that is also hierarchical, flexible, allows comments, is supported by many software tools, and can be 

rendered in a browser as a more readable document. Note S6 gives an example of an input file that 

simulates a simple relative growth model. 

OpenSimRoot allows the user not only to enter initial values, but arrays of initial time series. This 

way, part of the RSA can be predefined, based on measurements (also see examples in Results). 

This approach may be different from most models, but creates the opportunity to use the model as 

an extension to phenotyping as partial information derived from phenotypic measurements can be 

directly entered into the input files (Fiorani & Schurr, 2013, Figure 6). Parameterizations exist for 

maize, squash, bean, lupin, Arabidopsis, and barley, and are now being developed for wheat and 

rice (Ma et al., 2001; Chen et al., 2011; Postma & Lynch, 2012). Input files for maize and bean, a 

predefined root system, a small crop model and other testing scenarios are included in the source 

code repository (https://gitlab.com/rootmodels/OpenSimRoot).

Output files

OpenSimRoot includes export modules that can be enabled or disabled to retrieve specified output 

forms that include tables in text files, 3D models in various VTK (visual tool kit, www.vtk.org) 

formats, 3D raster images, and a XML formatted dump of the model in the format of 

OpenSimRoot’s own input files. For example: tables can be further processed with statistical 

software (like R), VTK files can be opened with 3D data viewers (e.g. Paraview, 

http://www.paraview.org/), and the model dump can be viewed in a web browser (Note S6). 

License

OpenSimRoot is available under the GPLv3 Licence (https://www.gnu.org/licenses/gpl-3.0.en.html) 

which is an opensource – copyleft license. The license enables the practice of “good science” by 
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making the model transparent and by facilitating contributions from a wider range of expertise in 

the community. Access the version controlled code at https://gitlab.com/rootmodels/OpenSimRoot  . 

Application examples for OpenSimRoot

SimRoot has found useful application in several domains, including 1) geometric analysis of root 

system form and function, 2) simulation of processes that are very difficult to measure empirically, 

3) simulation of dynamic systems, 4) sensitivity analyses, and 5) simulation of hypothetical 

systems. In addition, a new capability of OpenSimRoot to read in (partially) predefined RSA enables 

application as an extension to 3D phenotyping techniques such as X-ray CT (Computed 

tomography) and MRI (Magnetic Resonance Imaging). Examples of all of these applications are 

provided below.

Studies on the function of RSA traits

A primary output of OpenSimRoot is the RSA phenotype emerging from input parameters 

simulating specific phenes like gravitropic setpoint angle or lateral root initiation interacting with 

environmental conditions. For example, due to spatio-temporal heterogeneity in soil nutrient 

availability, growth angles may differentially affect phosphorus and nitrogen uptake but also affect 

the degree of inter- versus intra-plant root competition (Ge et al., 2000; Rubio et al., 2001; Dathe et  

al., 2013). Results of simulated maize-bean-squash intercropping systems showed that RSA and 

nitrogen fixation (bean) work towards reduced competition and increased biomass (Postma & 

Lynch, 2012; Zhang et al., 2014). Competition among branches of the same parent root may 

become stronger when the root branching density increases, and since this increase results in greater 

sink strength, but not greater source strength (in carbon available for growth), the individual roots 

may stay shorter. Simulating these processes, Postma et al. (2014a) estimated that the optimal 

branching density (assuming parent roots have the same root branching density) for maize was 

lower when nitrogen availability decreased. The benefit of fewer but longer laterals in low nitrogen 

soils was confirmed in a genotypic contrast study (Zhan et al., 2015). Walk et al. (Walk et al., 2006) 

estimated the tradeoffs between basal root growth and adventitious root growth in bean and 

concluded that adventitious roots might be of most benefit when phosphorus availability is low. 

While these RSA traits represent tradeoffs, other traits may work in synergy towards greater 

productivity on low nutrient soils (Ma et al., 2001; Postma & Lynch, 2011a; Miguel et al., 2015). 

OpenSimRoot has also increased understanding of how integrated phenotypes function. This was 

demonstrated by York et al.(2015) who used SimRoot to estimate how changes in maize RSA, 

introduced by breeding over 100 years, might affect the nutrient uptake efficiency of modern 
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cultivars. New functionality described here will enable new studies of the function of whole plant 

traits, such as tiller formation and its influence on RSA.

Relationships between RSA traits and root system descriptors. 

Many researchers determine what might be called geometric descriptors of RSA: root length density 

profiles, fractal geometry, specific root length, total root length, rooting depth and convex-hull 

(Fitter & Stickland, 1992; Clark et al., 2011). These descriptors can be computed on simulated roots 

and their relation to architectural, anatomical or functional traits can be inferred. For example, 

differences in the specific root length of a root system may be related to anatomical changes, or a 

different ratio of thick to finer roots. Nielsen et al. (1997) determined differences in fractal 

dimensions between phosphorus efficient and inefficient genotypes, and Walk et al. (2004) applied 

SimRoot to show how soil exploration for P related to the fractal dimensions of the root system. 

Miguel et al (2015) applied SimRoot to do “virtual coring” in order to support the idea that 

genotypic differences in rooting depth might best be seen when coring in between rows. These 

studies show how the geometric aspects of the root system can be related to root traits and function, 

something not easily derived from empirical measurements of actual root systems. 

Scaling up from root anatomy to crop

At its smallest spatial scale, OpenSimRoot represents root anatomy, and at its largest scale it 

simulates crop measures like biomass, nutrient uptake and root zone depletion and leaching. For 

example, Ma et al., (2001) focused on root hairs in Arabidopsis thaliana and concluded that their 

length and density contribute synergistically towards greater phosphorus uptake. Chen et al., (2011, 

2013) used SimRoot and lupin phenotypic data to compute that the contribution of root hairs to total 

phosphorus uptake might vary strongly among genotypes. Postma and Lynch (2011a,b) and 

Schneider et al. (unpublished) simulated the root class- and time-dependent formation of Root 

Cortical Aerenchyma (RCA) and Root Cortical Senescence (RCS) respectively, and determined that 

RCA and RCS may be mechanisms underlying greater growth on low nutrient soils in maize, bean 

and barley, possibly via efficient use and recycling of resources. Genotypic contrast studies on low 

N soils concur with these simulation results (Saengwilai et al., 2014) which suggests that 

OpenSimRoot can be used for scaling up from anatomy to crop stands.

OpenSimRoot as an extension to plant phenotyping
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Technologies like X-ray CT and MRI have been adapted to image root systems non-destructively 

and provide non-invasive ways to phenotype whole root systems in 3D in soil (Mooney et al., 2012; 

Mairhofer et al., 2013; van Dusschoten et al., 2016). The utility to feed such data to a model was 

demonstrated by Stingaciu et al. (2013) for a non-growing lupin root system. Using time estimates, 

OpenSimRoot can simulate the growth of a root system such that the RSA is identical to that 

imaged. Figures 6a,b (for animation see Movie S1) show an MRI image, and the simulated root 

system. The simulation does not include a small portion (~8%) of the roots visible in the 3D image 

data because of limitations in image segmentation, rather than in the model. OpenSimRoot can add 

“MRI-non-visible” finer roots to the simulation according to existing model rules, and the 

simulation can be extended beyond the measured time, to predict continued growth of the root 

system. Importantly, OpenSimRoot modules for nutrient and water uptake can be enabled with the 

architectural phenotypes derived from measurements and simulation, and functions can be ascribed 

to the traits. This may help researchers and breeders go from image to functional understanding of 

the measured root systems, and compare genotypes not only on the basis of geometry, but also on 

the basis of modeled ability to take up water and nutrients. For example, Figures 6c,d show a CT 

image, and corresponding OpenSimRoot simulation of nitrate depletion zones around the root 

system. Integration of the model into phenotyping pipelines is also likely to help find deficits of the 

model, and give modelers a basis for improving parameterization and/or algorithms. This important 

development considerably widens the scope of application of OpenSimRoot. 

Discussion & Conclusions 

We have described the first open source version of the RSA model SimRoot, which is now available 

for use by biologists and modelers. New features that expand its use include hydrology to simulate 

and understand root system hydraulic properties. A novel area of application includes simulation of 

non-invasive 3D phenotypic data of RSA from MRI and X-ray CT, and their putative functions in 

nutrient and water uptake. To our knowledge, OpenSimRoot is currently the most feature rich and 

widely published multiplatform RSA model (Dunbabin et al., 2013) that is freely available for 

direct download (http://rootmodels.gitlab.io/  OpenSimRoot). The new open-source implementation 

combines features that will enable expansion of use for plant and crop science:

 a modular, plugin infrastructure for extending the model;

 a default predictor-corrected numerical scheme for integration and coupling;

 the ability to predefine any data that was measured, where the model will use the measured 

data instead of its algorithm for simulation (e.g. the root system, and optionally its history, 

may be partly pre-defined based on MRI or CT images);
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 integration with a shoot model;

 ability to simulate competition among plants of different species;

 maintained by an international community of root researchers.

Relationships in crop models that are typically only defined empirically, such as competition among 

roots for nutrients, or root length density profiles, are actually a result of RSA, and therefore, RSA 

models provide insight into relations between measurable traits and emerging properties at the crop 

level. We regard the heuristic value of the model, and its use as a tool for developing and testing of 

concepts, and prediction of mechanisms and trends, as the more important motivation for model 

studies with, and continued development of, OpenSimRoot. The model may have further utility in 

extending phenotyping pipelines by estimating genotype performance based on measured root 

phenotypes. 

Future development will be community driven, and may include new processes such as root 

signaling networks, drought responses, soil microbial interactions and soil chemistry. As our 

mechanistic understanding of different processes increases, OpenSimRoot’s hierarchical structure 

allows new empirical data to be represented by new algorithms. For example, gravitropism may be 

simulated on the basis of understanding of differential cell elongation rather than on the current 

empirically derived input. Open sourcing allows other modelers to couple OpenSimRoot to their 

models. For example shoot architectural models might be coupled to OpenSimRoot, in order to 

understand competition for light and shoot architectural traits in relation to RSA traits. Finally, 

opening up the code enables developers of other RSA models to compare the results of 

OpenSimRoot to those of their models, which may lead to constructive critique and improvements 

of all RSA models, and by extension, discoveries for improvements in understanding of plant and 

crop resource efficiencies. 
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Tables

Term Definition

State variable A quantity that has a unit and may depend on time and or space.

Minimodel An object that encapsulates a state variable and is of a type derived from 

SimulaBase (Note S3). Minimodels place state variables in a context, give them 

a lifetime, a name, a unit and provide a general API for coupling of minimodels. 

Module A set of minimodels that form together a major component, like the carbon, 

nutrient or water modules.

Plugin A class which adds functionality to the model without changing the main code 

(For example see Note S4). Plugins can be of derived type ObjectGenerator, 

DerivativeBase, or IntegrationBase

ObjectGenerator  plugin which instantiates new minimodels

DerivativeBase Base classes for plugins that add new computational ability and/or new 

dependencies among minimodels

IntegrationBase Base classes for plugins that add new integration procedures. 

CLI Command line interface, as opposed to a graphical user interface.

Root segment, 

root, root system, 

root system 

architecture 

(RSA)

Root segment is a short piece of root that can be represented by two 

coordinates, root is a single root axis, without branches, unless it stands in 

contrast to shoot, whereby it represents the whole root system (as in “root to 

shoot ratios”). Root system is a system of connected roots. Root system 

architecture is the spatio-temporal arrangement of the root system (Lynch, 

1995) and is characterized by RSA traits such as branching frequencies or root 

gravitropism. RSA is often described by its geometric attributes, such as depth, 

width, specific root length, etc. 

Table 1: Definition of terms.
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Declaration of minimodel Explanation

<SimulaDerivative name="root-

GrowthRate" function="usePath" 

unit="cm/day">

Declaration of a minimodel named rootGrowthRate which 

uses the plugin “usePath” to simulate a growth rate with the 

unit cm/day. 

<SimulaConstant name="path" 

type="string"> rootGrowth </Simula-

Constant>

Declaration of a minimodel named “path” which contains a 

string of the path to which “rootGrowthRate” needs to be 

coupled

<SimulaConstant name="multiplier"> 

0.1 </SimulaConstant>

Declaration of a minimodel named “multiplier” which is a 

simple constant with which the result of minimodel named by 

“path” should be multiplied with. 

</SimulaDerivative> Closing of the declaration of minimodel “rootGrowthRate”, 

so it is clear that “path” and “multiplier” are owned by it.

<SimulaVariable name="rootGrowth" 

function="useName+Rate" integra-

tionFunction="RungeKutta4" 

unit="cm" > 1. </SimulaVariable>

Declaration of minimodel named rootGrowth, which will use 

function “useName+Rate” to retrieve data and will integrate 

that data with the default integration function, RungeKutta4. 

Start value is 1. 

Table 2: A simple example of how a simple relative growth rate model can be constructed with 

OpenSimRoot by coupling two minimodels, one simulating the rate of growth (rgr=0.1*length), and 

one that integrates that rate (analytical result would be length=exp(0.1*t)). The rate calculation is 

done using the plugin “usePath” which simply retrieves the length using the declared path and uses 

the multiplier to calculate the fraction (0.1). The integration is done by the default integration 

method, RungeKutta4, which integrates the result computed by the plugin “useName+Rate”. This 

plugin simply retieves the values of minimodel “rootGrowthRate”. If the user would like the 

relative growth rate to be time dependent, the minimodel “multiplier” can be declared as an 

interpolation table, i.e. <SimulaTable name=”multiplier” …> 0 0.1 10 0.05 </SimulaTable>. 

Alternatively, stochasticity could be introduced by declaring the multiplier as of class 

SimulaStochastic. This model is obviously superfluous, and most plugins will implement more 

complex computations, with more dependencies (see also Note S6). 
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Figure legends

Figure 1: Schematic representation of the OpenSimRoot code. Code encompasses three major 

components, the command line interface (CLI), different types of minimodels and a library of 

plugins. The class hierarchy for each component is given in Note S3. 

Figure 2: Simulated root system of bean (left) and maize (right) as rendered with ParaView. Root 

systems are made up of different root classes, each with their own root diameter, branching rules, 

growth direction and growth rates. Root cross-sections are not simulated but illustrate root segment 

traits that are represented in OpenSimRoot. 

Figure 3: Schematic representation of the coupling of the Evapotranspiration, xylem transport and 

soil water modules. a) Soil pedon with the hydraulic head indicated in pseudo color (left) and three 

barley root systems (right) taking up water from that column. At the dry top water uptake is 

negative, meaning that some hydraulic lift occurred in this scenario. b) The Penman-Monteith 

equation for simulating transpiration and evaporation. c) Zoomed version of roots, showing the 

edges and vertices. d) Network model for simulating water flow through the roots. e) Water 

transport in three dimensions in the soil is simulated by solving the Richards equation, which 

combines Darcy’s law with mass conservation, using the Finite Element Method. 

Figure 4: Schematic representation of the nutrient uptake, nutrient requirements and growth 

regulation modules. a) Root nutrient uptake coupled to model for solute transport in the soil. b) 

Schematic representation of the radial 1D Barber-Cushman model used for simulating P uptake. (c) 

summary of how the ratio between nutrient requirements and nutrient uptake determines plant 

physiology and/or growth.

Figure 5: Simulation results for plastic and non-plastic root systems. Root plasticity was defined as 

increasing lateral branching density with increasing nutrient availability. Phosphorus availability 

(left two root systems) was high in the top soil, causing branching density to be high in the top as 

well. At the same time, the reduced branching density deeper down, due to plasticity, allows the 

plant to grow the individual laterals longer. Pseudo colors show the local phosphorus availability. 

Nitrate moves throughout the soil, and thereby the plasticity effect is less pronounced and difficult 

to trace (right two root systems). 

Figure 6: Simulation of imaged root phenotypes. a) Rendering of an MRI image of a two week old 

maize root system and b) the simulation of that root system by OpenSimRoot (right). Pseudo colors 

in 6b show the root segment age as estimated based on root topology, linear interpolation and the 

assumption that emergence of laterals takes two days. C) Rendering of segmented X-ray CT image 

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579



of a 10 day old wheat root system. Soil has been sliced to make roots visible. D) OpenSimRoot 

simulation of the predicted nitrate depletion zone of in C imaged root phenotype. We assumed an 

initially homogeneous distribution of Nitrate within the simulated soil domain. Pseudo colors show 

the nitrate concentration on a plane cut approximately through the center of the root system.
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Figure 1: Schematic representation of the OpenSimRoot code. Code encompasses three major 

components, the command line interface (CLI), different types of minimodels and a library of 

plugins. The class hierarchy for each component is given in Note S3. 

Figure 2: Simulated root system of bean (left) and maize (right) as rendered with ParaView. Root 

systems are made up of different root classes, each with their own root diameter, branching rules, 

growth direction and growth rates. Root cross-sections are not simulated but illustrate root segment 

traits that are represented in OpenSimRoot. 
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Figure 3: Schematic representation of the coupling of the Evapotranspiration, xylem transport and 

soil water modules. a) Soil pedon with the hydraulic head indicated in pseudo color (left) and three 

barley root systems (right) taking up water from that column. At the dry top water uptake is 

negative, meaning that some hydraulic lift occurred in this scenario. b) The Penman-Monteith 

equation for simulating transpiration and evaporation. c) Zoomed version of roots, showing the 

edges and vertices. d) Network model for simulating water flow through the roots. e) Water 

transport in three dimensions in the soil is simulated by solving the Richards equation, which 

combines Darcy’s law with mass conservation, using the Finite Element Method. 
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Figure 4: Schematic representation of the nutrient uptake, nutrient requirements and growth 

regulation modules. a) Root nutrient uptake coupled to model for solute transport in the soil. b) 

Schematic representation of the radial 1D Barber-Cushman model used for simulating P uptake. (c) 

summary of how the ratio between nutrient requirements and nutrient uptake determines plant 

physiology and/or growth.
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Figure 5: Simulation results for plastic and non-plastic root systems. Root plasticity was defined as 

increasing lateral branching density with increasing nutrient availability. Phosphorus availability 

(left two root systems) was high in the top soil, causing branching density to be high in the top as 

well. At the same time, the reduced branching density deeper down, due to plasticity, allows the 

plant to grow the individual laterals longer. Pseudo colors show the local phosphorus availability. 

Nitrate moves throughout the soil, and thereby the plasticity effect is less pronounced and difficult 

to trace (right two root systems). 
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Figure 6: Simulation of imaged root phenotypes. a) Rendering of an MRI image of a two week old 

maize root system and b) the simulation of that root system by OpenSimRoot (right). Pseudo colors 

in 6b show the root segment age as estimated based on root topology, linear interpolation and the 

assumption that emergence of laterals takes two days. C) Rendering of segmented X-ray CT image 

of a 10 day old wheat root system. Soil has been sliced to make roots visible. D) OpenSimRoot 

simulation of the predicted nitrate depletion zone of in C imaged root phenotype. We assumed an 

initially homogeneous distribution of Nitrate within the simulated soil domain. Pseudo colors show 

the nitrate concentration on a plane cut approximately through the center of the root system.
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Supplement 1: Application programming interface (API) of the SimulaBase 
class

This interface is used by the plugins to navigate the hierarchy and retrieve necessary data. For an 
example see, Supplement 4. Developers that would like to develop a new plugin, will need this 
interface in order to retrieve data from other minimodels. These minimodels are in a hierarchy. 
The methods listed here can be used to find those minimodels in the hierarchy, and to request 
data from them. Minimodels are instantiations (objects) of class (type) SimulaBase.

//Method to retrieve meta data on a given minimodel such as its name, path in the 
hierarchy, lifetime of the object, and its units. 

std::string getName()const; //name of object
std::string getPrettyName()const; //some what more humen readable name
std::string getPath()const; //path to the object
virtual std::string getType()const; //What type this object has
bool evaluateTime(const Time &t)const; //check if t is within lifetime
Time getEndTime()const; //get the end time of object
Time getStartTime()const; //get the start time of object
virtual Unit getUnit(); //get the unit
void checkUnit(const Unit& unit)const; //check if unit equals given unit
void setUnit(const Unit &newUnit); //change unit
virtual void getXMLtag(Tag &tag); //get the object as tag (xml output)

//Methods to navigate the minimodel hierarchy

The difference between the get() and existing() methods is that when the object does not exist 
get() will throw an error and terminate the simulation, whereas existing() will return a NULL 
pointer. The getPath() methods will navigate a symbolic path just as a path in a filesystem is 
navigated. For example 
getPath(“../mySib”) translates to getSibling(“mysib”), where the later is more efficient. 

SimulaBase* getParent()const;
SimulaBase* getParent(const unsigned int i) const;
int getNumberOfChildren()const;//does not update!
int getNumberOfChildren(const Time &t);//does update
SimulaBase* getChild(const std::string & name,const Time & t);
SimulaBase* existingChild(const std::string & name,const Time & t);
SimulaBase* getChild(const std::string & name);
SimulaBase* existingChild(const std::string & name);
SimulaBase* getChild(const std::string & name,const Unit & u);
SimulaBase* existingChild(const std::string & name,const Unit & u);
SimulaBase* getSibling(const std::string & name,const Time & t);
SimulaBase* existingSibling(const std::string & name,const Time & t);
SimulaBase* getSibling(const std::string & name);
SimulaBase* existingSibling(const std::string & name);
SimulaBase* getSibling(const std::string & name,const Unit & u);
SimulaBase* existingSibling(const std::string & name,const Unit & u);

   //Sibling can be retrieved in alphabetic order.
SimulaBase* getNextSibling(const Time &t); 
SimulaBase* getNextSibling()const;



SimulaBase* getPreviousSibling(const Time &t);
SimulaBase* getPreviousSibling()const;
SimulaBase* getFirstChild(const Time &t);
SimulaBase* getFirstChild()const;
SimulaBase* getLastChild()const;

SimulaBase* getPath(const std::string &name);
SimulaBase* getPath(const std::string &name, const Time &t);
SimulaBase* getPath(const std::string &name, const Unit &u);
SimulaBase* existingPath(const std::string &name);
SimulaBase* existingPath(const std::string &name, const Time &t);
SimulaBase* existingPath(const std::string &name, const Unit &u);

typedef std::vector<SimulaBase*> List;
void getAllChildren(List&, const Time &t);
void getAllChildren(List&)const;

//Method for walking along a root axis. Retrieves the minimodel with the same      

   name associated with the next vertex.  
virtual SimulaBase* followChain(const Time & t);

//Methods to retrieve specific subsets of minimodels based on position

typedef  std::multimap<Coordinate,SimulaBase*> Positions;
static void getAllPositions(const Time & t, Positions& list);
static void getAllPositions(Positions& list);
void getYSlice(const Time &, const double, const double, Positions&);
void getPositionsWithinRadius(const Time &, const Coordinate& c, const 
double & r, Positions&);
void getPositionsInsideBox(const Time &, const Coordinate&, const 
Coordinate &, Positions&);

//Methods for retrieving data

virtual void get(const Time &t, int &returnConstant);
virtual void get(const Time &t, std::string &returnConstant);
virtual void getRate(const Time &t, Time &var);
virtual void get(const Time &t, Coordinate &point);
virtual void get(const Time &t, MovingCoordinate &point);
virtual void getAbsolute(const Time &t, Coordinate &point);
virtual void getBase(const Time &t, Coordinate &point);
virtual void getRate(const Time &t, Coordinate &point);
virtual void getAbsolute(const Time &t, MovingCoordinate &point);
virtual void get(int &returnConstant);
virtual void get(std::string &returnConstant);
virtual void get(bool &returnConstant);
virtual void get(const Time &x, Time &y);
virtual void get(Time &x);
virtual void get(const Time &t, const Coordinate & pos, double &y);
virtual void get(const Time &t, const Coordinate & pos, Coordinate &y);
virtual void getRate(const Time &t, const Coordinate & pos, double &y);
virtual void get(Coordinate &point);



virtual void getAverageRate(const Time &t1, const Time &t2, double &var);
virtual void getAverageRate(const Time &t1, const Time &t2, Coordinate 
&var);

//reverse data look up: returns time that object was nearest to given 
value or position. Only works if the object is not garbage collected
virtual void getTime(const Coordinate &p, Time &t, Time tmin=-1, Time 
tmax=0);
virtual void getTime(const double &p, Time &t, Time tmin=-1, Time tmax=0);

//Method for setting data, probably only implemented for timetables.  

virtual void set(const double &x, const double &y);

//Methods to retrieve info on timestepping of a minimodel

virtual Time &minTimeStep();
virtual Time &maxTimeStep();
virtual Time &preferedTimeStep();
virtual Time lastTimeStep();

//Methods to control garbage collection, which will basically clean up the simulation history

virtual void collectGarbage(const Time&); //clean up history
virtual void garbageCollectionOff(); //keep history of this object always

//Other methods

void stopUpdatefunction(); //When implementing an objectgenerator signal 
   it has  
   finished creating all objects for all times, and can be deleted. 

static void updateAll(const Time &); //update whole tree
void updateRecursively(const Time &); //update subtree
static void signalMeAboutNewObjects(SimulaBase* me); //if plugin has the 
addObject() implemented, it will be signaled when new objects are being 
instantiated by any of the object generators. 



Supplement 2: Command line interface (CLI) of OpenSimRoot: How to run 
and use the model

OpenSimRoot has a command line interface, which means that you operate the model from a 
terminal using commands, not with a graphical interface and the mouse. 

Step 1: Open a terminal (under windows 10 you may use the program named CMD)

Step 2: Go to the folder where you want to run the model, use the command cd to navigate, for 
example: cd MyRunFolder

Step 3: We assume that the folder contains the OpenSimRoot executable. With the “ls” command
you can list all folders (or on windows the command is “dir”). Here we see that my folder 
contains the executable OpenSimRoot (conveniently made green, as it is executable) and a XML 
input file. 

Step 4: OpenSimRoot has a small build in help which we we can run by typing ./OpenSimRoot 
-h (on windows you do not type the path “./” in front of the executable).

The help shows how to run OpenSimRoot, and gives you some options and their explanation. 

Step 5: Like the help shows, running the model is done by appending the input file:
./OpenSimRoot SimpleCropModel.xml



Again with ls (dir) you can list the filer, the model created two new files, one containing 
warnings, one containing the simulation results. 

Step 6: The results of the simulation are in the tabled_output.tab file which can be viewed with 
any program that opens text files. Here we simply show the first lines with the command head:

The file contains a header in the first row, and 6 columns listing the name of the state variable, 
the time, the value, the rate of change of that state variable (if simulated), the unit of the state 
variable, and the path in the hierarchy to this state variable. 

Real time hours: minutes : seconds

Results file

One warning

Simulation time

Command



Step 7: The tabled_output.tab file is also easily imported into a spreadsheet program. By 
enabling the auto filter and selecting leafArea, we can easily create a plot. 

8. The same can be achieved in R using this script:
d<-read.table("tabled_output.tab",header=T)
f=d$name=="leafArea"
plot(value~time,data=d[f,],ylab=~"leaf area (cm"^2*")", xlab="time (d.a.g)") 



step 9: Editing the input file can be done with any text file editor. Here I opened the file with the 
command nano tabled_output.tab and the result is an xml formatted file in which we can change 
the numbers, save and rerun. In white you see the numbers, and scrolling to the bottom you 
would see more. 

step 10: You see several functions listed that are used to simulate a state variable. To get a list of 
all functions that are included in your OpenSimRoot version use the command OpenSimRoot -l. 
This will list all plugins that are included with OpenSimRoot.



Supplement 3: Class hierarchy of OpenSimRoot code

This document lists the class hierarchy for the most important classes in OpenSimRoot. 

Minimodels

Minimodels are of type SimulaBase and encapsulate one time and location dependent state 
variable. The inhertance diagram for all SimulaX classes is given in Supplemental Figure 3.1. 

Supplemental Figure 3.1: Inheritance diagram for all SimulaBase classes. 

• SimulaConstant encapsulates a constant of various types. 
• SimulaDerivative encapsulates an algorithm. Available algorithms are all the 

DerivativeBase derived plugins. 
• SimulaTable encapsulate an array of time,value combinations. Values are interpolated.
• SimulaExternal provides a mechanism for encapsulating other dynamic simulation 

models. 
• SimulaPoint simulates a point and its movement through space. 
• SimulaVariable simulates a value and change over time using numerical integration.
• SimulaGrid simulates a static, 3D field using a list of Coordinates with values and a 3D 

interpolation algorithm
• SimulaLink simply bridges to another minimodel in the hierarchy of minimodels.
• SimulaStochastic draws numbers from a random number generator. 



Inherited from DerivativeBase

Below is a list of all the plugins that directly, or indirectly, inherit from DerivativeBase and can 
be used by SimulaVariable, SimulaPoint or SimulaDerivative for computation. 

ActualTranspiration
ActualVaporPressure
AerodynamicResistance
AirDensity
AirPressure
BFMmemory
BiologicalNitrogenFixation
CarbonAllocation2Leafs
CarbonAllocation2Roots
CarbonAllocation2Shoot
CarbonAllocation2Stems
CarbonAvailableForGrowth
CarbonCostOfBiologicalNitrogenFixation
CarbonCostOfNutrientUptake
CarbonReserves
CinDryWeight
ConstantRootGrowthRate
D95
ETbaseclass
Grass_reference_evapotranspiration
Penman
PenmanMonteith
PriestleyTaylor
Stanghellini
Tall_reference_Crop
GetValuesFromPlantWaterUptake
GetValuesFromSWMS
Imax
Interception
InterceptionV2
LeafArea
LeafAreaIndex
LeafAreaReductionCoe/cient
LeafDryWeight
LeafDryWeight2
LeafPotentialCarbonSinkForGrowth
LeafRespirationRate
LightInterception
LocalNutrientResponse
MeanLeafAreaIndex
NumberOfRoots
NumberOfTillers
NutrientStressFactor
NutrientStressFactorV2
PhotosynthesisLintul
PhotosynthesisLintulV2
PlantCarbonBalance
PlantCarbonIncomeRate
PlantTotal

PointSensor
PotentialLeafArea
PotentialTranspirationCrop
Proximity
Radiation
RadiusDepletionZoneBarberCushman
RadiusDepletionZoneSimRoot4
RandomGravitropism
RandomImpedence
RelativeCarbonAllocation2LeafsFromInputFile
RelativeCarbonAllocation2RootsFromInputFile
RelativeCarbonAllocation2RootsOneMinusSho
ot
RelativeCarbonAllocation2RootsPotentialGrow
th
RelativeCarbonAllocation2RootsScaledGrowth
RelativeCarbonAllocation2ShootFromInputFile
RelativeCarbonAllocation2ShootPotentialGrow
th
RelativeCarbonAllocation2ShootScaledGrowth
RelativeCarbonAllocation2ShootSwitch
RelativeCarbonAllocation2StemsOneMinusLea
fs
RemainingProportion
Reserves
ReservesSinkBased
RootCircumference
RootClassID
RootDryWeight
RootGrowthDirection
RootGrowthScalingFactor
RootLength2Base
RootLengthDensity
RootLengthPro2le
RootNodePotentialCarbonSinkForGrowth
RootPotentialCarbonSinkForGrowth
RootsBelowD95Solute
RootSegmentAge
RootSegmentRespirationRate
RootSegmentRootHairSurfaceArea
RootSegmentSpeci2cWeight
RootSystemTotal
RootTotal
RootTotal2
SaturatedVaporPressure
ScaledRootGrowthRate
ScaledWaterUptake
ShootDryWeight
ShootOptimalNutrientContent

SimplePotentialTranspiration
SimpleSoilTemperature
SlopeVaporPressure
SoluteMassBalanceTest
Speci2cHeatCapacityOfAir
StemDryWeight
StemPotentialCarbonSinkForGrowth
StemRespirationRate
StomatalResistance
StressAdjustedPotentialLeafArea
StressFactor
SumCarbonCosts
SumOverPlants
SumOverPlantsShoot
SuperCoring
Swms3d
ThermalConductivity
TotalBase
CarbonCostOfExudates
CortexDiameter
IntegrateOverSegment
PotentialSecondaryGrowth
RootDiameter
RootSegmentDryWeight
RootSegmentLength
RootSegmentSurfaceArea
RootSegmentVolume
RootSegmentVolumeCortex
SecondaryGrowth
SumSteelCortex
TotalBaseLabeled
Barber_cushman_1981_nutrient_uptake
Barber_cushman_1981_nutrient_uptake_explic
it
MichaelisMenten
OptimalNutrientContent
RootSegmentNutrientDepletionVolume
SegmentMaxNutrientUptakeRate
Tropisms
UseDerivative
UseParameterFromParameterSection
UseRootClassAndNutrientSpeci2cTable
VolumetricHeatCapacity
WaterMassBalanceTest
WaterUptakeFromHopmans

List of plugins for simulating various processes

Note that these are a list of classes, as they appear in the code. Registration of the plugins may 
occur under different names. Inputfiles use the registered names, not the class names. Use 
OpenSimRoot -l to get that list. See also operation manual in Supplement 2. 



Integration functions

The SimulaVariable and SimulaPoint classes use helper functions for integrating the result. 
Several integration methods have been implemented (Supplemental figure 3.2). New integration 
functions can be added and registered, using the plugin framework, similar to the classes that 
inherit from DerivativeBase. 

Supplemental figure 3.2: Inheritance diagram for the integration classes



Object generators

Object generators are plugins that can be associated with any SimulaX object and update the list 
of children when a child is requested. 

Supplemental figure 3.3: Inheritance diagram for the object 

generators



Supplement 4: Plugin example code

Here we give example code for a simple plugin and the code needed to register this plugin with 
OpenSimRoot. Once the code has been put into a text file, it can be compiled and linked to 
OpenSimRoot. 

1) For new algorithms

//Class declaration. Class should inherit from DerivativeBase, have a constructor, and 
implements two virtual methods, getName() and calculate(). The example class presented here has 
two SimulaBase pointers as private members, which will be used to connect to the minimodels that 
simulate length and diameter of a root segment and to retrieve their values.

class RootSegmentSurfaceArea:public DerivativeBase{
public:
        RootSegmentSurfaceArea(SimulaDynamic* pSD);
        std::string getName()const;
protected:
        void calculate(const Time &t,double &var);
private:
        SimulaBase *diameter,*length;
};

//the constructor of our class. pSD is the pointer to the minimodel that uses the plugin for 
computation
RootSegmentSurfaceArea::RootSegmentSurfaceArea(SimulaDynamic* pSD):DerivativeBase(pSD)
{
//We check that the user set the unit right     
        pSD->checkUnit("cm2");
//We retrieve the pointers
        length=pSD->getSibling("rootSegmentLength","cm");
        diameter=pSD->getSibling("rootDiameter","cm");
}

//the computation
void RootSegmentSurfaceArea::calculate(const Time &t,double &area){
//first we retrieve data
        double d,l;
        diameter->get(t,d);
        length->get(t,l);
//second we compute
        area=l*d*PI;
}

//the  name under which the plugin will be registered, make sure it is unique, use OpenSimRoot 
-l to see what names are already taken
std::string RootSegmentSurfaceArea::getName()const{
        return "rootSegmentSurfaceArea.v3";
}

//Now we create a function for instantiating our class
DerivativeBase * newInstantiationRootSegmentSurfaceArea(SimulaDynamic* const pSD){
   return new RootSegmentSurfaceArea(pSD);
}

//And we register this plugin using a static instantiation of a class which guarantees that the 
constructor is when OpenSimRoot is started
static  class AutoRegisterMyNewPlugin {
public:
   AutoRegisterMyNewPlugin() {
//this line does the registration. Make sure you register under the same name as the getName() 
method returns. This important for the model dump being loadable again. 
        BaseClassesMap::getDerivativeBaseClasses()["rootSegmentSurfaceArea.v3"] = 
newInstantiationRootSegmentSurfaceArea;
} rf9843hh923h; //the one static instance of this class



2) For new integration functions

//class declaration, must inherit from IntegrationBase, has a constructor,
// a getName() method and at least one integrate method
class BackwardEuler:public IntegrationBase{
public:
  BackwardEuler();
  std::string getName()const;
protected:
  virtual void integrate(SimulaVariable::Table & data, DerivativeBase & rateCalculator);
  virtual void integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator);
};
  
BackwardEuler::BackwardEuler():IntegrationBase(){}
  
void BackwardEuler::integrate(SimulaVariable::Table & data, DerivativeBase &rateCalculator){
  //...Your new algorithm here which should extend the data table, the derivative (rates) that 
should be used are retrieved from the rateCalculator. For examples see code. 
}

void BackwardEuler::integrate(SimulaPoint::Table & data, DerivativeBase & movementCalculator){
  //...Your new algorithm here, but then suitable for Coordinates, not doubles. Intended to 
allow the simulation of a point moving through space. Mostly used to simulate the growth 
trajectory of the root tip 
};

std::string BackwardEuler::getName()const{
  return "BackwardEuler";
}
  
//function for instantiating the class
IntegrationBase * newInstantiationBackwardEuler(){
    return new BackwardEuler();
}

//Register the instantiation function
static class AutoRegisterIntegrationFunctions {
public:
  AutoRegisterIntegrationFunctions() {
    BaseClassesMap::getIntegrationClasses()["BackwardEuler"] = newInstantiationBackwardEuler;
  }
}p44608510843540385;//the one static instance of this class



3) For object generators

//class declaration for an object generator
class MyGenerator: public ObjectGenerator {
public:
  void initialize(const Time &t);
  void generate(const Time &t);
  MyGenerator(SimulaBase* const pSB);
};

//construction is delayed. Code is in the initialize method
MyGenerator::MyGenerator(SimulaBase* const pSB) :
  ObjectGenerator(pSB) {
}

//collecting of info, and or construction of minimodels at the start of the simulation
void MyGenerator::initialize(const Time &t) {
  //collect some info about planting time
  Time plantingTime;
  SimulaBase *pt=pSB->existingChild("plantingTime");
  if (pt) {
    //read planting time from file
    pt->get(t, plantingTime);
  } else {
    //copy from parent
    plantingTime = pSB->getStartTime();
  }
  
  //generate new plant by copying the template
  pSB->copyAttributes(plantingTime, ORIGIN->getChild("plantTemplate"));
  
  //we are done
  pSB->stopUpdatefunction();  
}

void MyGenerator::generate(const Time &t) {
  //add code if there is time dependent generation of objects, not just at the start
}

//the function for instantiation of the class
ObjectGenerator * newInstantiationMyGenerator(SimulaBase* const pSB) {
  return new MyGenerator(pSB);
}

//register the instantiation function
static class AutoRegisterMyGeneratorInstantiationFunctions {
public:
  AutoRegisterMyGeneratorInstantiationFunctions() {
    BaseClassesMap::getObjectGeneratorClasses()["MyGenerator"] =
      newInstantiationMyGenerator;
  }
} p4595582386;



Supplement 5: Detailed description of the water and nutrient submodules

Watermodule

Plant transpiration is simulated by OpenSimRoot, assuming that water availability is not limiting 

and stomatal conductance is constant. Transpiration and evaporation need to be separated within 

OpenSimRoot. Transpiration can be estimated from a fixed water use efficiency parameter 

(which simply links carbon fixation linearly to transpiration), or from the Penman-Monteith 

model, which computes evapotranspiration based on weather conditions (Penman, 1948; 

Monteith, 1964). When transpiration is calculated based on a water use efficiency parameter, the 

user needs to provide evaporation values; when the Penman-Monteith model is used, 

transpiration and evaporation are separated by OpenSimRoot solving the Penman-Monteith 

model twice, once for full crop cover, and once for a bare soil. Based on the percent light capture

by the crop OpenSimRoot scales evaporation and the transpiration terms assuming evaporation is

negligible and small under full crop cover (Leaf Area Index ~3).

To simulate the soil hydrology, OpenSimRoot has a submodule that solves the Richards equation 

in three dimensions using finite element method (FEM) on a Cartesian grid. The soil water 

submodule is a  simplified and modified C++ rewrite of the SWMS3D model, which is the basis 

of Hydrus and R-SWMS (Šimunek et al., 1995; Diamantopoulos et al., 2013).  

Certain exceptional circumstances such as drainage or water ponding at top soil, are excluded. 

The top boundary condition is a water flux that is the difference between precipitation and 

evaporation. Evaporation, as computed by the Penman-Monteith equation, is assumed to be 

potential evaporation (i.e. appropriate for wet soils), and assumed to be equal across the soil 

surface, shoot geometry is not simulated. Potential evaporation is scaled back to an actual 

evaporation by including a smooth scaling function which causes evaporation to decrease 

smoothly from potential, when the top soil is wet, to equal the soil conductivity when the soil is 

not able to sustain higher evaporation rates. If the top soil is not necessarily uniformly wet, actual

evaporation will be non-uniform across the soil surface in OpenSimRoot. The water retention 

curve and soil hydraulic conductivity are computed using the van Genuchten and Mualem 

equations. 

The Richards equation can include a sink term, which in OpenSimRoot represents water uptake 

by roots (as described evaporation sink is handled as dynamic boundary condition). To do so we 

need to know 1) how much water is taken up by each root segment at a given moment in time, 

and 2) how that uptake is coupled to the FEM nodes of the grid on which the Richards equation 

is solved. Assuming that root uptake equals transpiration, i.e. we ignore temporal water storage 

in the plant, OpenSimRoot can either divide the water uptake of the whole root system by 

assuming each root segment contributes equally to uptake relative to its length (as in Hopmans, 

(Hopmans & Bristow, 2002)) or by solving the hyrdraulic architecture represented by a network 

model and using a circuit analogy likewise motivated by finite element theory (Alm et al., 1992; 

Doussan et al., 1998). The network model is novel in OpenSimRoot implemented to work with a

growing root and used in the study of Schneider (Unpublished). This model requires axial and 

radial hydraulic conductivities for each root segment, which can be defined in the input files as a 

function of root age and class, and are scaled (i.e. normalized) with the inverse of the root 

segment length (axial), or the root segment surface area (radial). The coupling of the root model 

to the FEM model enables each root segment to have a soil water content at the root surface. The

next step is to make sure that water uptake by the root system equals the transpiration which is 



achieved by changing the water potential at the root collar (top of the hypocotyl). Getting the 
root collar potential is a parabolic optimization function which is solved with a newton solver, 
typically in three steps. The water potential at the top of the hypocotyl is not allowed to drop 
below a given threshold. If the threshold is reached, OpenSimRoot assumes that water uptake is 
less than potential transpiration and will write a warning. Further simulation results might not be 
correct as currently no effects of drought on photosynthesis, leaf expansion etc have been 
implemented. However, the model should correctly deal with compensatory uptake of water 
when soil water distribution is heterogeneous. And this model can show water loss of roots while
the same conductivity from xylem to soil is assumed.
Mapping the root model to the FEM model is done based on a neighborhood search. All FEM 
nodes surrounding the root segment are considered. Sink terms, and local environment are 
computed based on inverse distance weighted average of the FEM nodes surrounding the root 
node. An alternative mapping algorithm, by which every FEM node is assigned with every root 
node has been implemented, in order to ignore root architecture completely in the water and 
nutrient uptake simulations. This was for example used in Postma and Lynch (2012) where it was
concluded that the positioning of the root, that is root architecture, is necessary for simulating 
niche differentiation for nitrate uptake among maize, bean and squash plants, whereas if roots 
would be able to take up nutrients from everywhere in the soil, there would be no niche 
differentiation. 

Nutrient module
OpenSimRoot has a nutrient module to simulate the uptake solutes, and in the new version 
theoretically simultaneously for various nutrients. This module was implemented to simulate the 
function of root architectural traits for nutrient uptake, and test tradeoffs for acquisition of 
different nutrients. Time dependent optimal and minimal nutrient content (µmol/g) have to be 
defined for leaves, stems and all root classes, for to be simulated solutes. These amounts are used
to compute nutrient requirements of the plant, and compared to total uptake amounts, including 
initial seed reserves (for uptake see below). When uptake is less than demand, plant stress is 
assumed, with maximum stress being defined as uptake equal to minimal nutrient content 
(stress(uptake) = max( 0, min((uptake-minimal)/(optimal-minimal),1) ). Stress modifying impact
functions can be defined for components such as leaf expansion rate, photosynthesis rates, 
respiration rates, and root elongation rates or secondary growth. Typically, they should be 
defined such that, when stress=0, growth ceases altogether. For example, by making the initial 
response of the shoot stronger than that of the root, the plant will decrease shoot to root ratios 
when nutrient deficient. Thus OpenSimRoot will move towards a functional equilibrium, 
although due to the inherent slow nature of growth, and the relative fast dynamics of other 
processes, this functional equilibrium might not be reached, and oscillatory behavior might occur
(Postma & Lynch, 2011; Postma et al., 2014b). The current implementation assumes that 
internally, reallocation of nutrients is fast and perfect, such that all organs experience equal 
stress. This might be true for a nutrient like nitrogen, which typically causes chlorosis 
everywhere in the shoot, but might not be correct for other nutrients. The importance of 
simulation of nutrient redistribution in the plant still needs study, and would require 
implementation of a shoot architectural model in which the age and position of individual leafs is
tracked.  
Nutrient uptake from soil to root is simulated independently of utilization of nutrients within the 
plant. Two options for simulation are provided: 1) The Barber-Cushman model and 2) a 3D FEM



model. One is a C++ implementation of the original Barber-Cushman model with root hairs. The 
model is described as radial 1D PDE (Partial Differential Equation) which corresponds to the 
rhizosphere around the root. It assumes nutrient uptake to be described by a Michealis-Menten 
term, and the nutrient transport in the soil to be driven by convection (water flow) and diffusion. 
A buffer constant replaces a reaction term. The Barber-Cushman model is suitable for immobile 
nutrients like phosphorus. Phosphorus uptake causes steep gradients in concentrations around the
root. These depletion zones are typically only 2-4 mm in diameter, and thereby would require a 
computationally unacceptably high resolution of the 3D finite element model (~0.1 mm 
resolution of a 1 m3 soil pedon would result in 1e12 elements or 8 petabytes to hold a single 
double precision array).
Competition between roots is computed based on a local average root density which determines 
the outer boundary of the Barber-Cushman model. OpenSimRoot updates this boundary when 
new roots grow in the vicinity of other roots and corrects the initial nutrient concentration for 
new roots with the uptake of nutrients of older roots. Nevertheless, this handling of root 
competition is only acceptable when the overlap of depletion zones, which can be computed 
based on raster images of the root system, is relatively small. For crops, overlap in phosphorus 
depletion zones is typically below 20% because of its low mobility.  Inter and intra root 
competition plays a much more important role in the uptake of mobile nutrients such as nitrate. 
Nitrate might form diffuse or no depletion zones around the root and for this reason is better 
simulated using a 3D FEM. SimRoot solved the convection-dispersion equation on the same 
FEM grid as the water transport is solved which can be restricting, OpenSimRoot alternatively 
can solve it on a refined grid, where the refinement factor is yet fixed to 2nd, 4th, 8th or the 16th 
of a reference grid. For each solute a new FEM model is instantiated and linked to the water 
model. The 3D FEM model for solute transport is coupled to the root systems using the same 
method as used for the hydraulic model, where the uptake of solutes by the root segments is 
based on Michaelis Menten kinetics, as in the Barber-Cushman model. Buffering and diffusion 
coefficients are dependent on the soil water content, and might thereby deviate from the constant 
coefficients used in the Barber-Cushman model. The effects must be considered when comparing
the output of both models (Postma and Lynch, 2011). 
When simulating more than one solute, solutes do not influence each other directly in 
OpenSimRoot. Indirect effects occur through the influence of nutrient uptake on root growth. 
Each solute has a stress function to determine how each impacts, for example, photosynthesis. A 
user specified aggregation function determines the aggregate impact (Dathe et al., 2012). For 
example, Postma et al., (2014a) showed how the optimal lateral branching density in maize 
depends on the relative availability of phosphorus and nitrogen. 

References
Alm DM, Cavelier J, Nobel PS. 1992. A finite-element model of radial and axial conductivities 
for individual roots: development and validation for two desert succulents. Annals of Botany 69: 
87–92.

Dathe A, Postma JA, Lynch JP. 2012. Modeling resource interactions under multiple edaphic 
stresses. In: Ahuja LR,, In: Reddy VR,, In: Saseendran SA,,  In: Yu Q, eds. Advances in 
Agricultural Systems Modeling. Accepted for publication in. Madison, Wis., USA: ASA-CSSA-
SSSA, .



Diamantopoulos E, Iden SC, Durner W. 2013. Modeling non-equilibrium water flow in 
multistep outflow and multistep flux experiments. HYDRUS Software Applications to Subsurface
Flow and Contaminant Transport Problems: 69.

Doussan C, Pagès L, Vercambre G. 1998. Modelling of the hydraulic architecture of root 
systems: An integrated approach to water absorption - Model description. Annals of Botany 81: 
213–223.

Hopmans JW, Bristow KL. 2002. Current capabilities and future needs of root water and 
nutrient uptake modeling. Advances in Agronomy 77: 103–183.

Monteith JL. 1964. Evaporation and environment. Symposia of the society for experimental 

biology 19: 205–234.

Penman HL. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal 
Society, 120–145.

Postma JA, Dathe A, Lynch JP. 2014a. The optimal lateral root branching density for maize 
depends on nitrogen and phosphorus availability. Plant Physiology 166: 590–602.

Postma JA, Lynch JP. 2011. Theoretical evidence for the functional benefit of root cortical 
aerenchyma in soils with low phosphorus availability. Annals of Botany 107: 829–841.

Postma JA, Lynch JP. 2012. Complementarity in root architecture for nutrient uptake in ancient
maize/bean and maize/bean/squash polycultures. Annals of Botany 110: 521–534.

Postma JA, Schurr U, Fiorani F. 2014b. Dynamic root growth and architecture responses to 
limiting nutrient availability: linking physiological models and experimentation. Biotechnology 
Advances 32: 53–65.

Šimunek J, Huang K, van Genuchten MT. 1995. The SWMS 3D code for simulating water 

flow and solute transport in three-dimensional variably-saturated media. California: U. S. 
Salinity laboratory, USDA.



Supplement 6: Example of a simple OpenSimRoot input file

The XML below is an example of an OpenSimRoot input file that constructs a simple crop 
model, without any roots. All the SimulaX tags will instantiate a minimodel of the corresponding
type, for example a constant (time independent parameter) is declared as <SimulaConstant ...>. 
Metadata for the minimodels, such as name and unit, are given in the attributes lists. 

General rules for XML documents
1) The document has tags which are between brackets like <>
2) Tags correspond to minimodels in OpenSimRoot and therefore carry different names, such as 
SimulaBase, SimulaConstant, etc.
3) Tags need to be closed either by putting a / before the closing bracket, or if data is nested 
inside the tag with a corresponding closing tag which is recognized by </. For example 
<SimulaConstant></SimulaConstant>
4) Between opening and closing tags you will find data, and or declarations of minimodels which
are at the next level in the hierarchy
5) Tags carry attributes which describe metadata. Attributes are always listed as 
attribute=”something”. In OpenSimRoot all tags have at least a name attribute.
6) An XML document is plain text and recognized by a special declaration at the top of the 
document. <?xml version="1.0" encoding="UTF-8"?>

7) XML documents can have stylesheets associated with them so the the browser knows how to 
render the document. Here we have <?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>

8) Comments are between <!-- and -->. 
9) All XML documents of a document type tag. For OpenSimRoot the document type is declared
as <SimulationModel></SimulationModel>. All other tags must be in between these tags.

Here follows an example input file. The comments in black give more explanation as to how a 
simple crop model is being constructed by this input file. Input files for full root architectural 
models can be found in the software repository on gitlab: 
https://gitlab.com/rootmodels/OpenSimRoot

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="tree-view.xsl"?>
<!--
Copyright © 2016 Forschungszentrum Jülich GmbH
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted 
under the GNU General Public License v3 and provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials provided with
the distribution.
3. Neither the name of the copyright holder nor the names of its contributors may be used to 
endorse or promote products derived from this software without specific prior written permission.

Disclaimer
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR 
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,



DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You should have received the GNU GENERAL PUBLIC LICENSE v3 with this file in license.txt but it 
can also be found at http://www.gnu.org/licenses/gpl-3.0.en.html -->

<!--This XML constructs a simple, radiation use efficiency based crop model.

Roots and stems are only presented as Carbon (dry weight) pools
Leaf dry weight is converted to leaf area based on specific leaf area (SLA)
Leaf area is converted to light interception using an extinction coefficient. 
Light interception is converted to photosynthesis using radiation use efficiency (RUE).
Photosynthesis is converted to structural carbon using a conversion factor (multiplier) which 
represents relative losses due to respiration
Fixed allocation causes structural carbon to be divided over root, stem and leafs.

Behavior, is simple exponential growth for which
RGR = SLA * C2Leafs * photosynthesis * multiplier
However, as the light interception with increasing leaf area
reaches an asymptote, the model will move towards linear growth.-->

<SimulationModel>

<!-- SimulaBase is a simple container, that holds other SimulaX objects. SimulaBase is thus a 
minimodel that does not hold or simulate data. It should, like all mini models, have a name. So 
here we declare a container in which we are going to put all our plants. Inside it we put a 
container for our plant, named arbitrarily “myPlant”.   -->

    <SimulaBase name="plants"> 
      <SimulaBase name="myplant">

<!-- Here follow three SimulaConstant declarations. SimulaConstant is a minimodel that holds time
and space independent data of different types. Possible types are double, int, string, 
Coordinate. Besides the name attribute they must have a unit, and if the data is not a double, a 
type declaration. 

A plant should be of a given species/genotype. The model will look for a parameter set in 
roottypeParameters with the corresponding type. Here we declare that we want to simulate a plant 
of type mySpecies -->

        <SimulaConstant name="plantType" type="string">
            mySpecies
        </SimulaConstant>

<!-- The time that the plant is planted. 0. is at the start of the simulation. -->

        <SimulaConstant name="plantingTime" unit="day">
            0.
        </SimulaConstant>

<!-- Location in space where the seed is planted.  -->

        <SimulaConstant name="plantPosition" type="Coordinate">
            0 -2 0

<!-- Container that hold all the minimodels that will simulate shoot
related parameters. The shoot and root are inside plantPosition, as OpenSimRoot works with a 
relative Coordinate system. We achieve that all coordinates that belong to our plant are relative
to plantPosition. -->

            <SimulaBase name="shoot">

<!-- Licht interception is simulated by the light interception module. SimulaDerivative declares 
a minimodel that wil use the lightInterception plugin to compute light interception. Attributes 
are name of what is being computed (name="lightInterception"), the unit of what is being computed
(unit="umol/cm2/day"), and the plugin that should be used to compute it 
(function="lightInterception"). The plugin lightInterception requires leafAreaIndex and from the 
parameter section and extinctionCoefficient (kdf). Further it needs irradiation levels from the 
environmental section. All have been declared further down.  -->

http://www.gnu.org/licenses/gpl-3.0.en.html


              <SimulaDerivative name="lightInterception" unit="umol/cm2/day"
                function="lightInterception" />

<!--Simulation of photosynthesis rates can be done by the plugin registered as 
photosynthesisLintulV2. However, since we want to know the total photosynthesis, the rates need 
to be integrated over time. SimulaVariable does this. Thus unit is not g/day, but g. Attributes 
are otherwise same as for a SimulaDerivative tag. Optional attributes that control the method of 
integration and the timestep can be given. For example integrationFunction=”ForwardEuler” will 
use the forward euler plugin for integrating. List of all integration methods can be obtained by 
running OpenSimRoot -L. maximumTimeStep=”0.1” would reduce the maximum timestep from the default 
0.2 to 0.1.
-->
              <SimulaVariable name="photosynthesis" unit="g"
                function="photosynthesisLintulV2" />

<!--Declaration of how leafAreaIndex should be simulated, as it is needed by the 
lightInterception plugin. -->

              <SimulaDerivative name="leafAreaIndex" unit="cm2/cm2"
                function="leafAreaIndex" />

<!--Declaration of how leafArea should be simulated, as it is needed by the leafAreaIndex plugin.
Here the initial leaf area is given. More time value pairs can be entered in order to specify a 
predefined initial leaf area. The leafArea plugin will simulate increases in leaf area on the 
basis of carbon allocation to the leafs, the specificLeafArea and the carbonToDryweight ratio, 
all declared later on.--->

              <SimulaVariable name="leafArea" unit="cm2" function="leafArea">
                0. 1. </SimulaVariable>

<!--Same as leafArea, but then for leafDryWeight. -->

              <SimulaVariable name="leafDryWeight" unit="g"
                function="leafDryWeight.v2"> 0. 0.001 </SimulaVariable>

<!--Here follow more minimodels, all with their respective plugins declared -->

              <SimulaDerivative name="relativeCarbonAllocation2Leafs"
                unit="100%"                        
                function="relativeCarbonAllocation2LeafsFromInputFile" />
              <SimulaVariable name="carbonAllocation2Leafs" unit="g"
                function="carbonAllocation2Leafs" />
              <!-- optional to have stem weight -->
              <SimulaDerivative name="relativeCarbonAllocation2Stems" 
                unit="100%" 
                function="relativeCarbonAllocation2StemsOneMinusLeafs" />
              <SimulaVariable name="carbonAllocation2Stems" unit="g" 

function="carbonAllocation2Stems" />
              <SimulaVariable name="stemDryWeight" unit="g" 

function="stemDryWeight" />
            </SimulaBase>
        </SimulaConstant>

<!--In this simulation it was decided to declare the carbonToDryWeight ratio as a simple 
constant. -->

        <SimulaConstant name="carbonToDryWeightRatio" unit="100%">
            0.45
        </SimulaConstant>

<!--Carbon allocation -->

        <SimulaDerivative name="relativeCarbonAllocation2Shoot"
            unit="100%" 
            function="relativeCarbonAllocation2ShootFromInputFile" />
        <SimulaVariable name="carbonAllocation2Shoot" unit="g"
            function="carbonAllocation2Shoot" />



<!--Instead of using a process specific plugin to simulate the carbon available for growth, here 
we use a general plugin named usePath which simply couples the carbon available for growth to 
photosynthesis. Since this declaration as a child called “multiplier” the photosynthesis rates is
halved, so it is assumed that half of all carbon fixed by photosynthesis is converted to plant 
dry mass, the rest is respired. -->

        <SimulaDerivative name="carbonAvailableForGrowth"
            unit="g" function="usePath">
            <SimulaConstant name="path" type="string">
              plantPosition/shoot/photosynthesis
            </SimulaConstant>
            <!-- half of carbon assumed to be respired -->
            <SimulaConstant name="multiplier">0.5</SimulaConstant>
        </SimulaDerivative>

<!--Some declarations related to roots -->

      <SimulaDerivative name="relativeCarbonAllocation2Roots"  unit="100%" 
function="relativeCarbonAllocation2RootsOneMinusShoot" />

      <SimulaVariable name="carbonAllocation2Roots" unit="g" 
function="carbonAllocation2Roots" />

      <SimulaVariable name="rootDryWeight" unit="g" function="rootDryWeight" />

<!--The closing tags for the myPlant and Plants containers. -->

      </SimulaBase>
    </SimulaBase>

<!-- Environmental data needs to be declared, here all we need is irradiation in order to know 
how much light is being captured for photosynthesis -->

    <SimulaBase name="environment">
      <SimulaBase name="atmosphere">
        <SimulaTable name_column1="time" name_column2="irradiation"
            unit_column1="day" unit_column2="umol/cm2/day">
            0 3000
            100 3000
        </SimulaTable>
      </SimulaBase>
    </SimulaBase>

<!-- here a parameter section for our plant is specified. -->

    <SimulaBase name="rootTypeParameters">
      <SimulaBase name="mySpecies">
        <SimulaBase name="resources">

<!--relativeCarbonAllocation to leafs (see above) uses a plugin in that simply looks up data from
a table. The table is declared here. SimulaTables have two columns. Each column has a name and a 
unit declared in the attribute list. Here, as will be often the case, the first column is time. 
This is time since the plant started growing, not since the start of the simulation. First all 
carbon that is going to the shoot is allocated to leafs, later on more carbon is going to the 
stems. Values in the table are interpolated linearly, unless a different interpolation method is 
declared. Currently, only interpolation=”step” is implemented as alternative method.  -->

            <SimulaTable name_colum1="time" unit_colum1="day"
              name_colum2="carbonAllocation2LeafsFactor" unit_colum2="100%">
              0 1
              10 0.8
              40 0.5
              60 0.
              80 0.
            </SimulaTable>

<!--How much carbon should go to the root. The rest goes to the shoot. -->

            <SimulaTable name_colum1="time" unit_colum1="day"
              name_colum2="carbonAllocation2RootsFactor" unit_colum2="100%">



              0 0.8

              10 0.2

              40 0.2

              80 0.2

            </SimulaTable>

        </SimulaBase>

<!--Declaration of several well known shoot related parameters. -->

        <SimulaBase name="shoot">

            <SimulaConstant name="areaPerPlant" unit="cm2">

              100

            </SimulaConstant>

            <SimulaConstant name="extinctionCoefficient" unit="noUnit">

              0.6

            </SimulaConstant>

            <SimulaConstant name="lightUseEfficiency" unit="g/umol">

              0.4E-6

            </SimulaConstant>

            <SimulaTable name_colum1="time" name_colum2="specificLeafArea"

              unit_colum1="day" unit_colum2="g/cm2" note="SLA in lintul">

              0 0.001

              10 0.002

              40 0.003

              80 0.003

            </SimulaTable>

        </SimulaBase>

      </SimulaBase>

    </SimulaBase>

<!--This section gives the user some control over the output.-->

    <SimulaBase name="simulationControls">

      <SimulaBase name="outputParameters">

        <SimulaBase name="table">

<!--A table should be written containing values for each minimodel, for every half day from day 0

to 80. Hierarchy will be traversed up to depth 10 -->

            <SimulaConstant name="run" type="bool"> 1 </SimulaConstant>

            <SimulaConstant name="searchingDepth" type="int"> 10

            </SimulaConstant>

            <SimulaConstant name="startTime" type="time"> 0.

            </SimulaConstant>

            <SimulaConstant name="endTime" type="time"> 80.

            </SimulaConstant>

            <SimulaConstant name="timeInterval" type="time"> 0.5

            </SimulaConstant>

        </SimulaBase>

      </SimulaBase>

    </SimulaBase>

<!--We are done -->

</SimulationModel>

User friendly viewing of XML input files
A webbrowser can transform this into more human friendly presentation using the attached tree-
view.xsl  transformation style sheet (available for download at the gitlab repository 
https://gitlab.com/rootmodels/OpenSimRoot). The result when you open this file in a browser is 
given below. 

https://gitlab.com/rootmodels/OpenSimRoot


  |___ Origin
        |___  'plant'
        |     |___  'myplant'
        |           |___  'plantType' = mySpecies 
        |           |___  'plantingTime' = 0 (day)
        |           |___  'plantPosition' = 0 -2 0 
        |           |     |___  'shoot'
        |           |           |___  'lightInterception' (umol/cm2/day)
        |           |           |___  'photosynthesis' (g)
        |           |           |___  'leafAreaIndex' (cm2/cm2)
        |           |           |___  'leafArea' (cm2) initial value = 1. 
        |           |           |___  'leafDryWeight' (g)
        |           |           |___  'relativeCarbonAllocation2Leafs' (100%)
        |           |           |___  'carbonAllocation2Leafs' (g)
        |           |           |___  'relativeCarbonAllocation2Stems' (100%)
        |           |           |___  'carbonAllocation2Stems' (g)
        |           |           |___  'stemDryWeight' (g)
        |           |___  'carbonToDryWeightRatio' = 0.45 (100%)
        |           |___  'relativeCarbonAllocation2Shoot' (100%)
        |           |___  'carbonAllocation2Shoot' (g)
        |           |___  'carbonAvailableForGrowth' (g)
        |           |     |___  'path' = plantPosition/shoot/photosynthesis 
        |           |     |___  'multiplier' = 0.5
        |           |___  'relativeCarbonAllocation2Roots' (100%)
        |           |___  'carbonAllocation2Roots' (g)
        |           |___  'rootDryWeight' (g)
        |___  'environment'
        |     |___  'atmosphere'
        |           |___  x,y pairs :{ 0 3000 100 3000 }
        |___  'rootTypeParameters'
        |     |___  'mySpecies'
        |           |___  'resources'
        |           |     |___  'carbonAllocation2LeafsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 1 10 0.8 40 0.5 60 0. 80 0. }
        |           |     |___  'carbonAllocation2RootsFactor' (100%)=f{'time'} (day) x,y pairs :{ 0 0.8 10 0.2 40 0.2 80 0.2 }
        |           |___  'shoot'
        |                 |___  'areaPerPlant' = 100 (cm2)
        |                 |___  'extinctionCoefficient' = 0.6 (noUnit)
        |                 |___  'lightUseEfficiency' = 0.4E-6 (g/umol)
        |                 |___  'specificLeafArea' (g/cm2)=f{'time'} (day) x,y pairs :{ 0 0.001 10 0.002 40 0.003 80 0.003 }
        |___  'simulationControls'
              |___  'outputParameters'
                    |___  'table'
                          |___  'run' = 1 
                          |___  'searchingDepth' = 10 
                          |___  'startTime' = 0. 
                          |___  'endTime' = 80. 
                          |___  'timeInterval' = 0.5 

User friendly editing of XML input files

Besides attaching a transformation sheet for transforming xml to  html and view it in a 
webbrowser, a XML schema (xsd) is available, which allows schema aware editors to provide 
auto completion and validation of the input file. Below is a screenshot from an XML editor  
(plugin in www.eclipse.org) which shows the declaration of the schema, and a pop down menu 
for the available arguments for SimulaTable, and the different values that the objectGenerator 
argument can have.  

http://www.eclipse.org/


Supplemental figure 6.1: Screenshot of XML editor in eclipse in which a new file was created, 
using the new file wizard. The schema is declared with 
“xsi:noNamespaceSchemaLocation="../scripts/XML/SimulaXMLSchema.xsd"” 
and the black and the black and white pop up boxes show sugges�ons, as de@ned in the 

schema. 



Supplement 7: Diagram of all state variables and their dependencies in an 
exemplar bean simulation

We drew a graph which contains the various state variables in an example simulation and the 
dependencies among them. Each state variable is simulated by a SimulaObject, here we depicted 
SimulaConstants, SimulaTables and SimulaStochastic as wedges, whereas all others are depicted 
as a rounded boxes. The arrows indicate information flow, that is the result of one minimodel 
goes into the computation of another. The network is strongly dependent on the input file, and 
somewhat dependent on time, given that computations might switch on given conditions and 
should thereby be regarded as exemplar. To properly view the graph, enlarge the pdf strongly. 

Supplemental figure 7.1: Graph representing all the state variables in a bean simulation, and their
connections at day 12. For better viewing, enlarge by about 1200%. 
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