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Abstract 31 

Zinc (Zn) is an essential nutrient for plants with a crucial role as a co-factor for many 32 

enzymes. Approximately one third of the global arable land area is Zn deficient leading to 33 

reduced crop yield and quality. To improve crop tolerance to Zn deficiency, it is important 34 

to understand the mechanisms plants have adopted to tolerate suboptimal Zn supply. In this 35 

study, physiological and molecular aspects of traits related to Zn deficiency tolerance were 36 

examined in a panel of 19 Arabidopsis thaliana accessions. Accessions showed a larger 37 

variation for shoot biomass than for Zn concentration, indicating that they have different 38 

requirements for their minimal Zn concentration required for growth. Accessions with a 39 

higher tolerance to Zn deficiency showed an increased expression of the Zn deficiency 40 

responsive genes ZIP4 and IRT3 in comparison to Zn deficiency sensitive accessions. 41 

Changes in the shoot ionome, as a result of the plants Zn treatment, were used to build 42 

multinomial logistic regression model able to distinguish plants regarding their Zn 43 

nutritional status. This set of biomarkers, reflecting the A. thaliana response to Zn 44 

deficiency and Zn deficiency tolerance, can be useful for future studies aiming to improve 45 

the performance and Zn-status of crop plants grown under suboptimal Zn concentrations. 46 

 47 

Key-words: biofortification, biomarker, mineral concentration, plant ionome, shoot growth, 48 

zinc usage index.  49 
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Introduction 50 

Zinc (Zn) is an essential micronutrient required for plant growth and development. Many 51 

agricultural soils in the Middle East, India, and parts of Australia, America and Central Asia 52 

are Zn deficient, often due to poor Zn availability caused by high pH in calcareous soils. Zn 53 

deficient soils affect both crop yield and quality and can also result in human malnutrition 54 

through the intake of food containing low concentrations of Zn and other micronutrients 55 

(Alloway, 2009; Cakmak, 2007). The World Health Organization (WHO) and the Food and 56 

Agriculture Organization (FAO) of the United Nations estimate that about one third of the 57 

world’s population suffers from some form of Zn deficiency (Allen et al., 2006). Since 58 

plants are often the main source of dietary Zn, improving plant Zn concentration and 59 

tolerance to Zn deficiency is an important goal in fighting this so called ‘hidden hunger’ 60 

(www.harvestplus.org). 61 

 62 

Plants exposed to Zn deficiency show reduced growth. Severe deficiency results in extensive 63 

leaf chlorosis, wilting, stunting, leaf curling and reduced root elongation, while mild stress 64 

results in chlorosis in young leaves and early senescence of older leaves (Marschner, 1995). 65 

In Arabidopsis thaliana, all of these symptoms, as well as delayed flowering, are observed 66 

when plants are grown under Zn deficiency (Talukdar and Aarts, 2007). Zn deficiency also 67 

affects the function of enzymes such as copper/zinc superoxide dismutase (Cu/Zn SOD) and 68 

carbonic anhydrase (CA) leading to an accumulation of reactive oxygen species (ROS), 69 

which causes oxidative damage and a reduction in photosynthesis (Clemens, 2010; Ibarra-70 

Laclette et al., 2013). 71 

 72 

The threshold Zn concentration below which plants are considered to be Zn deficient is 73 

around 15-20 µgg-1 dry biomass. This can vary from species to species and between plants 74 

of the same species (Marschner, 1995; White and Broadley, 2011). The ability of a plant to 75 

grow and yield under Zn limiting conditions compared to ideal growth conditions is defined 76 

as Zn Efficiency (ZnE). It is based on the difference in relative growth or yield between 77 

plants grown under control and Zn deficient conditions. Another parameter used is the Zn 78 

Usage Index (ZnUI), which quantifies the amount of dry matter produced per mg of Zn in 79 

the plant. The ZnUI is useful for the comparison of plant genotypes which do not show 80 

significant differences in Zn concentration, but differ in biomass production under Zn 81 

deficiency (Cakmak et al., 1998; Genc et al., 2006; Good et al., 2004; Siddiqi and Glass, 82 

1981). 83 
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 84 

To avoid problems associated with inappropriate Zn supply, plants have developed an 85 

efficient homeostasis mechanism. Different genes act in the uptake of Zn from soil, 86 

distribution over different organs, tissues, cells and organelles, and (re)mobilization through 87 

the plant, to control Zn homeostasis (Sinclair and Kramer, 2012). While the actual Zn 88 

deficiency sensor is not yet known, the Zn deficiency response in A. thaliana seems to start 89 

with the activation of the transcription factors bZIP19 and bZIP23, the function of which is 90 

essential for plants to survive Zn deficiency (Assunção et al., 2013; van de Mortel et al., 91 

2006). 92 

 93 

Zn is among the essential elements which compose the plant ionome (Salt et al., 2008). 94 

Previous studies have shown that the plant ionome profile reflects the physiological state of 95 

plants under various genetic, developmental, and environmental backgrounds and can be 96 

used as a biomarker for a particular physiological condition (Huang and Salt, 2016). 97 

Ionome-based biomarker models have been used to determine differences in the plant 98 

nutritional status among large sets of different genotypes and experimental batches (Baxter 99 

et al., 2008a). Natural variation for the concentration of elements composing the plant 100 

ionome has been studied in A. thaliana, revealing important mineral homeostasis 101 

mechanisms in plants (Baxter et al., 2010; Baxter et al., 2008a; Chao et al., 2012; Kobayashi 102 

et al., 2008; Koprivova et al., 2013; Loudet et al., 2007; Morrissey et al., 2009; Pineau et 103 

al., 2012; Rus et al., 2006). 104 

 105 

To efficiently improve the performance of crops grown under suboptimal Zn conditions and 106 

increase the Zn content in their edible parts it is of paramount importance to understand the 107 

physiological and molecular mechanisms underlying plants tolerance to Zn deficiency. 108 

Aspects of natural variation for Zn deficiency tolerance have been described for several 109 

plant species, including A. thaliana (Cakmak et al., 1998; Genc et al., 2006; Ghandilyan et 110 

al., 2012; Graham et al., 1992; Hacisalihoglu et al., 2004; Karim et al., 2012; Rengel and 111 

Graham, 1996). However, to date, a detailed study on natural variation of plants tolerance to 112 

Zn deficiency involving both physiological and molecular mechanisms has not yet been 113 

performed. In this study we evaluated natural variation among 19 diverse A. thaliana 114 

accessions to identify physiological and molecular traits involved in the tolerance to Zn 115 

deficiency. It shows that high-throughput screening of genetic variation for Zn deficiency 116 

tolerance can be simplified by focusing on the combination of changes in the ionome 117 
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profile; the minimum Zn concentration required for growth; and the expression level of Zn 118 

deficiency responsive genes.  119 
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Material and methods 120 

Plant material and hydroponic growth 121 

A set of 19 A. thaliana accessions was selected based on their diverse site of origin 122 

(Supplementary Table S1). Seeds were surface-sterilized with chlorine vapour and sown in 123 

petri dishes on wet filter paper followed by a 4-day stratification treatment at 4 oC in the 124 

dark, to promote uniform germination. Seeds were transplanted to 0.5% (w/v) agar-filled 125 

tubes, of which the bottom was cut off, and placed in a modified half-strength Hoagland 126 

nutrient solution for hydroponic growth (Assunção et al., 2003): 3 mM KNO3, 2 mM 127 

Ca(NO3)2, 1 mM NH4H2PO4, 0.5 mM MgSO4, 1 µM KCl, 25 µM H3BO3, 2 µM MnSO4, 0.1 128 

µM CuSO4, 0.1 µM (NH4)6Mo7O24, 20 µM Fe(Na)EDTA. The solution pH was set at 5.5 129 

using KOH and buffered with 2 mM MES (2-(N-morpholino) ethanesulfonic acid). Plants 130 

were grown hydroponically in two experiments performed separately. In experiment one, 131 

referred to as the mild Zn deficiency experiment, we compared plants grown for 41 days 132 

under control (2 µM ZnSO4) and mild Zn deficiency (0.05 µM ZnSO4). In experiment two, 133 

referred to as the severe Zn deficiency experiment, we compared plants grown for 31 days 134 

under control (2 µM ZnSO4) and severe Zn deficiency (no Zn added). Plants were grown in 135 

a climate-controlled chamber set at 70 % relative humidity, with a 12-h day (120 µmol 136 

photons m-2s-1) and 20oC/15oC day/night temperatures. The hydroponic system consisted of 137 

plastic trays (46 x 31 x 8 cm) holding 9 L nutrient solution, covered with a non-translucent 138 

5-mm-thick plastic lid with evenly spaced holes in a 7 x 10 format holding the agar-filled 139 

tubes with plantlets. The nutrient solution was refreshed once a week. Shoot fresh weight 140 

(SFW) was measured in all samples during harvesting. Some samples were immediately 141 

frozen in liquid nitrogen and stored at -80oC for gene expression and element concentration 142 

analysis. The shoot dry weight (SDW) of these samples was calculated based on a fresh 143 

weight/dry weight correction factor obtained from additional plants which were dried for 72 144 

h at 60oC.For each trait, the treatment versus control relative values were determined as 145 

Rel_trait = (trait Zn deficiency/trait control)*100.The ZnUI was calculated based on the 146 

following formula: 147 

 148 

���� � � ��		
 �	���� ����
��		
 �� �	����
��
	� ������ 

 149 

Mineral elemental analysis 150 
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For each treatment, the shoot ionome profile was determined for five biological replicates of 151 

each A. thaliana accession. Samples were first dried for 72 h at 60oC, transferred to 96-well 152 

plates with tubes containing one 5-mm glass bead and homogenized for 5 minutes at 30 Hz 153 

with a Qiagen96-well plate mixer mill. 2 - 4 mg of leaf tissue was transferred to Pyrex test 154 

tubes (16 x 100 mm) and digested with 0.9 ml of concentrated nitric acid (Baker Instra-155 

Analyzed; Avantor Performance Materials; http://www.avantormaterials.com) for 5 h at 156 

115oC. Samples were diluted to 10 mL with 18.2 MΩcmMilli-Q water. Elemental analyses 157 

were performed with an inductively coupled plasma mass spectrometry, ICP-MS (Elan DRC 158 

II; PerkinElmer, http://www.perkinelmer.com) for Li, B, Na, Mg, P, S, K, Ca, Mn, Fe, Co, 159 

Ni, Cu, Zn, As, Se, Rb, Sr, Mo and Cd. A reference, composed of pooled samples of 160 

digested leaf material, was prepared and included every 9th sample in all sets of 70 samples 161 

to correct for variation between and within ICP-MS analysis runs. Seven samples from each 162 

sample set were weighed and used during the iterative weight normalization process to 163 

estimate the weight of the remaining 63 samples from the set (Danku et al., 2013). The 164 

following elements were not added to the nutrient solution: Li, Co, Ni, As, Se, Rb, Sr and 165 

Cd and, except for Cd, their concentrations are not shown. 166 

 167 

Gene expression 168 

Gene expression analysis was performed for eight accessions with different ZnUI values 169 

selected from the 19 accessions grown under mild Zn deficiency conditions. Frozen leaf 170 

material from plants grown under mild and severe Zn deficiency and their respective control 171 

treatments was used, in three biological replicates, each consisting of material from three 172 

plants. Total RNA was extracted using the method of Onate-Sanchez and Vicente-Carbajosa 173 

(2008). cDNA was synthesized from 1 µg of total RNA using the iScript cDNA synthesis kit 174 

from BioRad as per the manufacturer’s instructions. Following synthesis, cDNA was diluted 175 

10-fold. qRT-PCRs were performed in triplicate with iQ SYBR Green Supermix (BioRad) 176 

using an iQ Real Time PCR machine (BioRad). Relative transcript levels of selected genes 177 

were determined by qRT-PCR. The expression of IRT3 (At1g60960), ZIP3 (At2g32270), 178 

ZIP4 (At1g10970), bZIP19 (At4g35040), CSD2 (At2g28190), and CA2 (At5g14740) was 179 

measured. The oligonucleotides used for each gene are shown in Supplementary Table S2. 180 

Amplicon lengths were between 80 and 120 bp and all primer combinations had at least 95% 181 

efficiency. Reaction volumes were 10 µL (5 µL SYBR green qPCR mix, 300 nmol of each 182 

primer and 4 µL of cDNA template). Cycling parameters were 4 minutes at 95˚C, then 40 183 

cycles of 15 seconds at 95˚C and 30 seconds at 55˚C. Gene expression values were 184 
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normalized to the reference genes PEX4 (At5g25760), SAND (At2g28390) and 18S. Gene 185 

expression levels relative to the average of the reference genes for each accession under 186 

mild and severe Zn deficiency and their respective control treatments were calculated based 187 

on ΔCT values. Gene expression levels of accessions exposed to mild and severe Zn 188 

deficiency relative to their respective control treatment, were calculated based on ΔΔCT 189 

values (Livak and Schmittgen, 2001). 190 

 191 

Statistical analysis 192 

For all shoot traits and gene expression levels relative to reference gene expression, a two-193 

way ANOVA was performed to test for significant differences between treatments, 194 

accessions and the interaction between treatments and accessions. A one-way ANOVA was 195 

performed to test for significant differences between accessions for relative gene expression 196 

values, relative change in SDW, Zn concentration and Zn content. A one-way ANOVA was 197 

also performed to test for significant differences in element concentrations between the four 198 

treatments used (mild and severe Zn deficiency and their respective controls). Element 199 

concentration values were log10-transformed and a Benjamini-Hochberg correction of the p-200 

values was performed. When significant differences were found, a Tukey’s HSD post-hoc 201 

test with a significance level of 0.05 was performed. Broad-sense heritability was calculated 202 

as the ratio between estimated genetic variance and total phenotypic variance (Kruijer et al., 203 

2015). 204 

 205 

Multivariate analysis and classification 206 

To predict the Zn deficiency nutritional status of accessions based on their ionomic profile, 207 

various multinomial logistic regression (MLR) models were used, similar to the model 208 

described by Baxter et al. (2008b). In all cases, 11 elements (B, Mg, P, S, K, Ca, Mn, Fe, 209 

Cu, Zn and Mo) were considered of which the concentrations were reliably measured. At 210 

first, element concentrations were log10-transformed and the transformed element 211 

concentration values in the severe or mild Zn deficient plants are normalized to their 212 

respective control treatment by subtracting the means of the control group. Thereafter, plants 213 

from the control treatment of the two experiments are considered to have the same ‘control’ 214 

status. Hence, plants can either be in a control, mild or severe Zn deficiency state. These 215 

states have different probabilities, which were modelled as a linear function of the element 216 

concentrations. The prediction for the state of a new plant was defined as the state with the 217 

highest probability. Finally, the prediction performance of the following MLR models were 218 
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compared: (a) univariate MLR models, for each element; (b) a multivariate MLR model, 219 

including all elements; and (c) a multivariate MLR model with all elements except Zn. The 220 

multivariate models included a LASSO penalty, which is a multiple of the absolute values of 221 

the regression coefficients. The level of penalization was chosen by 10-fold cross-validation. 222 

The prediction performance of all models was assessed by drawing 100 times a training set 223 

of 199 plants from the total of 398 plants, while the remaining 199 plants were used as a 224 

validation set. Each training set was drawn in a stratified manner, respecting the number of 225 

plants in the Zn sufficiency (2x100), mild (99) and severe Zn deficiency treatment (99) 226 

categories. A penalized logistic regression model was fit for each training set using the R-227 

package “glmnet” (Friedman et al., 2010), and used to predict the status of the 199 plants in 228 

the validation set. Prediction performance was estimated by averaging the proportion of 229 

correctly classified plants over the 100 validation sets. 230 

 231 

Results 232 

Natural variation in Zn deficiency response for physiological and morphological traits 233 

A. thaliana accessions were grown hydroponically under control conditions (2 μM ZnSO4) 234 

and either mild (0.05 μM ZnSO4) or severe Zn deficiency (no Zn added). After 31 days of 235 

exposure to severe Zn deficiency, plants showed clear deficiency symptoms compared to 236 

plants in the control treatment. This was primarily visible as reduced growth, leaves curling 237 

and the presence of chlorotic and necrotic spots (Fig. 1A and B). After 31 days in the mild 238 

Zn deficiency treatment, accessions did not show any sign of Zn deficiency, hence they were 239 

grown for an additional 10 days. Even then, only a few accessions had visual symptoms of 240 

Zn deficiency, mainly slight chlorosis in leaves and reduced growth (Fig. 1C and D), 241 

confirming that the treatment was indeed mild. 242 

 243 

Accessions showed significant phenotypic variation for most traits analysed which varied 244 

according to the trait and Zn treatment (Supplementary Tables S3 and S5).Plants in the 245 

severe Zn deficiency treatment had shoot Zn concentrations close to the reported minimum 246 

required for growth, which is around 15-20 µg g-1 dry biomass (Marschner, 1995). Shoot Zn 247 

concentrations under mild Zn deficiency were approximately two times higher than under 248 

severe Zn deficiency (Fig. 2). In addition, plants in the mild Zn deficiency experiment had a 249 

higher SDW than plants in the severe Zn deficiency experiment, as they were grown for 10 250 

days longer. From all shoot traits only Zn concentration was significantly correlated between 251 
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the controls of the two Zn deficiency experiments, indicating that during the additional 10 252 

days of growth between experiments other factors such as the growth rate of accessions 253 

affected their shoot biomass and Zn content in a different manner (Supplementary table S8). 254 

Accession Cvi-0 had to be excluded from further analysis as it had established poorly and 255 

too many plants were lost from especially the mild Zn deficiency experiment. 256 

 257 

In both Zn deficiency treatments, most accessions showed reduced SDW relative to their 258 

respective control treatments, while few had a higher SDW and apparently were not affected 259 

by the reduced Zn supply (Fig. 3A and B). All accessions had a reduction in shoot Zn 260 

concentration of approximately 80% in both Zn deficiency treatments relative to their 261 

respective controls (Fig. 3C and D). Also, accessions with high shoot Zn concentrations 262 

were not always among the ones with a high shoot total Zn content, due to differences in 263 

SDW. Tsu-0, Col-0 and Mt-0 were the best performing accessions under mild Zn deficiency 264 

in terms of having similar Zn concentrations as the other accessions and higher SDW across 265 

the Zn deficiency and control treatments. Thus, these accessions seem to be able to maintain 266 

growth under Zn deficiency albeit with some reduction in shoot Zn concentration. 267 

Conversely, Pa-2, C24 and Li-5:2 performed poorly under mild Zn deficiency, with a strong 268 

reduction in growth in comparison to the other accessions though with a small reduction in 269 

shoot Zn concentrations in both Zn deficiency treatments. These accessions appear to have a 270 

poor ability to take up Zn both under control and Zn deficient conditions which results in a 271 

limited capacity to grow and to maintain cellular Zn levels. Only accession Bor-4 showed an 272 

increase in SDW under severe Zn deficiency relative to its control treatment even though not 273 

statistically different from most of the other accessions (Fig. 3A, Supplementary table S8). 274 

Bor-4 also showed an increase in SDW under mild Zn deficiency, as did Shah. However, it 275 

is important to note that these two accessions were among the ones with the lowest SDW in 276 

their respective control treatments, which could explain their lower sensitivity to Zn 277 

deficiency. 278 

 279 

Accessions with contrasting tolerance to Zn deficiency show differences in the 280 

expression of Zn deficiency responsive genes 281 

The Zn Usage Index (ZnUI) was used to determine the amount of biomass produced per unit 282 

of tissue Zn concentration (Fig. 4). In accordance with the results previously shown for 283 

SDW and Zn concentration the accessions Mt-0 and Tsu-0 had the highest ZnUI values for 284 
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both Zn deficiency treatments andC24 and Pa-2 had the lowest values. Even though only in 285 

the mild Zn deficiency treatment, these accessions had significantly higher or lower ZnUI 286 

values when compared to the other accessions (Supplementary Table S6). Eight accessions 287 

with different ZnUI values in the mild Zn deficiency treatment were then selected to 288 

examine if natural variation for Zn deficiency tolerance is reflected at the gene expression 289 

level. Mild Zn deficiency was favoured over the severe treatment as the variation between 290 

accessions for SDW was larger in the mild treatment. In addition, mild Zn deficiencies are 291 

more likely to be found in nature. The accessions Tsu-0 and Col-0 had high ZnIU values, 292 

accessions Ge-0, Bur-0 and Can-0 were intermediate and Pa-2, C24 and Per-1 had low ZnUI 293 

values. Accessions with higher ZnUI values were considered to be more tolerant to Zn 294 

deficiency (Fig. 4). 295 

 296 

The expression of six genes involved in the plant Zn deficiency and oxidative stress 297 

response was determined in Zn deficiency tolerant and sensitive accessions (Fig. 5; 298 

Supplementary Fig. S1). bZIP19 encodes one of the two redundant bZIP transcription 299 

factors which control the Zn deficiency response in A. thaliana. We also looked at the 300 

expression of the IRT3, ZIP4 and ZIP3 transcriptional targets genes of bZIP19, all encoding 301 

ZIP-like Zn transport proteins, strongly induced following Zn deficiency (Assunção et al., 302 

2010). The expression of the CSD2 gene, encoding a Cu/Zn superoxide dismutase (SOD) 303 

which needs Zn as a structural component to function (Sharma et al., 2004), and the CA2 304 

gene, encoding a carbonic anhydrase (CA) requiring Zn as co-factor, were also determined. 305 

CSD2 is needed for detoxification of superoxide radicals, while CA2 facilitates the diffusion 306 

of CO2 through the liquid phase of the cell to the chloroplast, important for photosynthesis 307 

(Li et al., 2013; Randall and Bouma, 1973). Both CSD2 and CA2 are expected to decrease in 308 

expression under Zn deficiency exposure due to the reduced concentration of Zn in the cells 309 

(Ibarra-Laclette et al., 2013). 310 

 311 

There was a significant effect of both the mild and severe Zn deficiency treatments on the 312 

expression level of most studied genes. The exceptions were bZIP19 and CA2 in the severe 313 

Zn deficiency treatment (Supplementary Table S3). The Zn deficiency responsive genes 314 

IRT3, ZIP4 and ZIP3 were up-regulated in all accessions under both Zn deficiency 315 

treatments, confirming that the plants sensed Zn deficiency (Fig. 5; Supplementary Fig. S1). 316 

Especially ZIP4 and IRT3 were in general higher expressed in the more Zn deficiency 317 

tolerant accessions than in the more Zn deficiency sensitive accessions, with especially Tsu-318 
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0 showing strong induction of these genes under severe Zn deficiency. The expression of 319 

ZIP3, which is predominantly expressed in roots (van de Mortel et al., 2006), is the least 320 

prominent of the three Zn transporter genes in shoots. The expression levels of CSD2 and 321 

CA2 were generally low and variable in both Zn deficiency treatments, but especially under 322 

mild Zn deficiency, these genes are down-regulated. The Zn deficiency tolerant accessions 323 

Ge-0 and Bur-0 had the highest induction of the CA2 and CSD2 genes under severe Zn 324 

deficiency (Fig. 5). Significant accession by treatment interaction was found for all genes 325 

tested, except for bZIP19, in at least one of the Zn deficiency experiments (Supplementary 326 

Table S3), indicating that gene expression differences between accessions response to Zn 327 

deficiency are pronounced. 328 

 329 

To further understand the relation between the expression levels of Zn deficiency responsive 330 

genes and Zn deficiency tolerance traits a correlation analysis was performed. Under severe 331 

Zn deficiency we found a significant positive correlation between the expression levels of 332 

IRT3 and CSD2 with ZnUI and of ZIP4 with shoot fresh weight (SFW) (Supplementary 333 

Table S9). 334 

 335 

Zn deficiency affects the shoot ionomic profile of A. thaliana accessions 336 

The shoot ionome of the 19 A. thaliana accessions was then determined. Box plots of the 337 

combined results per element showed a substantial variation between treatments for almost 338 

all the elements measured (Fig.6, Supplementary Table S7). Significant differences between 339 

treatments were observed for Zn, Mg, Mo, Cu and Cd concentrations in both the mild and 340 

severe Zn deficiency experiments. B, Na and Ca concentrations were significantly different 341 

between treatments only in the mild Zn deficiency experiment and Mn and Fe 342 

concentrations only in the severe Zn deficiency experiment. When comparing Zn 343 

concentrations across the four treatments, there was a significant difference between severe 344 

and mild deficiency but not between their respective control treatments. 345 

 346 

Broad sense heritability (H2) values were calculated to estimate the genetic contribution to 347 

the observed phenotypic variation (Table 1). H2 values were generally higher in the mild 348 

compared to the severe Zn deficiency experiment and in plants exposed to Zn deficiency in 349 

comparison to their control treatments. The heritability for ZnUI was highest in the mild Zn 350 

deficiency treatment, suggesting that under those conditions a large part of the observed 351 
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variation is due to genetic differences between accessions. Fe concentration had the lowest 352 

heritability in both control treatments, whereas Mo concentration had the highest heritability 353 

across the treatments. Even though the Zn concentrations of plants grown under severe Zn 354 

deficiency were very low, there was substantial heritability for both Zn concentration and Zn 355 

content, with values of 0.49 and 0.41 respectively, indicating that the minimal Zn 356 

concentration/content levels are subject to genetic variation. 357 

 358 

Classification of the plant Zn deficiency state using multinomial logistic regression  359 

The univariate model (i.e. with a single element as the only predictor) performed poorly as a 360 

predictor of plant nutritional status, for most elements, and often mistakenly identified plants 361 

under Zn deficiency as being control (Table 2). As expected, only the Zn concentration was 362 

able to separate the three classes very well, with prediction accuracies ranging from 0.92 for 363 

the plants under severe Zn deficiency to 0.99 for the control plants. Cu also had a good 364 

prediction performance for severe Zn deficiency, while Ca was the only element (apart from 365 

Zn) that identified a substantial number of the plants under mild Zn deficiency (Table 2). 366 

Mg, Mn, Fe, and Mo performed only marginally well, having some ability to identify plants 367 

under severe and mild Zn deficiency. For the other elements (B, P, S, and K) the univariate 368 

model performed no better than a naïve classifier that would always predict control 369 

conditions. 370 

 371 

The penalized multivariate model, fitted on all elements except Zn, performed much better 372 

than the univariate model: the predicted accuracy for mild (0.6596) and severe Zn deficiency 373 

(0.7750) was far higher than with any element alone (except Zn), and the accuracy for the 374 

control treatments (0.8738) was still very good. When this model was fitted on all elements 375 

(including Zn), it performed similarly to the univariate model fitted with Zn alone, the latter 376 

having a higher accuracy for the controls and mild Zn deficiency treatments and less for the 377 

severe Zn deficient plants (Table 2). 378 

 379 

Discussion 380 

The natural variation in the response of A. thaliana to two levels of Zn deficiency was 381 

examined, with a focus on physiological and molecular traits. Analysis of genetic variation 382 

indicated that: (1) accessions vary for the minimum Zn requirement for growth; (2) tolerance 383 

to Zn deficiency seems to be related to an increased expression of genes encoding Zn 384 
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transmembrane transporter proteins (ZIP4 and IRT3); (3) Zn deficiency results in changes in 385 

the plant ionome which can be used as biomarker to predict the plant’s physiological 386 

condition. 387 

 388 

Natural variation of growth and Zn concentration in response to severe and mild Zn 389 

deficiencies 390 

The tested A. thaliana accessions showed substantial diversity for all traits studied in both 391 

Zn deficiency experiments (Figs. 1 – 3). Extreme accessions were identified for all traits, 392 

confirming the existing large natural variation in A. thaliana response to Zn deficiency 393 

conditions and endorsing this panel of representative accessions as a valuable resource to 394 

study the plant response and tolerance to Zn deficiency. The response of A. thaliana to Zn 395 

deficiency has previously been examined in the Ler x Cvi RIL population, in which large 396 

variation in SDW and Zn concentration was observed (Ghandilyan et al., 2012). 397 

 398 

The mild Zn deficiency treatment is more suitable to reveal genetic variation underlying 399 

plants response to Zn nutrition with higher heritability for most traits in comparison to the 400 

other treatments (Table 1).The disadvantage of using this mild treatment was that plants 401 

were 10 days older than in the severe Zn deficiency treatment, resulting in the initiation of 402 

flowering in some accessions. Such change in development could include remobilization of 403 

minerals from older to younger organs (e.g. from rosette leaves to developing fruits), 404 

however, Waters and Grusak (2008) previously showed that the contribution of 405 

remobilization is probably less than 10% of the seed mineral content, so we considered this 406 

not much of a disturbing factor. In addition, this treatment seems better in representing Zn 407 

deficient conditions likely to be encountered by A. thaliana in nature, with an average Zn 408 

concentration in leaves of 26 ppm in comparison to 18 ppm in the severe Zn deficiency 409 

treatment. To support this, Ghandilyan et al. (2012) observed leaf average Zn concentration 410 

of 40 ppm when using a Zn deficient and nutrient-poor soil originating from Eskisehir, 411 

Central Anatolia in Turkey to grow the A. thaliana Ler x Cvi RIL population. Furthermore, 412 

the harshness of the severe Zn deficiency treatment seems to be beyond the genetic capacity 413 

of most accessions to tolerate based on the extensive chlorosis displayed by nearly all 414 

accessions in this treatment and their very low average leaf Zn concentration, which was 415 

within or below the minimum Zn concentration range of 15-20 ppm required for growth as 416 

suggested by Marschner (1995). 417 

 418 
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Heritabilities of most traits were higher in the severe and mild Zn deficiency treatments than 419 

in their respective controls, further supporting the observed large genetic variation for all 420 

traits in response to the Zn deficiency treatments. Contrary to these observations, 421 

Ghandilyan et al. (2012) reported lower heritability values for shoot biomass and most 422 

element concentrations in A. thaliana plants grown in Zn deficient soil compared to control 423 

conditions. Yet, other studies show that heritabilities for the same trait can change according 424 

to the growth conditions (Baxter et al., 2012; Ghandilyan et al., 2009; Richard et al., 2011), 425 

hence the importance of taking heritability into account when to select growth conditions 426 

most amenable to detect genetic variation for a specific trait. 427 

 428 

The control treatments of the two Zn deficiency experiments were significantly correlated 429 

with respect to the Zn concentration, but not for SDW and Zn content (Supplementary Table 430 

S8). This is probably due to differences in growth rate between the A. thaliana accessions 431 

during the ten additional days of growth in the mild Zn deficiency experiment. Previous 432 

studies have shown that growth rate is highly variable among plants; being affected by both 433 

internal and external factors such as developmental processes and environmental conditions 434 

(El-Lithy et al., 2004; Zhang et al., 2012). Differences in growth rate between accessions in 435 

the mild and severe Zn deficiency experiments are likely caused by differences in the 436 

initiation of flowering. Most accessions in the control treatment of the mild Zn deficiency 437 

experiment were flowering or bolting at the harvesting day; while only three accessions, of 438 

the control treatment, were flowering in the sever Zn deficiency experiment at the harvesting 439 

day, which was 10 days earlier than in the mild Zn deficiency experiment (Fig. 1A and C). 440 

 441 

Physiological and molecular mechanisms of Zn deficiency tolerance in A. thaliana 442 

A. thaliana accessions showed a larger variation for relative change in SDW than in Zn 443 

concentration under both Zn deficiency treatments (Fig. 3). This indicates the presence of 444 

genetic variation for their minimum Zn requirement and for the ability to tolerate low Zn 445 

concentrations. This is not unique for A. thaliana though. Also for barley, bread and durum 446 

wheat, common bean and rice, different genotypes are reported to have similar shoot Zn 447 

concentrations with different levels of Zn deficiency tolerance (Cakmak et al., 1998; Genc et 448 

al., 2002; Hacisalihoglu et al., 2003; Rengel, 2001; Sadeghzadeh et al., 2009; Wissuwa et 449 

al., 2006). Further indications that A. thaliana accessions vary for the minimum Zn 450 
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requirement is shown by a few accessions with slightly higher SDW in the Zn deficient 451 

treatment relative to its control.  452 

 453 

The ability to enhance the root Zn uptake and the root to shoot Zn transport are among the 454 

proposed mechanisms underlying tolerance to Zn deficiency (Broadley et al., 2007; Rengel, 455 

2001), but the Zn deficiency signal may come from shoots. Indeed, accessions considered 456 

tolerant to Zn deficiency had a higher expression of Zn deficiency responsive genes ZIP4 457 

and IRT3 in shoots (Fig. 5). These genes, encoding Zn transmembrane transporters (Grotz et 458 

al., 1998) are transcriptionally responsive to Zn deficiency and mainly expressed in roots, 459 

but are also expressed in shoot tissue in response to low Zn, suggesting a role in both Zn 460 

uptake and distribution (Jain et al., 2013; Lin et al., 2009). Our findings indicate that higher 461 

tolerance to Zn deficiency may be the result of an increased, or more efficient, shoot Zn re-462 

allocation capacity, and that natural variation for it may reflect variation in the expression of 463 

these and other Zn transport genes in A. thaliana. 464 

 465 

Previous studies have shown that tolerance to Zn deficiency can also be affected by the plant 466 

capacity to deal with the high levels of ROS produced under low Zn conditions (Rengel, 467 

2001; Sinclair and Kramer, 2012). In this study a relationship was found between the 468 

expression of CA2 and ZnUI (Supplementary Table S9). Further studies examining the 469 

ability of plants to tolerate ROS under Zn deficiency and other mechanisms not included in 470 

this study, but thought to contribute to tolerance to Zn stress, will be useful for a more 471 

complete understanding of the mechanisms involved in plant tolerance to Zn deficiency 472 

(Cakmak et al., 1996; Chen et al., 2009; Gao et al., 2005; Genc et al., 2006; Hoffland et al., 473 

2006; Impa et al., 2013a; Impa et al., 2013b; Rengel, 2001; Wissuwa et al., 2006). This 474 

should include examining the ability of plants to increase the bioavailability of Zn2+ ions in 475 

the soil; to improve the root system architecture to scavenge larger soil volumes; and a more 476 

efficient utilization, compartmentalization and remobilization of Zn. 477 

 478 

Model to predict Zn deficiency status based on other elements concentration 479 

Exposing A. thaliana plants to different levels of Zn deficiency also affects the homeostasis 480 

of other elements, which made it possible to develop a MLR model able to predict the Zn 481 

deficiency status of a plant based on changes in other elements (Table 2). This approach is 482 

analogous to the model used by Baxter et al. (2008b) to predict the physiological status of A. 483 
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thaliana plants exposed to Fe or P deficiency. Contrary to the MLR model developed for Zn 484 

deficiency, Baxter et al. (2008b) found that changes in Fe concentration alone had no power 485 

to detect Fe-deficiency and detection was totally dependent on analysis of other elements. 486 

This difference could be caused by the two different Zn deficiency treatments used in this 487 

study which incorporated more data points to the model, while only one deficiency 488 

treatment was used in the Fe deficiency study (Baxter et al., 2008b), but it could also be 489 

because in that study the Fe concentrations in leaves of plants grown under low and normal 490 

Fe did not differ, while in our study, the shoot Zn concentrations of plants grown under 491 

severe and mild Zn deficiency were significantly different, next to having extremely low Zn 492 

concentrations in comparison to control conditions. The Zn concentration thus appears to be 493 

much less tightly controlled in A. thaliana than for Fe. In that respect, Zn corresponds more 494 

with P, for which their model did incorporate P concentration (Baxter et al., 2008b). This 495 

analysis provides strong evidence that elements do not behave independently upon Zn 496 

deficiency and it shows the power of using a combination of elements as a phenotype of 497 

interest to detect a plant’s nutritional status. The use of these traits to evaluate crops 498 

tolerance to Zn deficiency has the potential to simplify and shorten the process of 499 

identification of Zn deficiency tolerant varieties. However, further studies confirming the 500 

application of comparable biomarkers as found for A. thaliana in the evaluation of Zn 501 

deficiency tolerance in crops will be needed. 502 

 503 

Conclusion 504 

This study demonstrates that several physiological and molecular mechanisms underlie 505 

differences in Zn deficiency tolerance in A. thaliana. These include the minimum Zn 506 

concentration required for growth and the ability to take up and translocate Zn by inducing 507 

the expression of Zn deficiency responsive genes. ZnUI, the reduction in SDW and the 508 

expression level of Zn deficiency responsive genes such as ZIP4 and IRT3 are useful proxies 509 

to evaluate plant tolerance to Zn deficiency in future studies. A mild Zn deficiency condition 510 

is more amenable for genetic studies than a severe stress, with higher heritability values for 511 

most studied traits and providing a more natural condition, at least for A. thaliana. Finally, 512 

the shoot ionome profile is a useful predictor of the plant Zn deficiency status. Changes in 513 

Zn concentration alone or in combination with other elements have an excellent capacity to 514 

detect physiological plant Zn deficiency in the absence of other visible symptoms. While we 515 

have shown this now for A. thaliana, a model plant species, the application of our findings 516 
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will be in crops. Although it will be more difficult to establish this, we expect our research 517 

to inspire others to test the applicability of the described biomarkers in crops, under 518 

experimental and field conditions. 519 
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Tables 

Table 1: Broad sense heritability (H2) values for the traits measured in A. thaliana accessions 

grown under severe and mild Zn deficiency and their respective Zn sufficiency conditions. 

 
mild severe 

traits control Zn deficiency control Zn deficiency 

SFW 0.44 0.62 0.41 0.66 

SDW 0.68 0.78 0.40 0.48 

ZnUI 0.65 0.81 0.40 0.57 

SZnC 0.60 0.62 0.50 0.41 

[Zn] 0.63 0.65 0.60 0.49 

[Mn] 0.68 0.69 0.60 0.64 

[Fe] 0.36 0.53 0.32 0.83 

[Cu] 0.50 0.75 0.59 0.38 

[Mo] 0.91 0.97 0.86 0.75 

[Cd] 0.59 0.73 0.49 0.76 

[B] 0.67 0.51 0.63 0.78 

[Na] 0.48 0.37 0.55 0.60 

[Mg] 0.59 0.71 0.55 0.46 

[P] 0.62 0.71 0.44 0.72 

[S] 0.45 0.59 0.53 0.58 

[K] 0.51 0.65 0.46 0.48 

[Ca] 0.72 0.69 0.42 0.52 

SFW – shoot fresh weight (g); SDW - shoot dry weight (mg); ZnUI - Zn Usage Index; SZnC - 
shoot total Zn content (µg); and [X] - mineral element concentrations (µg.g-1 dry weight). 
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Table 2: Estimated prediction performance values for elements used in the logistic regression 

model to predict plant nutritional Zn status. 

univariate  

models control 

Zn deficiency 
average 

severe mild 

B 0.914 0.002 0.0837 0.4804 

Mg 0.901 0.364 0 0.5442 

P 1 0 0 0.5025 

S 0.993 0 0.0061 0.5005 

K 0.991 0 0.0102 0.5005 

Ca 0.949 0 0.2673 0.5427 

Mn 0.882 0.412 0 0.5467 

Fe 0.977 0.278 0 0.5608 

Cu 0.877 0.716 0.0286 0.6276 

Zn 0.996 0.92 0.9857 0.9744 

Mo 0.911 0.204 0 0.509 

multivariate 

models 
   

 

All elements 

except Zn 
0.8738 0.7750 0.6596 0.7962 

All elements 0.9921 0.9332 0.9549 0.9681 
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Figure legends 

Figure 1: Comparison of A. thaliana accessions grown under control and severe or mild Zn 

deficient conditions. Representative examples of A. thaliana accessions grown in hydroponic 

medium under Zn sufficient control conditions (2 µM ZnSO4)(A and C) or severe (no Zn 

added) (B) and mild Zn deficiency (0.05 µM ZnSO4)(D). Plants in A and B are grown for 31 

days, plants in C and D are grown for 41 days. Accessions from left to right in rows from top 

to bottom: C24, Per-1, Tsu-0, Mc-0, Hau-0, Mt-0, Shah, Kas-2, Bor-4, Wag-3, Ors-1, Pa-2, 

Li-5:2, Ge-0, Can-0, Var 2-1, Ler-1, Cvi-0, Bur-0 and Col-0. Bars indicate 2 cm. 

 

Figure 2: Relations between shoot dry weight and Zn concentration of 19 A. thaliana 

accessions grown under Zn deficiency. 

Shoot dry weight (SDW) is expressed in mg and Zn concentration in µg.g-1 dry weight. See 

Supplementary Table S1 for the list of accessions. Data for plants grown under severe Zn 

deficiency (no Zn added; A) or mild Zn deficiency (0.05 µM ZnSO4; B) are indicated with 

grey dots and plants grown under their respective control conditions (2 µM ZnSO4) with 

black dots. Plants used for A grew for 31 days, plants used for B grew for 41 days. 

 

Figure 3: Relative changes in shoot dry weight and Zn concentration of 19 A. thaliana 

accessions grown under severe (A and C) and mild (B and D) Zn deficiency, compared to 

their respective control treatments. 

Relative changes are expressed as percentages of the control (%). One-way ANOVA of these 

data and pairwise comparisons between accessions are provided in Supplementary Tables S5 

and S6. See Supplementary Table S1 for the list of accessions. Plants were grown in 

hydroponic medium under Zn sufficient control conditions (2 µM ZnSO4) and severe (no Zn 

added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in A and C are grown for 31 days, 

plants in B and D are grown for 41 days. 

 

Figure 4: Shoot Zn Usage Index (ZnUI) of A. thaliana accessions grown in severe (A) and 

mild (C) Zn deficiency and their respective control treatments (B and D). The letters above 

each bar indicates if the accession was already bolting (B) or flowering (F) when harvested.  

The ZnUI is defined as shoot biomass (in mg)/shoot Zn concentration (in ppm). Plants were 

grown in hydroponic medium under Zn sufficient control conditions (2 µM ZnSO4) and severe 
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(no Zn added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in A and B are grown for 31 

days, plants in C and D are grown for 41 days. One-way ANOVA of these data and pairwise 

comparisons between accessions are provided in Supplementary Tables S3 and S4. 

Figure 5: Normalized gene expression levels of bZIP19, IRT3, ZIP3, ZIP4, CSD2 and CA2 in 

rosette leaves of eight A. thaliana accessions under Zn deficiency (Zn-) and control 

treatments (Zn+ control) in the severe (left) and mild Zn deficiency  experiments (right). 

Accessions are ranked from left to right according to decreasing Zn Usage Index values 

under mild Zn deficiency (see Fig. 4). Plants were grown in hydroponic medium under Zn 

sufficient control conditions (2 µM ZnSO4) and severe (no Zn added) or mild Zn deficiency 

(0.05 µM ZnSO4), for respectively 31 or 41 days. Error bars represent standard errors of the 

mean, one-way ANOVA and pairwise comparisons between accessions are provided in 

Supplementary Tables S3 and 4. 

 

Figure 6: Box plots comparing mineral element concentrations in shoots of 19 A. thaliana 

accessions grown under severe and mild Zn deficiency and their respective control  

treatments.  

Plants were grown in hydroponic medium under Zn sufficient control conditions (2 µM 

ZnSO4) and severe (no Zn added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in the 

severe Zn deficiency condition were grown for 31 days, plants in the mild Zn deficiency 

condition were grown for 41 days. For each concentration the box represents the 

interquartile range (IQR), the bisecting line represents the median, the whiskers indicate 1.5 

times the IQR and the open circles indicate outlier points. Lower case letters denote 

statistically different groups when comparing the four treatments using a one-way ANOVA 

with groupings by Tukey’s HSD test with a significance level of P≤0.05. The results of this 

ANOVA are shown in Supplementary Table S7. 
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Figure 1: Comparison of A. thaliana accessions grown under control and severe or mild Zn 

deficient conditions. 

Representative examples of A. thaliana accessions grown in hydroponic medium under Zn 

sufficient control conditions (2 µM ZnSO4)(A and C) or severe (no Zn added) (B) and mild Zn 

deficiency (0.05 µM ZnSO4)(D). Plants in A and B are grown for 31 days, plants in C and D 

are grown for 41 days. Accessions from left to right in rows from top to bottom: C24, Per-1, 

Tsu-0, Mc-0, Hau-0, Mt-0, Shah, Kas-2, Bor-4, Wag-3, Ors-1, Pa-2, Li-5:2, Ge-0, Can-0, Var 

2-1, Ler-1, Cvi-0, Bur-0 and Col-0. Bars indicate 2 cm. 
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Figure 2: Relations between shoot dry weight and Zn concentration of 19 A. thaliana 

accessions grown under Zn deficiency. 

Shoot dry weight (SDW) is expressed in mg and Zn concentration in µg.g-1 dry weight. See 

Supplementary Table S1 for the list of accessions. Data for plants grown under severe Zn 

deficiency (no Zn added; A) or mild Zn deficiency (0.05 µM ZnSO4; B) are indicated with 

grey dots and plants grown under their respective control conditions (2 µM ZnSO4) with 

black dots. Plants used for A grew for 31 days, plants used for B grew for 41 days. 

  

Bor-4

Bur-0

C24

Can-0

Col-0Ge-0

Hau-0

Kas-2

Ler-1

Li-5:2Mc-0

Mt-0

Ors-1

Pa-2

Per-1

Shah

Tsu-0

Var 2-1

Wag-3

Bor-4Bur-0

C24

Can-0

Col-0
Ge-0

Hau-0
Kas-2

Ler-1

Li-5:2
Mc-0
Mt-0

Ors-1 Pa-2
Per-1

Shah
Tsu-0

Var 2-1

Wag-3

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

S
D

W
 

Shoot [Zn]

Severe Zn deficiency

Bor-4

Bur-0

C24

Can-0

Col-0

Ge-0

Hau-0
Kas-2 Ler-1

Li-5:2
Mc-0

Mt-0

Ors-1

Pa-2

Per-1Shah

Tsu-0

Var 2-1

Wag-3

Bor-4

Bur-0

C24

Can-0

Col-0

Ge-0

Hau-0

Kas-2

Ler-1

Li-5:2

Mc-0

Mt-0

Ors-1

Pa-2

Per-1
Shah

Tsu-0

Var 2-1

Wag-3

0

10

20

30

40

50

60

70

0 100 200 300

S
D

W
 

Shoot [Zn] 

Mild Zn deficiencyA B 

� Zn deficiency 
� Control 



Natural variation for Arabidopsis Zn deficiency tolerance 

 

 

 

 

 

Figure 3: Relative changes in shoot dry weight and Zn concentration of 19 A. thaliana 

accessions grown under severe (A and C) and mild (B and D) Zn deficiency, compared to 

their respective control treatments. 

Relative changes are expressed as percentages of the control (%). One-way ANOVA of these 

data and pairwise comparisons between accessions are provided in Supplementary Tables S5 

and 6. See Supplementary Table S1 for the list of accessions. Plants were grown in 

hydroponic medium under Zn sufficient control conditions (2 µM ZnSO4) and severe (no Zn 

added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in A and C are grown for 31 days, 

plants in B and D are grown for 41 days. 
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Figure 4: Shoot Zn Usage Index (ZnUI) of A. thaliana accessions grown in severe(A) and 

mild (C) Zn deficiency and their respective control treatments (B and D). The letters above 

each bar indicate if the accession was already bolting (B) or flowering (F) when harvested.  

The ZnUI is defined as shoot biomass (in mg)/shoot Zn concentration (in ppm). Plants were 

grown in hydroponic medium under Zn sufficient control conditions (2 µM ZnSO4) and severe 

(no Zn added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in A and B are grown for 31 

days, plants in C and D are grown for 41 days. One-way ANOVA of these data and pairwise 

comparisons between accessions are provided in Supplementary Tables S3 and 4. 
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Figure 5: Normalized gene expression levels of bZIP19, IRT3, ZIP3, ZIP4, CSD2 and CA2 in 

rosette leaves of eight A. thaliana accessions under Zn deficiency (Zn-) and control 

treatments (Zn+ control) in the severe (left) and mild Zn deficiency  experiments (right). 

Accessions are ranked from left to right according to decreasing Zn Usage Index values 

under mild Zn deficiency (see Fig. 4). Plants were grown in hydroponic medium under Zn 

sufficient control conditions (2 µM ZnSO4) and severe (no Zn added) or mild Zn deficiency 

(0.05 µM ZnSO4), for respectively 31 or 41 days. Error bars represent standard errors of the 

mean, one-way ANOVA and pairwise comparisons between accessions are provided in 

Supplementary Tables S3 and 4.  
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Figure 6: Box plots comparing mineral element concentrations in shoots of 19 A. thaliana 

accessions grown under severe and mild Zn deficiency and their respective control 

treatments. 

Plants were grown in hydroponic medium under Zn sufficient control conditions (2 µM 

ZnSO4) and severe (no Zn added) or mild Zn deficiency (0.05 µM ZnSO4). Plants in the 

severe Zn deficiency condition were grown for 31 days, plants in the mild Zn deficiency 

condition were grown for 41 days. For each concentration the box represents the 

interquartile range (IQR), the bisecting line represents the median, the whiskers indicate 1.5 

times the IQR and the open circles indicate outlier points. Lower case letters denote 

statistically different groups when comparing the four treatments using a one-way ANOVA 

with groupings by Tukey’s HSD test with a significance level of P≤0.05. The results of this 

ANOVA are shown in Supplementary Table S7. 
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