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Abstract

Fatty acid regulation is an essential process for all animals. A number of studies have 
shown that  diet affects the levels/availability of fatty acids in the body but increasingly 
an evidence shows that disease states can alter the amounts within the body too. Fatty 
acid levels and availability have been altered by a number of diseases, disorders and 
reactions including inflammatory responses, heart disease and heart failure and wound 
repair. They are also essential during the growth and development stages of animals. The 
amount of research into the consequences of different fatty acid intake and levels in vari-
ous disease states and during development has increased in both humans and animals. 
This review presents an overview of the research undertaken to date and highlights the 
importance, uses and benefits of understanding the roles of fatty acids in both the healthy 
animals and animals under differing disorders and diseases.

Keywords: heart disease, Inflammation, development, nutrition, cancer, pregnancy

1. Introduction to fatty acids

Fatty acids consist of a carboxylic acid with a hydrocarbon chain tail, the length of which var-
ies between fatty acids, as does the presence or absence of double bonds between the carbon 
atoms and their location [1]. Some fatty acids are ingested in the diet whereas others are syn-
thesized into other fatty acids by elongation and desaturation enzymes [2–4], see Figures 1 
and 2. In mammals, fatty acids are obtained from the diet prior to metabolism or incorpora-
tion as components of cells [5–8]. n-6 polyunsaturated fatty acids (PUFAs) and n-3 PUFAs are 
the two major groups of fatty acids; the first is obtained from fats and oils, and the latter from 
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fish and seafood products [6]. It is essential that the precursors of both n-6 and n-3 PUFAs are 
extracted by mammals from their diet as they are not able to convert these fatty acids (FAs) 
between the two major pathways [9].

Figure 1. Schematic of linoleic and arachidonic acid biosynthetic pathway derived from KEGG pathway maps [2].
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2. Inflammation, disease and the immune system

Fatty acids are crucial components of the immune system, providing the structural basis of 
all cell membranes, acting as signaling molecules, and providing a major substrate for energy 
production [1, 8, 10]. Many diseases involve inflammatory responses either as a reaction to 
disease or in the initiation of the disease process; although inflammation itself is not always 
detrimental, for instance, it is an important aspect of wound repair [11–14]. Elevated markers 
of inflammation are frequently detected in heart failure and cancers although this could be 
due to the response to disease, or the underlying cause of disease [15–19].

Fatty acid-derived eicosanoids are important contributors to the inflammatory response  
[13, 20, 21]. The n-6 PUFA arachidonic acid is a precursor of the most important pro-inflam-
matory eicosanoids, while the n-3 PUFA derivatives, eicosapentaenoic acid and docosahexae-
noic acid metabolites are considered less inflammatory [20]. Arachidonic acid is released 
from cell membranes by phospholipase A2 enzymes in response to pro-inflammatory stimuli 
[22–25]. Cyclooxygenase, lipoxygenase and cytochrome P450 enzymes then convert free 
arachidonic acid into eicosanoids [26–29]; however, these enzymes are rate limiting as they 

Figure 2. Schematic of palmitic and oleic acid biosynthesis pathway derived from KEGG pathway maps [2].
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similarly convert other fatty acids to their metabolites [20]. It has been suggested that if 
cyclooxygenase, lipoxygenase and cytochrome P450 enzymes are exposed to increased levels 
of n-3 fatty acids, the result is fewer arachidonic acid-derived eicosanoids [20, 30].

Due to the difference in the inflammatory response between fatty acid metabolites, it is 
hypothesized that the fatty acid profiles could differ between diseased and healthy individu-
als. Indeed, fatty acid profiles have been shown to be altered in blood and tissues in individu-
als with a range of conditions compared to unaffected individuals in both humans and dogs. 
These conditions include Crohn’s disease, heart disease, skin disease and cancer [31–34], and 
are discussed in greater detail below.

2.1. The role of fatty acids in Crohns’ disease

An interesting inflammatory response disorder is inflammatory bowel disease, including 
Crohn’s disease. A number of animal studies, including guinea pigs and rats, have shown 
novel results in the adipocytes, lipid rafts and fatty acid-derived messenger molecules which 
indicated that aberrant fatty acid composition could play a role in Crohn’s disease [35–38]. 
This research led directly into looking at the role of FAs in human cases of Crohns’ disease, 
a disorder which is linked to both inflammation and the immune system. Perinodal adipose 
tissue (PAT) is a specialized adipose tissue depot which surrounds lymph nodes and acts in 
a paracrine manner—delivering specific FAs and adipokines directly to the node. Research 
has demonstrated that PAT associated with the lymph node is present in most animals and 
humans [39]. Crohn’s disease is associated with altered mesenteric PAT FA content, suggesting 
impaired delivery of FAs to lymphocytes [40]. For many years, patients with Crohn’s disease 
have been advised to take dietary fish oils that are rich in n-3 PUFAs, but interestingly patients 
have naturally (prior to taking supplements) presented with higher levels of n-3 PUFAs than 
observed in controls with concurrent deficiencies in arachidonic acid (20:4n-6) [41–43]. More 
recent evidence suggests that higher levels of n-6 PUFAs, including linoleic acid (18:2n-6) were 
most effective at relieving inflammatory symptoms [43]. The biosynthetic links between ara-
chidonic acid (20:4n-6) and linoleic acid (18:2n-6) are shown in Figure 1 and help to under-
stand why an increased linoleic acid intake could reverse the decrease in arachidonic acids 
observed in patients. A number of animal species develop differing forms of inflammatory 
bowel disease, therefore understanding whether FAs are affected for the differing types of ani-
mals and differing breeds could help to indicate differing dietary or treatment requirements.

2.2. The role of fatty acids in cardiovascular function and disease

A number of links have been made between fatty acid levels and heart disease and heart fail-
ure. Human patients with significant left ventricular dilation have a larger percentage of oleic 
acid and a smaller percentage of arachidonic acid in their blood serum compared to patients 
with moderate left ventricular dilation [33]. It is also important to highlight that none of the 
patients involved in the study had a confirmed diagnosis, and although valve disease and 
coronary artery disease were excluded as the underlying cause of left ventricular dilation, 
infarction was not. Infarction may have skewed the fatty acid results due to the strong inflam-
matory nature of myocardial infarction [33, 44].
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In cats with hypertrophic cardiomyopathy, differing levels of FAs were observed when com-
pared to cats with no hypertrophic symptoms [45]. Hypertrophic cardiomyopathy cats had 
higher levels of docosahexaenoic acid, palmitic acid and total n-3 PUFAs and lower levels of 
linoleic acid. Differential levels of docosatetraenoic acid have been observed in canine myo-
cardial tissue in dogs affected by dilated cardiomyopathy [46]. Mobile lipid content within the 
myocardium was significantly increased in a 24-hour coronary occlusion canine heart, not only 
throughout the body but also ‘local’ increases were observed around the heart with cardiac lev-
els up to 10 times higher than the rest of the body [47–50]. It has been suggested that increased 
fatty acid levels alongside a decrease in creatine can lead to diastolic dysfunction, as observed in 
humans with diabetic cardiomyopathy [51, 52]. Despite the observations in dogs and humans, 
a study in rats showed increased fatty acids and decreased creatine but no associated diastolic 
dysfunction was observed [53]. With differing observations between species, more research is 
needed in order to understand the mechanisms and circumstances under which diastolic altera-
tion occurs. Increased levels of palmitoleic acid have been associated with heart failure, higher 
levels of behenic acid and stearic acid have been associated with lower risk of developing atrial 
fibrillation, women with higher circulating pentadecanoic acid are less likely to have a myocar-
dial infarction, hypertensive rats have higher circulating eicosedienoic acid and in renal patients 
higher circulating C20:5n3 is associated with good cardiac functional measures [54–60].

Although the fatty acids themselves play a key role in cardiovascular health and disease, other 
molecules within the fatty acid utilization cascades play important roles too. Heart-type fatty 
acid-binding protein (H-FABP) is expressed in cardiomyocytes and despite the name, it is also 
expressed in renal and skeletal muscle cells [61]. Heart-type fatty acid-binding protein (H-FABP) 
is used as a prognosis tool biomarker in human cardiac disease as it indicates myocardial stretch 
and injury in chronic heart failure even in children. Higher levels of H-FABP are associated with 
a poorer long-term outcome in both adults and children [61–65]. Although little work has been 
carried out in other species, this is an area of research which has potential, in addition to inves-
tigating whether H-FABP levels are raised prior to infarction and/or heart disease. A rat model 
has shown that H-FABP is increased following cardiac injury [66]. It also enables detection via a 
number of differing methods including EIA, ELISA, fully automated latex-agglutination assay 
and qualitative lateral-flow assay microparticle enhanced immunoassay [61].

External factors such as diet and surgery can play large roles in fatty acid composition and 
cardiovascular health. A study looking at differing feeding regimes in obese rats in comparison 
with lean rats showed that n-3 acyl chains, unsaturated and polyunsaturated fatty acids, were 
all significantly higher in obese rats than in the lean ones [53]. What was also interesting was the 
fact that mild, short-term diet changes (food intake was restricted by 20% for two weeks) did 
not alter the cardiac fatty acid profiles. The obese mice also showed symptoms of early stage 
obese cardiomyopathy; although interestingly the symptoms of this started to improve upon 
calorie restriction, an important finding as it showed that mild calorie restriction can be of ben-
efit under these circumstances. Fatty acids are not only an important indicator of heart disease 
in animals, but also important in situations such as surgery. Increased free fatty acid levels also 
have been noted in response to heart surgery in pigs especially when heparin is co-administered 
[67]. In the surgery cases, it was found that the young patients were more affected than older 
patients and the levels were more likely to rise if cyanosis and prolonged ischemia were present.

Fatty Acids in Veterinary Medicine and Research
http://dx.doi.org/10.5772/intechopen.68440

181



Although most of the work into cardiovascular health has concentrated on disease and disor-
ders, a number of suggestions for healthy levels have been put forward as ways of preventing 
disease. There is some evidence that higher levels of circulating arachidic acid are associated 
with lower risk of atrial fibrillation and diabetes [57, 68]. Another example is docosahexaenoic 
acid (n-3 PUFA) which has been implicated as having beneficial effects in a wide range of dis-
eases including heart disease and neurological dysfunction [55, 69].

2.3. Fatty acids and skin disease

There are two main ways in which differing fatty acid profiles contribute to skin disease—as 
part of inflammation and affecting membrane fluidity. These are not mutually exclusive and 
it is possible that fatty acids are affecting the development of skin disease via both. People 
with atopic eczema have been shown to have a different fatty acid profile in their skin than 
people without atopic eczema. In particular, they have shorter fatty acids within their skin 
than unaffected individuals. This difference is suggested to lead to impaired skin barrier [70]. 
Atopic eczema is an inflammatory disease and thus processes of inflammation as discussed 
earlier will be active in the disease process [71]. As with other cases where a difference in fatty 
acid profiles has been established between individuals with disease and healthy individuals, 
it is not clear whether the fatty acid change causes the disease or is a response to disease, or 
possibly both, but it is a potential novel treatment route. Similar to people with atopic eczema, 
pruritic dogs have been shown to have a different fatty acid profile compared to dogs with 
healthy skin [72]. More recently, dogs with atopic dermatitis whose diets were supplemented 
with n-3 PUFA improved significantly more than those given the placebo [73]. As with human 
skin disease, it is not clear as to how this works, but it is an additional treatment option and 
area for further research.

2.4. Cancer associations with fatty acids

Cancer is the result of aberrant cellular processes. Many genes and proteins are differentially 
expressed in tumor tissue compared to nontumor tissue [74–77]. Thus, it is intuitive that fatty 
acid profiles are likely to be altered in tumors compared to nontumor tissue and this has 
indeed been demonstrated in breast and prostate cancer [78, 79].

There have been studies showing that differential dietary intake of fatty acids can either 
reduce or increase risk of disease, including cancer. A meta-analysis of studies relating breast 
cancer risk with n-3 PUFA intake showed that overall increasing n-3 PUFA intake reduced 
the risk of developing breast cancer [78]. In transgenic mice in which males develop prostate 
cancer, n-3 PUFA intake from marine sources suppressed tumorigenesis [80]. This is also the 
case in people where there is reduced risk of developing prostate cancer with increased intake 
of marine n-3 PUFAs [81–83]. Longer chain n-3 PUFAs from non-marine sources, however, are 
associated with an increased risk of prostate cancer [79, 82, 83].

While ultimately work is required in whole organisms, cell lines are a valuable starting 
point for research. Of particular note in relation to veterinary medicine and fatty acids are 
two studies on canine tumor cell lines. The first is that of canine lymphoma cell lines; in this 
study, stearidonic acid was shown to sensitize cells to anticancer drugs, even when the cells 
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were previously resistant to drugs [84]. The second study utilized fatty acids themselves as 
antitumor agents. In this study, a specific fatty acid, trans-10, cis-12 conjugated linoleic acid, 
was shown to inhibit cell growth and induce apoptosis in canine osteosarcoma cell lines and 
canine lipomas [85, 86].

3. The effects of fatty acids on fertility and during pregnancy and 
development

Many animal and human studies have established that restriction of a range of nutrients 
within the maternal diet throughout pregnancy results in offspring that are programmed to 
be at increased risk of later hypertension and metabolic disease including diabetes and obesity 
[87–90]. This theory has become known as the “developmental origins of health and disease” 
(DOHaD) hypothesis. Fatty acid intake has been shown to have effects even before pregnancy 
as severe undernutrition of specific fatty acids has resulted in low reproductive rates in males 
and females. For example, in male cats, a linoleic deficient diet results in tubular degeneration 
of the testes and low fertility rates, and in females, the litters were not viable [91, 92].

Other studies have shown birth defects in offspring from females fed on low fatty acid diets but 
it also showed that arachidonate was a key contributor to viable offspring [93, 94]. In contrast, 
excess macronutrient intake has been implicated in the incidence of the metabolic syndrome 
is emerging in a number of rodent [95–97] and sheep studies [98]. Studies linking maternal 
over-nutrition to adverse offspring health in later life are conspicuously lacking, despite a 
huge effort in understanding the influence of maternal nutrition and its link to obesity. A 
number of rodent studies have established that a high-fat maternal diet leads to impaired off-
spring glucose and lipid metabolism [95–97, 99], but the influence of increasing other dietary 
components has not been investigated, perhaps due to the assumption that a high-fat or “junk 
food” diet is more prevalent in the western world. Rodent studies of increased fat intake 
during pregnancy are often associated with an overall decrease in food intake which limits 
their usefulness [97]. The timing of a nutritional insult is also important in determining the 
outcome for offspring, differential results have been observed in studies investigating early or 
late gestational nutritional insults in both animal [100, 101] and human studies [102]. As well 
as a high-fat diet increasing adipocyte and ectopic lipid accumulation, it may also decrease 
glycogen deposition in skeletal muscle. Increased plasma free fatty acids impair insulin-stim-
ulated glucose disposal, including glycogenesis and glucose uptake—resulting in reduced 
skeletal muscle glycogen content [103]. Type-2 diabetes in humans is associated with a reduc-
tion in glycogen synthase and tissue glycogen [104], it is unknown whether a sub-optimal 
maternal diet will result in similar changes in offspring. Recent work has demonstrated that 
there are physiological [105–107] and emerging molecular differences between pigs with low, 
normal or high birth weights [108–111]. Extensive physiological examinations of low and high 
birth weight pigs, at 12 months of age showed that low birth weight pigs had increased fat 
depth and glucose intolerance and insulin resistance [105]. Also of interest is that, peroxisome 
proliferator-activated receptor (PPAR)α expression in skeletal muscle is positively correlated 
to birth weight in these pigs [110]. In younger pigs (7 or 14 days of postnatal age) designated 
low, normal or high to birth weight, molecular differences have been observed in adipose 
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tissue and skeletal muscle genes known to regulate lipid metabolism including uncoupling 
proteins (UCPs), PPARα and γ, fatty acid-binding protein (FABP) 3 and 4 and the glucocorti-
coid receptor (GR) [108, 109, 111].

The role of PPARs is not just restricted to animals subjected to over-nutrition. Studies of 
maternal low protein diets in rats have demonstrated that post-weaning, offspring had sig-
nificantly increased hepatic PPARα expression due to decreased methylation as a result of 
differences in overall dietary fat intake [112]. PPARs are a nuclear hormone receptor family 
that have attracted much interest due to their involvement in adipogenesis, lipid metabolism, 
insulin sensitivity, inflammation and blood pressure [113]. PPARγ regulates transcription of 
genes involved in lipid metabolism by binding to responsive elements in the promoters of 
respective genes. This transcription regulation stimulates fatty acid storage in adipose tis-
sue by increasing the storage capacity and the quantity of fatty acids that enter adipocytes 
and also plays a key role in adipocyte differentiation, promoting the formation of mature 
lipid-laden adipocytes [114]. The activities of PPARγ are regulated by fatty acids (which are 
thought to be the endogenous ligands) [115]. PPARγ is often referred to as the “genetic sen-
sor” for fat and a number of dietary studies have demonstrated an increase following high-fat 
feeding [116, 117], which may provide benefits to the animal by protecting against lipotoxic 
species [117]. PPARα also acts as a ligand-activated transcription factor and is expressed in 
tissues which have a high rate of fatty acid catabolism such as skeletal muscle and liver. The 
fibrate group of drugs has long been utilized as a synthetic ligand for PPARα, but endog-
enous ligands are still under investigation. Long-chain fatty acyl-CoAs and saturated fatty 
acids however are known to activate PPARα at micromolar ranges [118]. PPARα has a key 
role in stimulating lipid oxidation pathways to prevent storage of fats as well as increasing 
insulin sensitivity and glucose tolerance. The expression of PPARs may represent one of the 
molecular factors driving excess tissue lipid uptake, storage and production in animals that 
experienced a sub-optimal environment in utero, in particular low birth weight offspring; 
ectopic lipid storage, especially intramyocellular, is associated with glucose intolerance and 
type-2 diabetes [104, 119].

The regulation of fatty acids is also an important factor during the lactation period. A num-
ber of studies have shown that the relative fatty acid content of milk differs depending on 
the species. Donkeys have milk more similar to humans than cows, with lower levels of satu-
rated fats and higher essential fatty acids than cows, more akin to humans [120, 121]. Milk, 
from humans, dog, and guinea pig are mostly comprised from long-chain fatty acids (48–54 
acyl carbon atoms), cow, sheep, and goat, have more short-chain acids (28–54 acyl carbon 
atoms) and horses tended to have medium-chain fatty acids (26–54 carbon atoms range) 
[122]. Maternal diet can also have an impact on the fatty acid contents of her milk. This 
has been shown in many species from mice and sheep to humans [123–125]; the pregnancy 
status of the mother also vastly changes milk fatty acid composition [126]. These are impor-
tant factors when assessing whether the mother is receiving an appropriate diet, assessing 
whether she is pregnant or not and whether milk replacement formulae contain the appro-
priate levels of fatty acids.
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4. Fatty acid-binding proteins and lipid modulation

Fatty acids are now recognized as crucial components of cellular signaling cascades, in par-
ticular, those regulating lipid metabolism, as described above with PPARs. Research into fatty 
acids as signaling molecules is in its infancy, but it is well known that fatty acids are ligands 
for transcription factors. Fatty acids are carried through tissue membranes and in the cytosol 
by chaperones known as fatty acid-binding proteins (FABPs), of which there are a number of 
tissue-specific isoforms [127]. Knock-out mice not expressing the adipocyte-specific FABP4 
exhibited protection from the metabolic effects (e.g. insulin resistance and hypercholester-
olaemia) of a high-fat diet, suggesting FABP4 modulates a number of components of the 
metabolic syndrome [127]. In skeletal muscle, a fat-rich diet increases the expression of the 
cytosolic and plasma membrane specific FABP [128].

Insulin resistance is characterized by a decrease in the enzymes and proteins involved in lipid 
oxidation [129]. Lipogenesis and adipogenesis are modulated by the enzymes acetyl-CoA car-
boxylase 1 and 2 (ACC1 and ACC2, respectively) and AMP-activated protein kinase (AMPK); 
both enzymes are potential drug targets to treat obesity and the metabolic syndrome and 
AMPK has been suggested as a target for metformin [130, 131]. Briefly, ACC1 controls fatty 
acid biosynthesis and ACC2 controls fatty acid oxidation. ACC1 catalyses the conversion of 
acetyl-COA to malonyl-CoA, therefore modulating the rate limiting step of long-chain fatty 
acid biosynthesis in adipose tissue. ACC2 is expressed in skeletal muscle, where the product 
malonyl-CoA inhibits fatty acid oxidation. The AMPKα subunit is activated during periods of 
metabolic stress (e.g. increased AMP/ATP ratio) by phosphorylation and inhibits the activity 
of ACC1 and 2, thus promoting fatty acid oxidation, glucose uptake and inhibits lipid synthe-
sis [132] and thereby reducing ectopic lipid storage. An isocaloric high-fat diet has been shown 
to inhibit AMPK in rats [133]. Despite great potential for modulation by maternal diet, there 
are few DOHAD studies of ACC and AMPK expression; however, early studies of an obese 
pregnant ewe model have shown decreased AMPK signaling in fetal offspring muscle [98].

5. Future fatty acid research and medicine

Although artificially induced disease often only replicates a small aspect of disease and does 
not reflect the typically longer time scales involved in natural disease progression in both 
humans and animals [134, 135], these studies can be valuable when compared to naturally 
occurring diseases in order to understand mechanisms and development. All of the ‘natural 
population’ studies discussed in this chapter may have their own caveats too. Differences in 
diet, age, sex and even pre-clinical symptoms and diagnosis can all affect the results observed 
in both disease and fatty acid states. This chapter has concentrated on development, cardio-
vascular disease, cancer and immunity but differing fatty acids have been implicated or asso-
ciated with in a number of diseases and disorders ranging from human, rodent and canine 
epilepsy through to canine ADHD and reproductive ability [92, 136, 137].
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Fatty acid profiling has important potential applications as a diagnosis tool across 
the species, especially in cases where pre-clinical symptoms are difficult to observe. 
Although it is not always necessarily known if differences in fatty acid profiles are con-
tributing to the initiation of disease or are a response to disease processes, these differ-
ences could be drug targets [26, 138–140]. In addition, there are genes that contribute to 
fatty acid profile composition and if a particular part of the pathway is shown to be dif-
ferent in individuals with disease compared to healthy individuals, these could be likely 
genes for candidate gene studies in the future [141, 142]. The scientific methodologies 
available for looking at lipid levels have also progressed over the years; just one example 
is the use of proton magnetic resonance spectroscopy of protons (H-MRS) to assess car-
diac lipids in a non-invasive manner [52]. This is a valuable tool for animal health and 
welfare, and there are additional uses in looking at metabolism and fatty acids. Much of 
the present work involves looking at genes and lipid levels of animals intended for the 
meat industry. An example is the evidence that differing polymorphisms in genes can 
result in differing meat quality traits. This includes fatty acid synthase (FASN) which 
was found to correlate with meat weight loss during the first salting of dry-cured ham 
production [143], meat quality including marbling in cattle [144] and playing a role 
in the mammary gland and milk in goats and cattle [145, 146], in addition to many 
other roles. Differing H-FABP polymorphisms/expression levels have also been related 
to growth rate and size of beef cattle and chickens and could therefore provide useful 
markers for breeding [147, 148].

Research into the links between fatty acids and differing developmental stages and disease 
states is increasing in both humans and animals and provides the potential for innovative 
diagnostic and treatments tools.
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