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Abstract

In this paper we examine the local power of unit root tests against globally stationary exponen-
tial smooth transition autoregressive [ESTAR] alternatives under two sources of uncertainty:
the degree of nonlinearity in the ESTAR model, and the presence of a linear deterministic
trend. First, we show that the Kapetanios, Shin and Snell (2003, Journal of Econometrics 112,
359—379) [KSS] test for nonlinear stationarity has local asymptotic power gains over standard
Dickey-Fuller [DF] tests for certain degrees of nonlinearity in the ESTAR model, but that for
other degrees of nonlinearity, the linear DF test has superior power. Second, we derive limit-
ing distributions of demeaned, and demeaned and detrended KSS and DF tests under a local
ESTAR alternative when a local trend is present in the DGP. We show that the power of the de-
meaned tests outperforms that of the detrended tests when no trend is present in the DGP, but
deteriorates as the magnitude of the trend increases. We propose a union of rejections testing
procedure that combines all four individual tests and show that this captures most of the power
available from the individual tests across different degrees of nonlinearity and trend magnitudes.
We also show that incorporating a trend detection procedure into this union testing strategy
can result in higher power when a large trend is present in the DGP.
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1 Introduction

There exist several areas of economics where economic theory suggests a variable should
be stationary, but standard Dickey-Fuller [DF] tests fail to reject the null hypothesis of
a unit root. Perhaps the most obvious example of this phenomenon occurring is with
exchange rates. If variations in real exchange rates represent deviations from Purchasing
Power Parity (PPP), then the finding of nonstationary behaviour in real exchange rates
undermines the existence of a long-run tendency to PPP (Taylor et al., 2001). This
conflict between economic theory and empirical results has led to concerns that, for the
purposes of unit root testing, a linear time series framework might provide an insuffi ciently
rich description of the underlying dynamics of many series.
A number of papers have found theoretical justification for modelling certain economic

time series as nonlinear processes. For example, inter alios, Sercu et al. (1995) develop
equilibrium models of real exchange rates in the presence of transaction costs, and show
that the introduction of transaction costs results in a nonlinear, rather than linear, adjust-
ment process towards PPP. A particular type of nonlinear model, the smooth threshold
autoregressive (STAR) model, has received much attention in the literature (for a review,
see van Dijk et al. (2002)). The STAR framework allows for a smooth transition between
two autoregressive regimes such that the process exhibits a sharper mean reversion when
it suffers from larger deviations away from its equilibrium but, for smaller deviations,
displays more persistent, unit root type behaviour. Michael et al. (1997) argue that not
accounting for STAR nonlinearity in unit root testing may explain the failure of previous
studies to reject a unit root null in favour of the PPP hypothesis. Evidence therefore
suggests that this form of nonlinearity may provide a more appropriate framework within
which to test for unit roots for various economic series.
Kapetanios et al. (2003) [KSS] propose a test of the null hypothesis of a unit root

against the alternative of a nonlinear, but globally stationary, exponential STAR (ES-
TAR) process. Under this alternative hypothesis it has been shown that KSS has power
gains over the standard DF test, particularly where the process is highly persistent. The
KSS test has subsequently been widely used in empirical applications on a variety of
economic series such as, inter alia, real interest rates (Baharumshah et al., 2009; Tsong
and Lee, 2013; Guney and Hasanov, 2014), GDP (Beechey and Osterholm, 2008; Cook,
2008) and current account balances (Akdogan, 2014; Chen, 2014).
Demetrescu and Kruse (2012) [DK] compare the KSS test to the linear DF test and

show that the size of the error variance has an impact on their relative power performance
against local ESTAR alternatives. In situations where the degree of nonlinearity is small
relative to the error variance, the DF test can have superior local asymptotic power.
In contrast, when the degree of nonlinearity is large relative to the error variance, the
KSS test maintains a power advantage over DF. DK therefore argue that combining
inference from both DF and KSS tests, along the lines of the Harvey et al. (2009, 2012)
union of rejections testing approach, could provide a successful strategy for unit root
testing against ESTAR alternatives. In this paper, we formally consider such a union of
rejections approach, whereby the null hypothesis is rejected if either of the individual DF
or KSS tests reject, subject to a critical value scaling that ensures the empirical size of
the overall procedure is equal to nominal size asymptotically. We find that a union of
rejections approach is able to capitalize on the respective power advantages exhibited by
the DF and KSS tests under different DGPs, and can offer high levels of power across all
degrees of nonlinearity.
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Most economic time series are not characterized by zero-mean processes, but instead
contain non-zero means or possibly non-zero means plus linear deterministic trends. KSS
suggest accommodating these deterministic features by prior OLS demeaning or demean-
ing and detrending of the data. In empirical applications, inference made from KSS unit
root tests will often depend on the deterministic specification assumed. For example,
Christidou et al. (2013) consider the persistence of carbon dioxide emissions. They em-
ploy the no deterministic, demeaned, and demeaned and detrended KSS tests on a set of
36 countries. At least one of these three tests is able to reject the null hypothesis for the
vast majority of countries. However, inference depends on whether or not a mean and
trend are accommodated in the deterministic specification of the unit root tests. Kisswani
and Nusair (2013) investigate the dynamics of real oil prices in seven Asian currencies
plus the US dollar, using the same three KSS specifications. Again, they find that they
are able to reject the null hypothesis of a unit root in most cases using at least one test,
but that the three different KSS specifications provide conflicting results.
In situations such as these, where inference depends on the choice of deterministic

specification, a practitioner uncertain about the presence or otherwise of a trend must
choose which test to employ. A risk-averse strategy might be to always employ trend-
invariant unit root tests. However, Marsh (2007) shows that, in the case of standard DF
tests where data is generated by a linear AR process, the Fisher information for a test
statistic invariant to a linear trend is zero at the unit root. Consequently, when a trend
is absent, the power of a unit root test that is invariant to a trend will be compromised
relative to the power of an appropriate demeaned but not detrended test statistic. Harvey
et al. (2009) show that these power losses can be substantial, therefore opting to always
use the trend-invariant test is a costly strategy. Conversely when a trend is present,
the power of a DF test that is demeaned but not detrended is shown to decrease as the
magnitude of the trend increases. Motivated by these considerations, in this paper we
not only examine the power performance of a union of rejections based on demeaned tests
and a union of rejections based on demeaned and detrended tests, but also consider a
union of rejections based on all four possible tests (i.e. demeaned DF and KSS tests, and
demeaned and detrended DF and KSS tests). This union procedure is shown to achieve
attractive power levels across all settings of the trend coeffi cient.
In a related setting, Harvey et al. (2012) note that use of information regarding the

presence of a trend can be applied to reduce the number of tests entering the union of
rejections when it is clear that a trend exists, allowing more power to be achieved. We
therefore consider a variant procedure where the Bayesian Information Criterion (BIC)
is used to determine whether there is evidence of a trend. When the BIC suggests a
trend is present, the procedure employs a union of rejections of only the two demeaned
and detrended DF and KSS tests, while otherwise all four tests are used in the union of
rejections. Finite sample simulations show that this approach is indeed able to improve
on the power offered by the simple four-test union of rejections when the magnitude of
the trend coeffi cient is large.
Finally, we apply the union of rejections procedures considered in this paper to energy

consumption data across the period 1980-2011 for 180 countries. We find that the union
of rejections procedures are able to capitalize on the differing rejections offered by the
four individual tests, and at both a 0.10 and 0.05 significance level, the BIC-based union
of rejections procedure achieves rejections for more countries than any individual test (or
other union of rejections procedures) considered in this paper.
The outline of this paper is as follows. In section 2, we briefly outline the ESTAR
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model and the KSS and DF tests for a unit root. Section 3 presents the limit distributions
of the four individual tests under a local ESTAR alternative for both local to zero and fixed
magnitude trends. In section 4 we present asymptotic power simulations and outline the
different union of rejections procedures that we propose. Section 5 considers the finite
sample performance of the proposed test procedures, and the empirical application to
energy consumption data is given in section 6. Section 7 concludes.

2 Unit root tests and the ESTAR model

We write the univariate STAR model of order 1, i.e. a STAR(1) model, as

yt = ρyt−1 + γyt−1G(θ, yt−d) + εt, t = d+ 1, ..., T

where εt ∼ iid(0, σ2) and y1 = Op(1), and ρ and γ are unknown parameters. KSS adopt
an exponential transition function of the form

G(θ, yt−d) = 1− exp
(
−θy2t−d

)
where θ ≥ 0. The delay parameter, d, measures the time taken for the transition process
to begin reverting an economic variable back to its long run equilibrium. To simplify,
we set d = 1 throughout this paper, as do KSS.1 The exponential transition function is
bounded between 0 and 1, i.e. G : R→ [0, 1] has the properties

G(θ, 0) = 0, lim
yt−d→±∞

G(θ, yt−d) = 1

and is symmetrical around zero. The function also implies that for θ = 0 and θ → +∞,
yt reduces to a linear AR(1) process, while nonlinearity is present for 0 < θ <∞.
In what follows, we make the distinction between the magnitude of the nonlinearity

parameter θ and the degree of nonlinearity manifest in the yt process. Since the model
for yt reduces to a linear process when θ = 0 or θ → +∞, an increase in the magnitude
of the nonlinearity parameter does not translate to a monotonically increasing degree of
nonlinearity in the process. For very small and very large magnitudes of θ, the degree of
nonlinearity will be relatively small, while relatively large degrees of nonlinearity will be
associated with intermediate values of θ.
The exponential STAR (ESTAR) model can then be written as

∆yt = φyt−1 + γyt−1
(
1− exp

(
−θy2t−1

))
+ εt

where φ = ρ− 1. Imposing φ = 0, i.e.

∆yt = γyt−1
(
1− exp

(
−θy2t−1

))
+ εt (1)

implies that yt follows either a unit root or globally stationary process, and we consider
testing the null hypothesis that yt follows a unit root process, given by γ = 0 or θ = 0,

1In practical applications, d can be chosen to maximise goodness of fit over d = {d1, ..., dmax}. Norman
(2009) shows that the asymptotic distribution of the KSS test is unchanged for d > 1, but that using
the true value of d, when it is known with certainty, offers almost uniformly higher power than setting
d = 1.
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against the alternative that yt is nonlinear and globally stationary, i.e. θ > 0, with
−2 < γ < 0 by assumption.2

Since γ is not identified under the null, KSS take the first order approximation of the
Taylor expansion of the ESTAR model yielding the auxiliary equation

∆yt = δy3t−1 + et (2)

KSS then test the hypotheses

H0 : δ = 0, H1 : δ < 0

using the test statistic

KSS =
δ̂

s.e.
(
δ̂
)

where δ̂ is the OLS estimate of δ from (2) and s.e.
(
δ̂
)
is the corresponding standard

error.
The KSS test for a unit root is clearly similar in form to the DF test, with the DF

test statistic the t-statistic for testing δ = 0 in the regression

∆yt = δyt−1 + et (3)

as opposed to (2).
KSS suggest that a non-zero mean can be accommodated by using the demeaned data

yµ,t = yt − y, where y = T−1
∑T

t=1 yt. We refer to a test using this demeaned data as
KSSµ. Both a non-zero mean and a deterministic (linear) trend can be accommodated
by using the demeaned and detrended data yτ ,t = yt − µ̂ − β̂t where µ̂ and β̂ are the
OLS estimators from the regression yt = µ+ βt+ ηt, t = 1, ..., T. We refer to this test as
KSSτ . Similarly demeaned and detrended DF tests are denoted DFµ and DFτ . We focus
on these four tests throughout this paper. Note that to illustrate the core results, our
analysis assumes that εt is not serially correlated; this assumption can be relaxed along
the lines of KSS, where additional serial correlation is permitted to enter the model in a
linear fashion, provided the usual lag augmentation is applied to the DF and KSS tests,
i.e. including lags of ∆yt (or ∆yτ ,t in the demeaned and detrended case) as additional
regressors in (2) and (3).

3 Asymptotic properties of tests

To consider the behaviour of the unit root tests discussed in section 2 when data is
generated by an ESTAR process, and to examine the effect that a linear deterministic
trend has on the power of these tests, we consider a local to unity alternative form of the
ESTAR DGP given in (1). DK consider a local alternative by setting γ = − c

T
(c > 0) in

(1). This is the natural framework to evaluate local power, since under such a setting, ut
is a local to unit root process, and it is well known that standard DF tests have non-trivial
asymptotic power against this type of local alternative, with T−1 being the appropriate
Pitman drift. However, in the nonlinear model, the alternative DGP is characterized

2KSS also consider an extension to the ESTAR model where φ > 0 and yt is locally explosive and
globally stationary under the alternative hypothesis.
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in an additional dimension due to the unknown parameter θ. In order to prevent the
nonlinear ESTAR component from becoming asymptotically negligible, DK show that
θ needs to be non-zero, but order T−1. We also introduce a scaling by σ2, so that the
magnitude of the nonlinearity parameter is measured relative to the variance of εt, and
ensuring that σ2 does not appear in the limit distributions that follow; specifically, we
set θ = g2

σ2T
.

Allowing for a non-zero mean and linear trend, our ESTAR DGP is

yt = µ+ βt+ ut, t = 2, ..., T (4)

∆ut = − c
T
ut−1

(
1− exp

(
− g2

σ2T
u2t−1

))
+ εt (5)

where εt ∼ iid(0, σ2) with finite fourth order moment, and u1 = Op(1). The exponential
transition function can be written as

G (θ, ut−1) = 1− exp

(
− g2

σ2T
u2t−1

)
so that

∆ut = − c
T
ut−1G (θ, ut−1) + εt.

Adapting results from DK, the partial sums of εt and ut have the following limit distri-
butions  1

σ
√
T

brT c∑
j=1

εj ;
1

σ
√
T
ubrT c

 d→ (W (r) ; X(r))

where X(r) is the diffusion given by the stochastic differential equation

dX(r) = −cX(r)G
(
g2X(r)2

)
dr + dW (r)

with X(0) = 0, W (r) a standard Brownian motion process, and

G
(
g2X(r)2

)
= 1− exp

(
−g2X(r)2

)
.

3.1 Asymptotic behaviour under a local trend

We now consider the effect of a local linear trend on the unit root tests discussed in
section 2 under both the null hypothesis H0 : γ = 0 and the local alternative hypothesis
H1 : γ = −c/T < 0. We follow Harvey et al. (2009) in setting β = κσT−1/2, with κ a
finite constant, using the appropriate Pitman drift on the trend coeffi cient; the scaling by
σ means that the trend magnitude is measured relative to the standard deviation of the
innovations, and again ensures that this quantity does not appear in the limit expressions.
The asymptotic distributions of the four unit root tests: DFµ, KSSµ, DFτ and KSSτ
are given by the following lemma.
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Lemma 1 Let yt be generated according to (4)-(5) with β = κσT−1/2. For c ≥ 0,

DFµ
d→

∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)
dW (r)− c

∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)
X(r)G (g2X(r)2) dr√∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)2
dr

KSSµ
d→

κ
∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dr +

∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dW (r)

−c
∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
X(r)G (g2X(r)2) dr√∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)6
dr

DFτ
d→

∫ 1
0
Xτ (r)dW (r)− c

∫ 1
0
Xτ (r)X(r)G (g2X(r)2) dr√∫ 1

0
Xτ (r)2dr

KSSτ
d→

∫ 1
0
Xτ (r)

3dW (r)− c
∫ 1
0
Xτ (r)

3X(r)G (g2X(r)2) dr − 12
∫ 1
0

(
r − 1

2

)
X(r)dr

∫ 1
0
Xτ (r)

3dr√∫ 1
0
Xτ (r)6dr

whereXµ(r) = X(r)−
∫ 1
0
X(s)ds andXτ (r) = X(r)+(6r − 4)

∫ 1
0
X(s)ds+(6−12r)

∫ 1
0
sX(s)ds.

Proof: See Appendix.

The null limit distributions of the DFµ, KSSµ, DFτ and KSSτ statistics are obtained
as a special case of Lemma 1, on setting c = 0, so that X(r) = W (r). Note that when
g2 = 0, G (g2X(s)2) = 0, and the limit distributions again reduce to those under the c = 0
null. Hence, the null can be viewed as either c = 0 or g2 = 0.
The limiting distribution of KSSτ under the null corrects the corresponding re-

sult in Hanck (2012), which in turn corrected the limits given in KSS. Hanck (2012)
writes the limit of the numerator as

∫ 1
0
Wτ (r)

3dW (r), whereas the correct expression is∫ 1
0
Wτ (r)

3dWτ (r). The fact that dWτ (r) 6= dW (r) (since ∆yτ ,t = ∆yt − β̂) is the source
of the discrepancy, with Lemma 1 providing the correct result.
We observe that the limiting distribution of the demeaned statistics DFµ and KSSµ

depend on the trend term via κ, whilst the invariant detrended statistics DFτ and KSSτ
do not. These results coincide with the behaviour of DFµ and DFτ reported in Harvey
et al. (2009) under a linear AR DGP. Also, as g2 →∞, G (g2X(s)2)→ 1, so the limiting
distributions of the two DF tests under an ESTAR alternative will converge to those
obtained in Harvey et al. (2009) under a linear local AR alternative.

3.2 Asymptotic behaviour under a fixed trend

For completeness, we also consider the behaviour of DFµ and KSSµ under a fixed mag-
nitude trend β = κσ where κ is a finite constant. The limiting distribution of the
trend-invariant DFτ and KSSτ statistics do not change under a fixed trend. The lim-
iting distributions of DFµ and KSSµ under the iid assumption for εt are given in the
following Lemma.

Lemma 2 Let yt be generated according to (4)-(5) with β = κσ 6= 0. For c ≥ 0,

DFµ
d→
∫ 1
0

(
r − 1

2

)
dW (r)− c

∫ 1
0

(
r − 1

2

)
X(r)G (g2X(r)2) dr√

(κ2 + 1) /12
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KSSµ
d→

3
∫ 1
0

(
r − 1

2

)2
Xµ(r)dr +

∫ 1
0

(
r − 1

2

)3
dW (r)− c

∫ 1
0

(
r − 1

2

)3
X(r)G (g2X(r)2) dr√

(κ2 + 1) /448
.

Proof: See Appendix.

We note that both DFµ and KSSµ possess well-defined limiting distributions that are
dependent on the local alternative parameter c. These results correspond with those found
by Harvey et al. (2009) in the case of the DF test under a linear AR alternative; indeed,
as g2 → ∞, the limit of DFµ reduces to the Harvey et al. (2009) limit. Under the null
hypothesis c = 0, the DFµ limit again coincides with the null limit given in Harvey et al.
(2009), and from Remark 5 of that paper we can state that DFµ follows an asymptotic
normal distribution with mean zero and variance 1/ (κ2 + 1). This implies that for any
non-zero fixed trend, DFµ will have a null limiting normal distribution with variance less
than one, resulting in an asymptotically under-sized test (maximum size can be calculated
to be 0.002 as in Harvey et al. (2009)). Similarly, KSSµ will follow an asymptotic normal
distribution under the null, with mean zero and variance approximately 2.32/ (κ2 + 1)
(obtained by simulation). As with DFµ, this implies an asymptotically under-sized test
in the presence of a fixed trend (here, maximum size can be found to be 0.027).

4 Union of rejections strategies

4.1 Union of DF and KSS

To begin our numerical analysis, we abstract from uncertainty regarding the presence
or absence of a trend, and evaluate the local asymptotic powers of the DFµ and KSSµ
tests when no trend is present in the DGP (κ = 0), and subsequently the DFτ and
KSSτ tests which are invariant to any trend. Asymptotic critical values at a nominal
0.05 significance level were first obtained by direct simulation of the limiting distributions
given in Lemma 1. The W (r) processes were approximated using iid standard normal
random variables and with the integrals approximated by normalized sums of 2,000 steps
using 50,000 Monte Carlo replications. These critical values (and those for 0.10 and 0.01
significance levels) are reported in Table 1.
Figures 1(a)-(f) show the local asymptotic powers of both DFµ and KSSµ unit root

tests for six different settings of the nonlinearity parameter g2, when κ = 0. For each
of g2 = {2, 5, 10, 20, 50, 100} we consider values of c such that the power of the tests
approaches one. Here and throughout the paper, asymptotic power is simulated using
normalized sums of 1,000 steps and 20,000 Monte Carlo replications. Figure 1(a) shows
the case for g2 = 2. Here, KSSµ achieves higher power than DFµ across all values of
c. This highlights the superiority of KSS tests when the degree of nonlinearity in the
process is relatively large via the nonlinearity parameter in the ESTAR model being of
modest magnitude. For example, when c = 99, KSSµ has power of 0.64 whilst DFµ has
power of 0.49. It is clear in these circumstances that a practitioner would want to employ
KSSµ to test for a unit root. In Figure 1(b) where g2 = 5, KSSµ maintains a power
advantage over DFµ for almost all settings of c, but these power gains are smaller than
those seen in Figure 1(a). For example, when c = 99, KSSµ now has power of 0.67 whilst
DFµ has power of 0.56. Figure 1(c) shows the power of both tests when g2 = 10. Here,
matters are less clear cut, with the power curves intersecting at (approximately) c = 44.
In Figure 1(d), g2 is increased to 20; the power of both tests is now very similar up until

7



c = 20, at which point the power curves diverge with DFµ outperforming KSSµ for these
higher values of c. Figure 1(e) shows the case for g2 = 50; the DFµ test now displays
higher power across almost all values of c. Finally, in Figure 1(f), g2 = 100, and DFµ
displays substantially higher power than KSSµ. For example, when c = 22, the power of
DFµ is 0.87 whilst KSSµ has power of 0.66. These latter figures draw attention to the
power gains DF tests can have against KSS tests for large magnitudes of g2; recall that
as g2 →∞, the ESTAR process reduces to a linear process, hence, compared to modest
values of g2, the degree of nonlinearity is reduced for large g2, and it is not surprising
that DF power gains become apparent in these cases.
Figures 2(a)-(f) show the asymptotic powers of both DFτ and KSSτ unit root tests

for the same six settings of the nonlinearity parameter g2 and the same range of values for
the local alternative parameter c. Given that both tests are trend-invariant, the setting
of κ used in these simulations is irrelevant. Figure 2(a), where g2 = 2, shows that, for
modest magnitudes of the nonlinearity parameter, KSSτ has power gains over DFτ , due
to a high degree of nonlinearity in the process. For example, for c = 171, KSSτ has
power of 0.61 and DFτ has power of 0.51. We note that these power gains are smaller
than those seen in the demeaned case in Figure 1; as we would expect, for the same values
of c, both detrended tests have less power than their demeaned counterparts. In Figure
2(b), where g2 = 5, KSSτ still maintains a power advantage over DFτ , but these gains
are diminished compared to the previous figure. Figures 2(c) to 2(f) show that as the
value of g2 increases, the relative power performance of DFτ to KSSτ improves, to the
point where DFτ outperforms KSSτ , in line with the degree of nonlinearity reducing.
For example, for g2 = 100 and c = 30, the power of DFτ is 0.90 and the power of KSSτ
is 0.67. This mirrors the results of the demeaned tests.
The results from Figures 1 and 2 show that the relative powers of the DF and KSS

tests are very sensitive to the degree of nonlinearity under the ESTAR alternative, with
the KSS test offering greater power for modest magnitudes of the nonlinearity parameter,
and the DF test displaying relatively higher power for larger magnitudes. Given that the
degree of nonlinearity is almost certainly unknown in practical applications, these results
highlight the potential benefits of a testing strategy that combines inference from the
DF and KSS tests. We therefore want to employ a testing strategy that can capitalize
on the respective power advantages of the DF and KSS tests, regardless of the degree of
nonlinearity under the ESTAR alternative. In line with the suggestion of DK, we now
consider two union of rejections strategies, cf. Harvey et al. (2009), one that combines
DFµ and KSSµ (for the case of no trend), and one that combines DFτ and KSSτ (for
the trend case).
The union of rejections approach is a simple decision rule where the null hypothesis of

a unit root is rejected if either of the individual tests reject. We can write our proposed
union of rejections strategies as

Ui : Reject H0 if DFi < λαi cv
α
DFi

or KSSi < λαi cv
α
KSSi

, i = µ, τ

where cvαDFi and cv
α
KSSi

denote the asymptotic null critical values of DFi and KSSi re-
spectively for a significance level α. Note that if we simply rejected the null hypothesis
whenever either DFi or KSSi is smaller than its respective (unscaled) critical value, an
over-sized procedure would result, hence we incorporate the scaling constant λαi , calcu-
lated such that the asymptotic empirical size of Ui equals the nominal size α. The decision
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rule can also be written as

Ui : Reject H0 if tUi = min

(
DFi,

cvαDFi
cvαKSSi

KSSi

)
< λαi cv

α
DFi

, i = µ, τ .

The limiting distribution of tUi, under a local trend, is then given by a function of the
limiting distributions derived in Lemma 1:

tUi
d→ min

(
LDFi ,

cvγDFi
cvγKSSi

LKSSi

)
, i = µ, τ

where LDFi and LKSSi denote the asymptotic distributions ofDFi andKSSi, respectively,
given in Lemma 1.
To obtain the appropriate value for the scaling constant λαi , we can simulate the limit

distribution of tUi and calculate the α level critical value cv
α
Ui
. Computing λαi = cvαUi/cv

α
DFi

will then give the value for the scaling constant that ensures Ui is asymptotically correctly
sized. Asymptotic scaling constants for nominal 0.10, 0.05 and 0.01 significance levels are
given in Table 1.
Figure 1 also displays the power performance of Uµ for g2 = {2, 5, 10, 20, 50, 100}.

Figure 1(a) shows asymptotic power of Uµ for g2 = 2. We see that the power of Uµ
dominates that of DFµ for all values of c, with its power curve lying just underneath that
of KSSµ for approximately c ≤ 108, and with power rising above both KSSµ and DFµ
beyond this point. Uµ is therefore able to capture the power advantage offered by KSSµ
in this modest nonlinearity parameter magnitude case. For g2 = 5 in Figure 1(b), we
see that, again, Uµ outperforms DFµ across all values of c, and offers power that is very
slightly below that of KSSµ for lower values of c, and slightly above at higher values of
c. In Figure 1(c), where g2 = 10, the power curve of Uµ closely tracks that of whichever
test, KSSµ or DFµ, is superior for a given c. In Figures 1(d)-1(f), as the value of g2

increases, the power of Uµ now dominates that of KSSµ and closely tracks that of DFµ
for all values of c. Uµ therefore provides power near the effective envelope offered by
KSSµ and DFµ across all values of the nonlinearity parameter g2.
Figure 2 shows the power performance of Uτ for the same six settings of g2. We

observe a very similar pattern of behaviour, relative to the DF and KSS tests, to that
seen in Figure 1. In Figures 2(a) and 2(b), the power of Uτ dominates that of DFτ and
closely tracks that of KSSτ . In Figure 2(c), as the power curves of the two individual
tests intersect, we see that the power of Uτ is marginally higher than both of these tests
for most values of c. As the nonlinearity parameter, g2, increases in Figures 2(d)-(f), the
power of Uτ now dominates that of KSSτ for all values of c, whilst closely tracking the
power curve of DFτ .

4.2 Union of demeaned and demeaned and detrended tests

The above results clearly illustrate the benefit of employing a union of rejections procedure
in practice where the degree of nonlinearity is unknown. However, we have so far assumed
that it is known whether or not the DGP contains a linear deterministic trend, so that a
practitioner would know whether to apply Uµ or Uτ . In practice, there will be uncertainty
about the presence or otherwise of a trend in many economic time series. In section 3,
we showed that the limiting distributions of DFµ and KSSµ, under both local and fixed
trends, are not invariant to the trend, suggesting that the power of these tests may be
compromised if a linear trend is present in the DGP. Whilst this might suggest that a
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conservative strategy of always using Uτ should be employed, Harvey et al. (2009) show
that, in the context of a linear AR DGP, DFµ has a substantial power advantage over
DFτ when no trend is present in the DGP, and might also be expected to offer some power
gains for very small trend magnitudes. We therefore investigate the power performance
of Uµ and Uτ when a local trend is present in the DGP.
Figures 3-5 show the asymptotic power of Uµ and Uτ for six different settings of

the local trend coeffi cient, κ = {0, 0.25, 0.5, 1, 2, 4} and three different settings of the
nonlinearity parameter g2 = {2, 10, 50}. In Figure 3, we set g2 = 2; Figure 3(a) shows
the power of Uµ and Uτ when κ = 0 such that no trend is present in the DGP. We see
that Uµ significantly outperforms Uτ across all values of c. For example, when c = 135,
Uµ has power of 0.83 whilst Uτ has power of 0.50. This highlights the potential losses
involved in always employing the trend-invariant Uτ when there is uncertainty about the
presence or otherwise of a linear trend. In Figure 3(b), κ = 0.25; the presence of this
linear trend has decreased the power of Uµ such that, for c = 135, power has dropped to
0.56, only marginally higher than that of Uτ . When the local trend coeffi cient increases
to κ = 0.5 in Figure 3(c), the power of Uτ now dominates that of Uµ. Figures 3(d)-(f)
show that as the trend magnitude continues to increase, the power of Uµ deteriorates
dramatically, such that for κ = 1 in Figure 3(d), Uµ has power lower than size for most
c, and for κ = 2 and κ = 4 in Figures 3(e)-(f), the size and power of Uµ approach zero.
Almost identical patterns of behaviour are observed for g2 = 10 and g2 = 50 in Figures
4 and 5 respectively. These results demonstrate the potential losses that a practitioner
can make if they fail to choose the appropriate deterministic specification for unit root
testing.
Given that, in practice, the presence or otherwise of a linear deterministic trend will

often be unknown, we propose a further union of rejections procedure that combines
information from Uµ and Uτ by taking a union of rejections of all four individual tests
DFµ, KSSµ, DFτ and KSSτ . This proposed testing strategy can then be written as

U4 : Reject H0 if DFµ < λα4 cv
α
DFµ or KSSµ < λα4 cv

α
KSSµ or DFτ < λα4 cv

α
DFτ or KSSτ < λα4 cv

α
KSSτ

or

U4 : Reject H0 if tU4 = min

(
DFµ,

cvαDFµ
cvαKSSµ

KSSµ,
cvαDFµ
cvαDFτ

DFτ ,
cvαDFµ
cvαKSSτ

KSSτ

)
< λα4 cv

α
DFµ .

The limiting distribution of tU4 , under a local trend, is then given by

tU4
d→ min

(
LDFµ ,

cvαDFµ
cvαKSSµ

LKSSµ ,
cvαDFµ
cvαDFτ

LDFτ ,
cvαDFµ
cvαKSSτ

LKSSτ

)
.

Values of the scaling constant λα4 required to control the asymptotic size of U4 are given
in Table 1 for 0.10, 0.05 and 0.01 significance levels.
Figures 3-5 display asymptotic power results for our proposed union, U4, for the same

three settings of g2 and six settings of κ used previously. Figure 3(a) displays power in
the case where g2 = 2 and no trend is present in the DGP (κ = 0). The power of U4
dominates that of Uτ across all values of c. For example, when c = 135, the power of U4
is 0.72, whilst the power of Uτ is 0.50. U4 tracks the power of Uµ, with power losses of, at
most, 0.13 when c = 117. In Figure 3(b), κ = 0.25, and the power curve of U4 sits slightly
above Uτ and slightly below Uµ for all values of c. As the trend coeffi cient increases in
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Figures 3(c)-3(f), U4 outperforms Uµ for all values of c, whilst tracking underneath the
power curve of Uτ . For example, when κ = 4, in Figure 3(f), U4 has a maximum power
loss of 0.21 relative to Uτ , but a power gain of 0.49 relative to Uµ. A similar pattern of
results emerges when considering g2 = 10 in Figure 4 and g2 = 50 in Figure 5. Across all
settings of κ, U4 has superior power performance to the worst-performing test of either Uµ
and Uτ whilst tracking underneath the power of the best-performing test. These results
demonstrate that U4 provides a strategy for unit root testing against ESTAR alternatives
which offers decent power levels across different trend magnitudes, including the case of
no trend, as well as across the degree of nonlinearity under the ESTAR alternative.

4.3 Use of trend detection

A potential drawback of combining all four individual tests is that as the number of
tests within the union of rejections procedure increases, the asymptotic scaling value,
λα also increases to ensure the overall procedure is asymptotically correctly sized. As
λα increases, so too does the chance that the union of rejections procedure will fail to
reject the null hypothesis of a unit root even if one or more of the individual tests is
able to reject at the same level of significance. In a related setting, Harvey et al. (2012)
note that use of information regarding the presence of a trend can be applied to reduce
the number of tests entering the union of rejections in certain cases, reducing the extent
of the required critical value scaling. Given that the asymptotic size and power of Uµ
decreases as the trend magnitude increases, it follows that the DFµ and KSSµ tests are
redundant in U4 for large trends. This implies that U4 is correctly sized for β = 0 but
under-sized elsewhere, resulting in a loss of power. Therefore, for large enough values of
the trend, we want to eliminate Uµ from our testing strategy and use Uτ rather than U4.
Following in the spirit of Harvey et al. (2012), we propose using a hybrid testing

strategy where a BIC procedure is used to detect the presence of a trend. If evidence of
a trend is apparent, we can be confident that a trend of reasonably large magnitude is
present in the data, and hence that use of Uτ is appropriate, with little to be gained by
also including DFµ and KSSµ in the union of rejections. However, if no trend is detected
by the BIC procedure, it would be unwise to confidently infer that no trend exists and
use only Uµ, since a small magnitude trend could still be present in the data (which
could have a substantial impact on the power of Uµ), but its magnitude not suffi cient
to have triggered detection by the BIC procedure. Consequently, if no trend is detected
by the BIC, we default to the risk-averse approach of using U4, retaining the DFτ and
KSSτ tests as well as the DFµ and KSSµ tests in the union of rejections. This approach
therefore uses the information from the BIC in an indicative manner, rather than as a
standard model selection procedure, consistent with the approach of Harvey et al. (2012).
Our procedure is devised as follows. Consider the null DGP

yt = α + βt+ ut

∆ut = εt.

If β = 0 such that no trend is present, then ∆yt = εt, while if β 6= 0, then ∆yt = β + εt.
Treating these two possibilities as regression models, we can select between them on the
basis of the BIC. Specifically, consider the two corresponding residual series

ε̂1t = ∆yt

ε̂2t = ∆yt −
∑T

s=2 ∆ys
T − 1

= ∆yt −
yT − y1
T − 1

.
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The BIC for each model is then

BIC1 = ln

(∑T−1
t=1 ε̂

2
1t

T − 1

)

BIC2 = ln

(∑T−1
t=1 ε̂

2
2t

T − 1

)
+

ln (T − 1)

T − 1
.

If BIC2 < BIC1 then there is evidence that a trend is present in yt, and therefore Uτ
should be applied in place of U4. We can write this testing procedure formally as

U∗ =

{
Uτ
U4

if BIC2 < BIC1
otherwise

.

When no trend is present in the DGP, U∗ will select U4 with probability one in the limit.
When a fixed magnitude trend is present, it is Uτ that will be selected asymptotically with
probability one. Hence U∗ will be asymptotically correctly sized under no trend or a fixed
trend, and would be expected to achieve greater power than simply using U4 whenever a
trend of large magnitude is present in the data. In the next section we consider the finite
sample performance of U∗ to quantify the potential gains that this approach can offer.

5 Finite sample simulations

In this section we consider the extent to which asymptotic power is a good indicator of
finite sample performance by simulating the four individual test statistics DFµ, KSSµ,
DFτ and KSSτ as well as the three union of rejections procedures Uµ, Uτ and U4 using
a sample of T = 100 observations. In addition, we examine the finite sample power of
our trend detection-based U∗ procedure. We use the same values of g2 and c used in
our asymptotic simulations. As before, we use 20,000 Monte Carlo simulations and the
asymptotic critical values and scaling constants given in Table 1.
Figures 6-10 report finite sample size and power at a nominal 0.05 significance level.

First, it can be observed that none of the procedures display much in the way of size
distortions, with the exception of under-sizing for Uµ in the presence of large trends
(due to under-sizing in DFµ and KSSµ). Next, we find that the power results obtained
are qualitatively very similar from those observed in the asymptotic case. Figures 6(a)-
(f) show results for DFµ, KSSµ and Uµ. We see that for modest values of g2 where
nonlinearity is most apparent, KSSµ has a power advantage over DFµ; see, for example,
Figure 6(a). However, for larger values of g2, DFµ is shown to have superior power to
KSSµ as the degree of nonlinearity reduces, for example in Figures 6(d)-(f). As in the
asymptotic case, the power of Uµ dominates that of the worst-performing test for all
settings of g2 and all values of c. It either closely tracks or has slightly higher power
than the best-performing test across all values of g2 and c. These results are mirrored in
Figures 7(a)-(f) when finite sample power results for DFτ , KSSτ and Uτ are considered.
Again, we see that KSSτ has higher power relative to DFτ for lower settings of g2, but
that the relative power ranking is reversed for higher settings of g2. We show that Uτ has
power either close to or above the power offered by the best-performing of either DFτ or
KSSτ for all values of c and g2.
Figures 8-10 report finite sample power results of Uµ, Uτ and U4 for three settings of

the mean reversion parameter, g2 = {2, 10, 50}. We set β = {0, 0.025, 0.05, 0.1, 0.2, 0.4}
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such that for T = 100 these values coincide with the local trend values considered in the
previous asymptotic analysis. The behaviour of Uµ, Uτ and U4 is very similar to that
observed in the asymptotic simulations. We see that the power of Uµ decreases as β
increases, such that in Figure 8(a), where g2 = 2 and β = 0, Uµ has a substantial power
advantage over Uτ , but for higher values of β the power of Uµ tends to zero. U4 is able to
capitalize on the differing power profiles of Uµ and Uτ and captures much of the power
gains associated with Uµ for small trends, and Uτ for large trends. An almost identical
pattern of behaviour is seen for g2 = 10 in Figure 9 and g2 = 50 in Figure 10.
Figures 8-10 also report results for the U∗ procedure which selects between Uτ and

U4 on the basis of the BIC trend detection procedure. The power of U∗ equals that of U4
for smaller trend magnitudes, i.e. β ≤ 0.1, as here the trend is not detected by the BIC.
In Figure 8(e), we see that when β = 0.2, U∗ is selecting Uτ in some replications due
to detection of a trend by the BIC, and correspondingly, the power of U∗ is marginally
higher than that of U4. In Figure 8(f), when β = 0.4, the trend is now detectable in all
replications, and U∗ always selects Uτ , so that the power of U∗ equals that of Uτ , and
therefore exceeds that of U4 by a substantial margin. The same pattern of results is seen
in Figures 9 and 10, where higher values of g2 are considered. These results show that
the overall power performance of U4 can be improved by incorporating a trend detection
procedure. In our simulations, U∗ never has lower power than U4, but when a large trend
is present in the data, U∗ achieves higher power than U4 by defaulting to Uτ .

6 Empirical example

To demonstrate the practical use of our proposed union of rejection procedures, we un-
dertake an empirical application of the unit root tests considered in this paper to energy
consumption data. Economists are keen to understand whether shocks to energy con-
sumption have permanent or transitory effects. If energy consumption follows a unit root
process, then shocks to world energy markets have a permanent effect. This is likely
to have implications for policymakers who wish to set government targets relating to
energy consumption. Additionally, an understanding of the statistical properties of en-
ergy consumption is required in order to reliably model the relationship between energy
consumption and other macroeconomic variables. In recent years, a growing number of
studies have been dedicated to understanding the integration properties of energy con-
sumption. For a review of this literature see Smyth (2013). In a recent study, Hasanov
and Telatar (2011) apply the four individual unit root tests DFµ, DFτ , KSSµ and KSSτ
to annual total energy consumption per capita data obtained for 178 countries across
the time period 1980-2006.3 At a 0.10 significance level they are able to reject the null
hypothesis of a unit root for 55 out of the 178 countries using DFµ and DFτ tests and
for 71 countries using KSSµ and KSSτ tests. Combining results from these different test
procedures, they suggest that the null hypothesis of a unit root can be rejected in many
of the countries considered. Implicitly, this strategy of testing for a unit root is equivalent
to a union of rejections procedure that does not apply a scaling constant to the critical
values of the individual tests. As discussed in section 4, without this scaling constant the
union of rejections procedure will be over-sized. Caution must therefore be exercised over
any inference made from the combination of results provided by these individual tests,

3Hasanov and Telatar (2011) also apply the ST-TAR unit root test of Sollis (2004) that allows for an
asymmetric transition function and a gradual trend break in the data.
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as the high number of rejections could be due to over-sizing.
We obtain total energy consumption per capita data from the Energy Information

Administration as Hasanov and Telatar (2011) do. Our sample covers 180 countries and
a slightly longer time series from 1980-2011. We apply the four individual unit root tests,
DFµ, DFτ , KSSµ andKSSτ , as well as the four union of rejections procedures considered
in this paper, Uµ, Uτ , U4 and U∗ to this data. Serial correlation in the data is accounted
for by augmenting the test regressions with lagged differences of the dependent variable.
The optimal number of lagged difference terms is chosen using the MAIC procedure of
Ng and Perron (2001), with a maximum of 6. Given the small number of observations
available per country, we want to minimise any size concerns that might arise with using
asymptotic critical values. Su et al. (2013) show that in finite samples the KSSµ and
KSSτ unit root test suffers from smaller size distortions when MAIC is used to select the
optimal number of lags rather than the sequential downwards testing method of Ng and
Perron (1995).
Results from our unit root testing exercise are given in Tables 2 and 3. For the 60

countries where at least one of the four individual tests rejects at a 0.10 significance level,
the countries are listed in Table 2, detailing the significance levels at which rejections are
obtained by the different tests. Table 3 lists the remaining countries for which we failed
to reject the null hypothesis of a unit root using any of the four individual tests. We note
that of the four individual test procedures, KSSτ is able to reject the null hypothesis of a
unit root more often than the other procedures. Indeed, at a 0.10 level of significance the
difference between the number of rejections found by KSSτ (40) is substantially higher
than that found by the next most frequently rejecting test, KSSµ (29). The pattern of
rejections found by these four individual tests allows us to demonstrate the advantages of
our union of rejections procedures. For example, a rejection of the null is found for Kenya
(see Figure 11(c) for a plot of this series) at a 0.05 significance level using DFµ. No other
individual test rejects, but Uµ picks up this rejection at a 0.05 level, and U4 and U∗ are
able to reject at a 0.10 level. For Panama (see Figure 11(d)), DFτ is the only individual
test to reject, but Uτ , U4 and U∗ also pick up this rejection, all at a 0.01 significance
level. A 0.01 level rejection for the Cook Islands (see Figure 11(b)) by KSSµ results in
a 0.01 level rejection by Uµ and 0.05 level rejections by U4 and U∗. Finally, a 0.01 level
rejection found for Portugal (see Figure 11(e)) by only KSSτ is picked up by the three
relevant union procedures at the same significance level. We can also highlight countries
where rejections are found only in the two demeaned tests (Suriname, see Figure 11(f)),
or only in the two detrended tests (Bangladesh, see Figure 11(a)). Again, these rejections
are then picked up by the relevant union procedures.
It is also to be expected from the simulation results that there will be cases where

the union of rejections procedures fail to pick up some rejections found by individual
tests, and we can see examples of this in the results, for example there are a number of
countries for which one of the individual tests rejects at the 0.10 level, but U∗ does not
reject at conventional significance levels. There is also one case (Bhutan), where U∗ fails
to reject when U4 rejects at the 0.01 level; here, the BIC is suggesting the presence of
a trend, but the rejection is lost since it only arises from application of KSSµ. Overall,
however, the results clearly demonstrate the ability of the union of rejections procedures
to capitalize on the differing rejections offered by the four individual unit root tests.
In total, the union procedure Uµ is able to reject the null for a higher proportion of
countries than the individual test DFµ at all conventional significance levels, and rejects
a higher proportion of countries than KSSµ at a 0.05 significance level. Similarly, Uτ

14



rejects the null more frequently than either DFτ or KSSτ at all conventional levels of
significance. Our proposed U4 procedure is able to further capitalize on the differing
rejections offered by demeaned and detrended unit root tests, and rejects for a higher
proportion of countries than Uµ at all conventional levels of significance and Uτ at a 0.10
level. Finally, our BIC-based strategy, U∗, rejects the same number of times as U4 and
Uτ at a 0.01 level of significance and a higher proportion of the time at both 0.05 and
0.10 levels. Therefore we conclude that the highest number of rejections across all 8 unit
root testing procedures considered in this exercise was achieved by U∗ at 0.05 and 0.10
levels and by U∗, U4 and Uτ at a 0.01 level. This provides clear justification for the use
of our proposed union of rejections procedures in empirical applications. We can also
conclude that, compared with Hasanov and Telatar (2011), at a 0.10 significance level
we find evidence of stationarity in, at most, 45 countries out of 180. This suggests that
nonstationarity in energy consumption may be less prevalent than previously thought.

7 Conclusion

In this paper, we have examined the power performance of DF and KSS unit root tests
against an alternative hypothesis of ESTAR stationarity. Our analysis focused on prior
demeaned, and demeaned and detrended test statistics. We highlighted the sensitivity
of these tests to both the degree of nonlinearity under the ESTAR alternative and to
the presence or otherwise of a linear deterministic trend. In practice, these are likely
to be sources of uncertainty in unit root testing. We therefore proposed four union of
rejections strategies that attempt to mitigate against this uncertainty while capitalizing
on the power available from each individual DF and KSS test under different degrees of
nonlinearity and trend magnitudes. Both asymptotic and finite sample power simulations
were undertaken, and we found that a union of rejections procedure that combines all four
individual tests offers attractive levels of power across different nonlinearity and trend
settings. Also, a hybrid approach that uses information from a BIC approach to trend
detection to select between this four-way union of rejections and a union of rejections
based on just the trend based DF and KSS variants, was found to improve power still
further when the magnitude of the trend is large. An empirical example using energy
consumption data highlighted the potential usefulness of this testing strategy in practice.
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Appendix

Due to the invariance of all statistics to µ in (4), we set µ = 0 in what follows, without
loss of generality.

Proof of Lemma 1

The DFµ test statistic is given by

DFµ =

∑T
t=2 yµ,t−1∆yt√
σ̂2
∑T

t=2 y
2
µ,t−1

where σ̂2 denotes the error variance estimate from the OLS regression of ∆yt on yµ,t−1.
Considering first the numerator of DFµ, we can write

T−1
T∑
t=2

yµ,t−1∆yt = T−1
T∑
t=2

(yt−1 − y)
(
β − c

T
ut−1G (θ, ut−1) + εt

)
= −cT−2

T∑
t=2

(yt−1 − y)ut−1G (θ, ut−1) + T−1
T∑
t=2

(yt−1 − y) εt + op(1).

Evaluating each term separately, and defining t̄ = T−1
∑T

t=1 t, ū = T−1
∑T

t=1 ut,

cT−2
T∑
t=2

(yt−1 − y)ut−1G (θ, ut−1)

= cT−2
T∑
t=2

{β (t− 1− t̄) + ut−1 − ū}ut−1G (θ, ut−1)

= cT−1
T∑
t=2

{
κσT−1 (t− t̄) + T−1/2 (ut−1 − ū)

}
T−1/2ut−1G (θ, ut−1) + op(1)

d→ σ2c

∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)
X(r)G

(
g2X(r)2

)
dr

and

T−1
T∑
t=2

(yt−1 − y) εt = T−1/2
T∑
t=2

{
κσT−1 (t− t̄) + T−1/2 (ut−1 − ū)

}
εt + op(1)

d→ σ2
∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)
dW (r).

In the denominator of DFµ, it is easily shown that σ̂
2 p→ σ2, and

T−2
T∑
t=2

(yt−1 − y)2 = T−1
T∑
t=2

(
κσT−1 (t− t̄) + T−1/2 (ut−1 − ū)

)2
d→ σ2

∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)2
dr.
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The DFµ test statistic therefore has the limiting distribution

DFµ
d→
∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)
dW (r)− c

∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)
X(r)G (g2X(r)2) dr√∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)2
dr

.

The KSSµ test statistic is given by

KSSµ =

∑T
t=2 y

3
µ,t−1∆yt√

σ̂2
∑T

t=2 y
6
µ,t−1

where σ̂2 denotes the error variance estimate from the OLS regression of ∆yt on y3µ,t−1.
In the numerator,

T−2
T∑
t=2

y3µ,t−1∆yt = T−2
T∑
t=2

(yt−1 − y)3
(
β − c

T
ut−1G (θ, ut−1) + εt

)
= κσT−5/2

T∑
t=2

(yt−1 − y)3 − cT−3
T∑
t=2

(yt−1 − y)3 ut−1G (θ, ut−1)

+T−2
T∑
t=2

(yt−1 − y)3 εt

d→ κσ4
∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dr

−cσ4
∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
X(r)G

(
g2X(r)2

)
dr

+σ4
∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dW (r)

while in the denominator, σ̂2
p→ σ2 and

T−4
T∑
t=2

y6µ,t−1
d→ σ6

∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)6
dr

giving the limit for KSSµ as

KSSµ
d→

κ
∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dr +

∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
dW (r)

−c
∫ 1
0

(
κ
(
r − 1

2

)
+Xµ(r)

)3
X(r)G (g2X(r)2) dr√∫ 1

0

(
κ
(
r − 1

2

)
+Xµ(r)

)6
dr

.

The test statistics based on demeaned and detrended data are invariant to β, hence
we set β = 0 without loss of generality in the remainder of this proof. The DFτ test
statistic is

DFτ =

∑T
t=2 yτ ,t−1∆yτ ,t√
σ̂2
∑T

t=2 y
2
τ ,t−1
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where σ̂2 denotes the error variance estimate from the OLS regression of ∆yτ ,t on yτ ,t−1.
Here,

∆yτ ,t = ∆yt − β̂
= − c

T
ut−1G (θ, ut−1) + εt − β̂

and

T 1/2β̂ =
T−5/2

∑T
t=1 (t− t̄) yt

T−3
∑T

t=1 (t− t̄)2

d→ 12

∫ 1

0

(
r − 1

2

)
X(r)dr.

Also,

T−1/2yτ ,brT c = T−1/2ybrT c − T−1/2µ̂− T 1/2β̂r

= T−1/2ybrT c −
(
T−1/2y − T 1/2β̂T−1t̄

)
− T 1/2β̂r

d→ X(r)−
∫ 1

0

X(s)ds− 12
(
r − 1

2

) ∫ 1

0

(
s− 1

2

)
X(s)ds

= X(r) + (6r − 4)

∫ 1

0

X(s)ds+ (6− 12r)

∫ 1

0

sX(s)ds

≡ Xτ (r).

The numerator of DFτ is then given by

T−1
T∑
t=2

yτ ,t−1∆yτ ,t = T−1
T∑
t=2

yτ ,t−1εt − cT−2
T∑
t=2

yτ ,t−1ut−1G (θ, ut−1)− T 1/2β̂T−3/2
T∑
t=2

yτ ,t−1

d→ σ2
∫ 1

0

Xτ (r)dW (r)− cσ2
∫ 1

0

Xτ (r)X(r)G
(
g2X(r)2

)
dr

and for the denominator we obtain

T−2
T∑
t=2

y2τ ,t−1
d→ σ2

∫ 1

0

Xτ (r)
2dr

giving

DFτ
d→
∫ 1
0
Xτ (r)dW (r)− c

∫ 1
0
Xτ (r)X(r)G (g2X(r)2) dr√∫ 1

0
Xτ (r)2dr

.

Finally, the KSSτ test statistic is

KSSτ =

∑T
t=2 y

3
τ ,t−1∆yτ ,t√

σ̂2
∑T

t=2 y
6
τ ,t−1
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where σ̂2 is the error variance estimate from the OLS regression of ∆yτ ,t on y3τ ,t−1. Now

σ̂2
p→ σ2 as before,

T−2
T∑
t=2

y3τ ,t−1∆yτ ,t = T−2
T∑
t=2

y3τ ,t−1εt − cT−3
T∑
t=2

y3τ ,t−1ut−1G (θ, ut−1)− T 1/2β̂T−5/2
T∑
t=2

y3τ ,t−1

d→ σ2
∫ 1

0

Xτ (r)
3dW (r)− cσ2

∫ 1

0

Xτ (r)
3X(r)G

(
g2X(r)2

)
dr

−12

∫ 1

0

(
r − 1

2

)
X(r)dr

∫ 1

0

Xτ (r)
3dr

and

T−4
T∑
t=2

y6τ ,t−1
d→
∫ 1

0

Xτ (r)
6dr

so

KSSτ
d→
∫ 1
0
Xτ (r)

3dW (r)− c
∫ 1
0
Xτ (r)

3X(r)G (g2X(r)2) dr − 12
∫ 1
0

(
r − 1

2

)
X(r)dr

∫ 1
0
Xτ (r)

3dr√∫ 1
0
Xτ (r)6dr

.

Proof of Lemma 2

As before, the DFµ test statistic is given by

DFµ =

∑T
t=2 yµ,t−1∆yt√
σ̂2
∑T

t=2 y
2
µ,t−1

where σ̂2 is the error variance estimate from the OLS regression of ∆yt on yµ,t−1. We find

T−3/2
T∑
t=2

yµ,t−1∆yt = T−3/2
T∑
t=2

(
σκ(t− t) + ut−1 − u

) (
σκ+ εt −

c

T
ut−1G (θ, ut−1)

)
+ op (1)

= σκT−3/2
T∑
t=2

(t− t)εt − σκcT−5/2
T∑
t=2

(t− t)ut−1G (θ, ut−1) + op (1)

d→ σ2κ

∫ 1

0

(
r − 1

2

)
dW (r)− σ2κc

∫ 1

0

(
r − 1

2

)
X(r)G

(
g2X(r)2

)
dr

and

T−3
T∑
t=2

y2µ,t−1 = T−3
T∑
t=2

(
β(t− 1− t) + ut−1 − ū

)2
= σ2κ2T−3

T∑
t=2

(t− t)2 + op (1)

p→ σ2κ2/12.
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Also,

σ̂2 = T−1
T∑
t=2

(
∆yt −

∑T
s=2 (ys−1 − y) ∆ys∑T
s=2 (ys−1 − y)2

(yt−1 − y)

)2

= T−1
T∑
t=2

(
∆yt −

T−3/2
∑T

s=2 (ys−1 − y) ∆ys

T−3
∑T

s=2 (ys−1 − y)2
T−3/2 (yt−1 − y)

)2

= T−1
T∑
t=2

(∆yt)
2 + op(1)

= σ2κ2 + T−1
T∑
t=2

ε2t + op(1)

p→ σ2
(
κ2 + 1

)
.

Therefore the DFµ test statistic has the limiting distribution

DFµ
d→
∫ 1
0

(
r − 1

2

)
dW (s)− c

∫ 1
0

(
r − 1

2

)
X(r)G (g2X(r)2) dr√

(κ2 + 1) /12
.

For KSSµ we again have

KSSµ =

∑T
t=2 y

3
µ,t−1∆yt√

σ̂2
∑T

t=2 y
6
µ,t−1

where σ̂2 is the error variance estimate from the OLS regression of ∆yt on y3µ,t−1. We
obtain

T−7/2
T∑
t=2

y3µ,t−1∆yt = T−7/2
T∑
t=2

(
σκ(t− t) + ut−1 − u

)3 (
σκ− c

T
ut−1G (θ, ut−1) + εt

)
+ op (1)

= 3σ3κ3T−7/2
T∑
t=2

(t− t)2(ut−1 − ū) + σ3κ3T−7/2
T∑
t=2

(t− t)3εt

−cσ3κ3T−9/2
T∑
t=2

(t− t)3ut−1G (θ, ut−1) + op (1)

d→ 3σ4κ3
∫ 1

0

(
r − 1

2

)2
Xµ(r)dr + σ4κ3

∫ 1

0

(
r − 1

2

)3
dW (r)

−cσ4κ3
∫ 1

0

(
r − 1

2

)3
X(r)G

(
g2X(r)2

)
dr

and

T−7
T∑
t=2

y6µ,t−1 = σ6κ6T−7
T∑
t=2

(t− t)6 + op (1)

p→ σ6κ6/448
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together with

σ̂2 = T−1
T∑
t=2

(
∆yt −

T−7/2
∑T

s=2 (ys−1 − y)3 ∆ys

T−7
∑T

s=2 (ys−1 − y)6
T−7/2 (yt−1 − y)3

)2

= T−1
T∑
t=2

(∆yt)
2 + op(1)

p→ σ2
(
κ2 + 1

)
giving the KSSµ limit distribution

KSSµ
d→

3
∫ 1
0

(
r − 1

2

)2
Xµ(r)dr +

∫ 1
0

(
r − 1

2

)3
dW (r)− c

∫ 1
0

(
r − 1

2

)3
X(r)G (g2X(r)2) dr√

(κ2 + 1) /448
.
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Table 1: Asymptotic critical values of KSSµ, DFµ, KSSτ , DFτ and union of rejection
scaling values λα

µ
, λα

τ
and λ

α

4
for significance level α

α KSSµ DFµ KSSτ DFτ λα

µ
λα

τ
λα

4

0.10 −2.655 −2.564 −3.118 −3.122 1.063 1.056 1.140
0.05 −2.935 −2.864 −3.396 −3.409 1.059 1.049 1.118
0.01 −3.471 −3.424 −3.939 −3.959 1.053 1.041 1.085
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Table 2: Total primary energy consumption per capita: DFµ, DFτ , KSSµ, KSSτ , Uµ,
Uτ , U4 and U

∗ unit root test results

DFµ DFτ KSSµ KSSτ Uµ Uτ U4 U∗

Algeria *** *** *** *** *** ***
American Samoa ** *** *** ** *** *** ***
Antigua and Barbuda *** *** *** ***
Argentina * *
Bahamas *
Bahrain *
Bangladesh *** ** *** ** ***
Bermuda * * *
Bhutan *** *** ***
Burkina Faso *
Cambodia ** ** ** **
Cayman Islands *
Central African Republic ** *** * ** *** *** ***
Chad * *
Comoros *
Cook Islands *** *** ** **
Djibouti * *
Dominica * * ** ** * **
Egypt ** * * * ** * **
El Salvador ** * *
Faroe Islands * *** * *** * *** ***
Finland * *
French Polynesia *** ** *** ** *** ** *** ***
Greenland *** *** *** *** *** ***
Grenada ** ** * *
Guadeloupe *** *** *** *** *** ***
Guinea ** *** * *** ** **
Honduras * *** *** ** **
Hong Kong ** ** * **
India ** * *
Jordan ** * ** * *
Kenya ** ** * *
Kuwait ** ** ** **
Lebanon *
Lesotho ** ** * *
Libya *** *** *** *** *** *** ***
Maldives ** ** * **
Mali *** * * ** ** **
Mozambique * ** * ** ** **
Nauru ** * ** * ** **
Netherlands Antilles *** ** ** *** *** *** *** ***
New Caledonia ** * ** ** * * *
Niger *
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DFµ DFτ KSSµ KSSτ Uµ Uτ U4 U∗

Panama *** *** *** ***
Portugal *** *** *** ***
Puerto Rico ** ** * * * *
Saint Lucia ** *** *** *** ***
Samoa *** *** *** *** ***
Sao Tome and Principe *
Senegal ** ** * ** * *
Seychelles ** ** * *
Sierra Leone *** *** *** ***
Solomon Islands *** *** *** *** ***
Suriname ** * ** ** **
Swaziland *** ** *** * ** * ** **
Tonga *** *** *** ** ** **
Trinidad and Tobago ** * *
Uganda *** *** *** ***
United Arab Emirates *** ** *** *** *** *** *** ***
Uruguay *

Total Rejections at 0.10 12 25 29 40 28 41 43 45
Total Rejections at 0.05 9 18 19 28 20 32 31 34
Total Rejections at 0.01 5 9 12 14 11 19 19 19

*, **, *** indicate rejections at a 0.10, 0.05, 0.01 significance level respectively
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Table 3: Total primary energy consumption per capita: countries for which no unit root
test rejections found

Afghanistan Gibraltar Pakistan
Albania Greece Papua New Guinea
Angola Guam Paraguay
Australia Guatemala Peru
Austria Guinea-Bissau Philippines
Barbados Haiti Poland
Belgium Hungary Qatar
Belize Iceland Reunion
Benin Indonesia Romania
Bolivia Iran Rwanda
Botswana Iraq Saint Kitts and Nevis
Brazil Ireland Saint Pierre and Miquelon
British Virgin Islands Israel Saint Vincent/Grenadines
Brunei Italy Saudi Arabia
Bulgaria Jamaica Singapore
Burma (Myanmar) Japan Somalia
Burundi Kiribati South Africa
Cameroon Laos South Korea
Canada Liberia Spain
Cape Verde Luxembourg Sri Lanka
Chile Macau Sudan and South Sudan
China Madagascar Sweden
Colombia Malawi Switzerland
Congo (Brazzaville) Malaysia Syria
Congo (Kinshasa) Malta Taiwan
Costa Rica Martinique Tanzania
Cote dIvoire Mauritania Thailand
Cuba Mauritius Togo
Cyprus Mexico Tunisia
Denmark Mongolia Turkey
Dominican Republic Montserrat United Kingdom
Ecuador Morocco United States
Equatorial Guinea Nepal United States Virgin Islands
Ethiopia Netherlands Vanuatu
Fiji New Zealand Venezuela
France Nicaragua Vietnam
French Guiana Nigeria Western Sahara
Gabon North Korea Yemen
Gambia Norway Zambia
Ghana Oman Zimbabwe
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Figure 1: Asymptotic size and local power of KSSµ, DFµ and Uµ for fixed g
2 (κ = 0)

(a) g2 = 2 (b) g2 = 5

(c) g2 = 10 (d) g2 = 20

(e) g2 = 50 (f) g2 = 100

– – KSSµ, - - - DFµ, — Uµ
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Figure 2: Asymptotic size and local power of KSSτ , DFτ and Uτ for fixed g
2

(a) g2 = 2 (b) g2 = 5

(c) g2 = 10 (d) g2 = 20

(e) g2 = 50 (f) g2 = 100

– – KSSτ , - - - DFτ , — Uτ
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Figure 3: Asymptotic size and local power of Uµ, Uτ and U4 for fixed g
2 = 2

(a) κ = 0 (b) κ = 0.25

(c) κ = 0.5 (d) κ = 1.0

(e) κ = 2.0 (f) κ = 4.0

– – Uµ, - - - Uτ , — U4
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Figure 4: Asymptotic size and local power of Uµ, Uτ and U4 for fixed g
2 = 10

(a) κ = 0 (b) κ = 0.25

(c) κ = 0.5 (d) κ = 1.0

(e) κ = 2.0 (f) κ = 4.0

– – Uµ, - - - Uτ , — U4
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Figure 5: Asymptotic size and local power of Uµ, Uτ and U4 for fixed g
2 = 50

(a) κ = 0 (b) κ = 0.25

(c) κ = 0.5 (d) κ = 1.0

(e) κ = 2.0 (f) κ = 4.0

– – Uµ, - - - Uτ , — U4
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Figure 6: Finite sample size and local power of KSSµ, DFµ and Uµ for fixed g
2 (β = 0)

(a) g2 = 2 (b) g2 = 5

(c) g2 = 10 (d) g2 = 20

(e) g2 = 50 (f) g2 = 100

– – KSSµ, - - - DFµ, — Uµ

F.6



Figure 7: Finite sample size and local power of KSSτ , DFτ and Uτ for fixed g
2

(a) g2 = 2 (b) g2 = 5

(c) g2 = 10 (d) g2 = 20

(e) g2 = 50 (f) g2 = 100

– – KSSτ , - - - DFτ , — Uτ
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Figure 8: Finite sample size and local power of Uµ, Uτ , U4 and U
∗ for fixed g

2 = 2

(a) β = 0 (b) β = 0.025

(c) β = 0.05 (d) β = 0.1

(e) β = 0.2 (f) β = 0.4

– – Uµ, - - - Uτ , — U4, —� U∗
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Figure 9: Finite sample size and local power of Uµ, Uτ , U4 and U
∗ for fixed g

2 = 10

(a) β = 0 (b) β = 0.025

(c) β = 0.05 (d) β = 0.1

(e) β = 0.2 (f) β = 0.4

– – Uµ, - - - Uτ , — U4, —� U∗
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Figure 10: Finite sample size and local power of Uµ, Uτ , U4 and U
∗ for fixed g

2 = 50

(a) β = 0 (b) β = 0.025

(c) β = 0.05 (d) β = 0.1

(e) β = 0.2 (f) β = 0.4

– – Uµ, - - - Uτ , — U4, —� U∗
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Figure 11: Total primary energy consumption per capita (logs of million BTU per person)

(a) Bangladesh (b) Cook Islands

(c) Kenya (d) Panama

(e) Portugal (f) Suriname
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