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The  celebrated  Abakaliki  smallpox  data  have  appeared  numerous  times  in  the  epidemic  modelling  liter-
ature,  but  in  almost  all cases  only  a specific  subset  of  the data  is  considered.  The  only  previous  analysis
of  the  full  data  set  relied  on approximation  methods  to derive  a  likelihood  and  did  not  assess  model  ade-
quacy.  The  data  themselves  continue  to be  of  interest  due  to  concerns  about  the  possible  re-emergence
of  smallpox  as a bioterrorism  weapon.  We  present  the  first full  Bayesian  statistical  analysis  using  data-
augmentation  Markov  chain  Monte  Carlo  methods  which  avoid  the  need  for likelihood  approximations
mallpox
ayesian inference
arkov chain Monte Carlo

tochastic epidemic model
bakaliki

and  which  yield  a  wider  range  of  results  than  previous  analyses.  We  also  carry out  model  assessment  using
simulation-based  methods.  Our  findings  suggest  that  the  outbreak  was  largely  driven  by  the  interaction
structure  of the  population,  and  that  the  introduction  of  control  measures  was  not the  sole reason  for
the  end  of  the  epidemic.  We  also obtain  quantitative  estimates  of  key  quantities  including  reproduction
numbers.

© 2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction

In 1967, an outbreak of smallpox occurred in the Nigerian town
f Abakaliki. The vast majority of cases were members of the Faith
abernacle Church (FTC), a religious organisation whose members
efused vaccination. A World Health Organization (WHO) report
Thompson and Foege, 1968) describes the outbreak, with infor-

ation on not only the time series of case detections but also
heir place of dwelling (compound), vaccination status, and FTC

embership. The outbreak has inherent historical interest as it
ccurred during the WHO  smallpox eradication programme initi-
ted in 1959. Although smallpox was declared eradicated in 1980,
t regained attention as a potential bioterrorism weapon in the
arly 2000s (see e.g. Gani and Leach, 2001; Meltzer et al., 2001;
alloran et al., 2002) and continues to be of interest due to concerns
bout its re-emergence or synthesis (see e.g. Henderson and Arita,
014; Eto et al., 2015; World Health Organisation, 2015 and refer-
nces therein). Public health planning for potential future smallpox
utbreaks requires estimates of the parameters governing disease
ransmission, and thus being able to accurately obtain such quan-
ities from available data is of considerable importance.
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

Within mathematical infectious disease modelling, the Abaka-
iki smallpox data set has been frequently cited, the first appearance
eing (Bailey and Thomas, 1971). The data are almost always used

∗ Corresponding author.
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to illustrate new data analysis methodology, but in virtually all
cases most aspects of the data are ignored apart from the popu-
lation of 120 FTC individuals and the case detection times, while
the models used are not particularly appropriate for smallpox (see
for example Becker, 1976; Yip, 1989; O’Neill and Roberts, 1999;
O’Neill and Becker, 2001; Huggins et al., 2004; Boys and Giles,
2007; Lau and Yip, 2008; Clancy and O’Neill, 2008; Kypraios, 2009;
Shanmugan, 2011; Xiang and Neal, 2014; McKinley et al., 2014;
Golightly et al., 2014; Oh, 2014; Xu et al., 2016 and references
therein). In Ray and Marzouk (2008) a more realistic smallpox
model is used and account taken of the compounds where indi-
viduals lived, but again all non-FTC individuals are ignored.

The main objective of this paper is to present a Bayesian analysis
of the full data set. To our knowledge, the only previous analy-
sis of the full Abakaliki data is that of Eichner and Dietz (2003),
where the authors define a stochastic individual-based transmis-
sion model that considers not only the case detection times but
also the other aspects of the data. Their model takes account of
the population structure, the disease progression for smallpox, the
vaccination status of individuals and the introduction of control
measures during the outbreak. The model parameters are then esti-
mated by constructing and maximising a likelihood function which
is itself constructed using various approximations. Specifically, the
true likelihood of the observed data given the model parameters
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

is practically intractable, since it involves integrating over all pos-
sible unobserved events, such as the times at which individuals
become infected. Eichner and Dietz tackle this problem by first
using a back-calculation method to approximate the distribution

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Smallpox cases in Abakaliki, Nigeria during 1967, taken from Thompson and Foege
(1968). Compounds listed are those before the move of cases 7 and 8, and 2 other
uninfected individuals, on day 25 from compound 1 to compound 2.

Case number Day of onset of rash Compound Confession Vaccination

0 0 1 FTC No
1  13 1 FTC No
2  20 1 FTC No
3  22 1 FTC No
4  25 1 FTC No
5  25 1 FTC No
6  25 1 FTC No
7  26 2 FTC Yes
8  30 2 FTC Yes
9  35 1 FTC No
10  38 4 FTC No
11  40 5 FTC No
12  40 1 FTC No
13  42 1 FTC No
14  42 1 FTC No
15  47 1 FTC No
16  50 5 FTC No
17  51 2 FTC No
18  55 1 FTC No
19  55 2 FTC No
20  56 6 Non Yes
21  56 5 FTC Yes
22  57 2 FTC Yes
23  58 7 FTC No
24  60 4 FTC No
25  60 2 FTC No
26  61 2 FTC No
27  63 8 Non Yes
28  66 3 FTC No
29  66 9 FTC No
ARTICLEPIDEM-230; No. of Pages 11

 J.E. Stockdale et al. / Ep

f unobserved event times for a given individual, and then by mak-
ng various assumptions about independence between individuals
n order to construct an approximate likelihood function.

An alternative solution to the intractable likelihood problem
s to use data-augmentation methods to produce an analytically
ractable (and correct) likelihood, which can then be incorporated
n a Bayesian estimation framework by using Markov chain Monte
arlo (MCMC) methods along the lines described in O’Neill and
oberts (1999) and Gibson and Renshaw (1998). We  adopt this
pproach to carry out a full Bayesian analysis of the Abakaliki small-
ox data, whilst also assessing how well the Eichner and Dietz
pproximation method works in this setting. Our approach pro-
ides results which can be directly compared with those of Eichner
nd Dietz, specifically estimates of model parameters, estimates
f associated quantities of interest such as reproduction num-
ers, and the sensitivity of the results to the disease progression
ssumptions. In addition, we also estimate quantities derived via
ata-augmentation, such as who-infected-whom and the time of

nfection for each individual, carry out various forms of model
ssessment to see how well the model fits the data, and explore par-
icular aspects of the model via simulation. None of these additional
lements feature in the Eichner and Dietz analysis.

The paper is structured as follows. In Section 2 we  describe
he data, stochastic transmission model and method of inference.
ection 3 contains results and details of sensitivity analysis and
odel-checking procedures. We  finish with discussion in Section 4.

he supplementary material contains details of some likelihood
alculations and the MCMC  algorithm.

. Data, model and inference methods

The outbreak is described in detail in Thompson and Foege
1968) and Eichner and Dietz (2003). There were 32 cases in total,
0 of which were FTC members. All of the infected individuals lived

n compounds, which were typically one-storey dwellings built
round a central courtyard, and capable of housing several fam-
lies. The FTC members frequently visited one another and were
omewhat isolated from the rest of the community, which is one
eason why most previous data analyses only consider FTC mem-
ers. Although FTC members refused vaccination, many of them
ad been vaccinated prior to joining FTC as described below.

.1. Abakaliki smallpox data

Table 1 contains details of the 32 cases of smallpox recorded
uring the outbreak, specifying the date of onset of rash, compound

dentifier, FTC membership status and vaccination status. Note that
e set a timescale by setting day zero of the outbreak to be the first

nset of rash date. The composition of the affected compounds is
rovided in Table 2, where the total numbers of vaccinated and
on-vaccinated FTC and non-FTC members within each compound
re listed. Note that on day 25, four FTC individuals from compound

 (three vaccinated and one non-vaccinated) moved to compound
. In addition, quarantine measures were put in place in Abakaliki,
ut not until part way through the outbreak. The exact time these
easures were introduced was not recorded.

.2. Stochastic transmission model

We  suppose that the residents of Abakaliki form a closed popula-
ion with N = 31,200 individuals, labelled 0, 1, . . .,  N − 1. Individuals
, 1, . . .,  ncom − 1 are those inside the compounds, where ncom = 251
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

s the number of people within the compounds. Any individual k = 0,
 . .,  N − 1 may  be categorised as type (ck, fk), where (i) ck = 1, . . .,  9
s the compound of k, with ck = 0 if k is outside the compounds, and
ii) fk is k’s confession; FTC or non-FTC. These types may  lead to
30  71 5 FTC No
31  76 2 FTC Yes

differences in the mixing behaviour of individuals, but otherwise
individuals are considered to be identical in their susceptibility to
smallpox and their ability to infect others.

We now describe a stochastic disease-transmission model for
the spread of smallpox throughout the population of Abakaliki.
This model is essentially the same as that described in Eichner and
Dietz (2003), and is a variant of a Susceptible-Exposed-Infective-
Removed (SEIR) model. At any given time t each individual in
the population will be in any one of six states, namely suscepti-
ble, exposed, with fever, with rash, quarantined or removed. For
j = 0, . . .,  N − 1, let ej, ij, rj, qj, �j denote, respectively, the times of
exposure, fever, rash, quarantine and recovery for individual j. Any
susceptible individual may  become exposed, as described below, at
which point they enter an incubation (or latent) period. They next
enter the fever stage of the disease, at which point they become
infectious and may  hence infect others. During the rash stage which
follows, the individual remains infectious but with a potentially dif-
ferent level of infectivity. We  define the infectious period to be the
combined time spent in the fever and rash stages. Infectious indi-
viduals will either become removed (namely recovery or death;
we do not distinguish these) or isolated, in which the individual is
quarantined and henceforth unable to infect others. Control meas-
ures, in which cases are placed into isolation soon after detection,
are introduced part way  through the outbreak at time tq. We  do not
allow re-infection, so that individuals who have been infected can-
not become susceptible again. The epidemic continues until there
are no infectious or exposed individuals remaining in the popula-
tion, at which point each person will either still be susceptible, or
will have been quarantined/removed.
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

The lengths of time spent in each stage of the disease for
different individuals are assumed to be mutually independent ran-
dom variables with specified distributions, the parameter values
of which are assumed known. We  adopt the assumptions of the

dx.doi.org/10.1016/j.epidem.2016.11.005
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Table  2
Composition of the compounds affected by smallpox in Abakaliki, Nigeria during 1967, as described in Thompson and Foege (1968). Since we do not have complete vaccination
status  for all compounds, we  use i4, i5, i7 to allow for different possible configurations. The total number of vaccinated individuals is known and so i4 + i5 + i7 = 4. It is also
known  that i4 ∈ {0, 1}, i5 ∈ {0, 1, 2} and i7 ∈ {1, 2, 3}. Note that this table displays the compound composition after the move of the 4 individuals from compound 1 to
compound 2 on day 25. Numbers outside the compounds are also given, where we  assume vaccination coverage for FTC and non-FTC individuals is the same as that inside
the  compound.

Compound FTC Non-FTC
Vaccinated Nonvaccinated nc,FTC Vaccinated Nonvaccinated nc,non

1 18 15 33 0 0 0
2  9 5 14 1 0 1
3  2 8 10 0 0 0
4  2 − i4 2 + i4 4 28 + i4 1 − i4 29
5  4 − i5 3 + i5 7 13 + i5 2 − i5 15
6  0 0 0 40 3 43
7  4 − i7 1 + i7 5 12 + i7 3 − i7 15
8  0 0 0 37 5 42
9  0 1 1 26 6 32

Sum  1–9 35 39 74 161 16 177
Outside 46 × 35/74 46 × 39/74 46 

Total  120 

Table 3
Durations of disease stages in the smallpox model. The time until quarantine changes
after the introduction of control measures as described in the text.

Mean (days) Standard deviation
(days)

Period before fever �I = 11.6 �I = 1.9
From fever to rash �F = 2.49 �F = 0.88
From rash until recovery �R = 16.0 �R = 2.83
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From rash to quarantine or from tq to
quarantine

�Q = 2.0 �Q = 2.00

ichner and Dietz model, so that the incubation period, fever period
nd rash period all have Gamma  distributions with values as shown
n Table 3. If quarantine measures have been introduced, then an
ndividual may  be put into isolation after a random delay following
heir rash onset date. Specifically, we define the quarantine time
f individual j as qj = max(rj, tq) + �(2, 2), where �(�, �) denotes

 gamma  distributed random variable with mean � and standard
eviation �. This means that no quarantining occurs prior to time tq,
fter which it takes an average of two days for a detected individual
o be placed in isolation. Note that both removal and quarantining
f an individual are equivalent in the sense that both mean the
ndividual can no longer infect others, but we include both in the

odel for clarity, and also for comparison with the Eichner and
ietz model. Note also that an infected individual will have both a

emoval time and a quarantine time, and both quantities appear in
he likelihood function as explained later.

We assume that the epidemic is initiated by a single exposed
ndividual, whom we label �. The epidemic thus begins at time e�

ith the exposure of the initial infective �. Recall that the infec-
ious period is defined in two parts: the fever period and the rash
eriod, during each of which an individual will be infectious, but
t potentially different rates. During their rash period, an individ-
al j will have contacts with other members of their compound
ho are of the same confession at times given by the points of a

oisson process of rate �h per day. Individuals outside of the nine
ompounds do not have such contacts. In addition, FTC individuals
ill have contacts at rate �f per day with other FTC individuals and

ontacts at rate �a per day with anybody (including FTC individ-
als) in the population. Non-FTC individuals are assumed to have
ontacts with anybody in the population at rate �a + �f per day.
his assumption is made to ensure that all individuals have the
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

ame average number of contacts per day outside of their own  com-
ound. During the fever period, contacts occur in exactly the same
anner except that all rates are multiplied by a factor b, to account

or a potential difference in infectivity during the fever period. In
30903 × 161/177 30903 × 16/177 30903

31080

each case, the individual actually contacted is chosen uniformly
at random from the pool of potential individuals in question. For
example, contacts made by an individual with the entire population
are drawn from the N − 1 other individuals. Note that this means
that the individual-to-individual contact rate for such contacts is
�a/(N − 1). Any contact from an infective to a susceptible results in
immediate exposure of the susceptible. All of the Poisson processes
describing contacts are assumed to be mutually independent.

In addition, a proportion of the population is vaccinated. The
vaccination status of all but a few individuals within the compounds
is known, and the proportions of FTC and non-FTC vaccinated indi-
viduals outside the compounds are assumed to be the same as
for the corresponding FTC and non-FTC individuals inside. How-
ever, vaccination is not necessarily effective: each recipient of the
vaccine is completely protected with probability v, or remains
completely susceptible with probability 1 − v. Although the total
number of vaccinated individuals is known, we do not have com-
plete information on the composition of individuals with respect
to vaccination status and FTC membership (see Table 2). There are
five potential configurations of twelve individuals with unknown
details to consider. For each individual in the population we will
have a vaccination status, which is assumed known for most indi-
viduals, and a protection status, which is unknown.

2.3. Reproduction numbers

Within mathematical epidemic modelling, the so-called basic
reproduction number is of primary importance. It can be defined
as the average number of cases caused by a typical index case in
a large population, and its value typically governs certain aspects
of the epidemic such as the final number of cases or the prob-
ability of an epidemic dying out rapidly. From a mathematical
viewpoint, reproduction numbers for stochastic epidemics are typ-
ically defined by allowing the population size to become infinite
in an appropriate sense. For models featuring structured popula-
tions with different kinds of contact rates, reproduction numbers
can be defined in various ways. Eichner and Dietz consider two
such reproduction numbers, namely R0 = (�R + b�F)(�a + �f + �h)
and RF = b�F(�a + �f + �h). Here, R0 is a reproduction number for
an infected FTC member within the compounds, and can be inter-
preted as the average number of new infections such an individual
would cause, under the assumption that the FTC population, com-
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

pound populations and entire population are all large. Similarly,
RF describes the average number of new infections caused by con-
tacts made during the fever period of an FTC individual within the
compounds. As discussed later, one drawback with such definitions

dx.doi.org/10.1016/j.epidem.2016.11.005
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Table  4
Principal notation used in the paper.

Parameter Meaning

N Population size
ncom Number of individuals in the compounds
�a Global infection rate
�f FTC infection rate
�h Compound same-confession infection rate
b  Infectivity factor during fever
v Vaccine efficacy
tq Time quarantine measures introduced
�  Fixed parameters for disease progression
�  Identity of initial infective
e� Exposure time of �
s  Vector of vaccination statuses (all individuals)
p  Vector of protection statuses (all individuals)
˚ (�, e�, tq, b, v, �a, �f , �h, �, s)
e Vector of exposure times other than e�

i Vector of fever-period start times
r Vector of rash times (data)
� Vector of removal times
q  Vector of quarantine times
�  (e, i, q, �, p)

f
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Ninf (t) Set of individuals who  are currently infective at time t
Ninf Set of ever-infected individuals

or the Abakaliki data is that the compounds themselves are not
articularly large. However, for comparison purposes we  shall also
onsider R0 and RF in our analysis.

.4. Bayesian inference and MCMC

Our aim is to perform Bayesian inference for the unknown model
arameters given the data, which consist of rash times for all infec-
ives, knowledge of the population structure and vaccination status
f individuals. We  will use an MCMC  algorithm to obtain approxi-
ate samples from the posterior density of the model parameters,

amely the infection rates �a, �f and �h, the vaccine efficacy v,
he infectivity factor b and the time quarantine measures were
ntroduced, tq. For ease of reference, these parameters and other
otation used in the sequel are given in Table 4. Our approach

nvolves data augmentation, specifically involving the exposure,
ever, removal and quarantine times of each infected individual,
nd also the protection statuses and unknown vaccination statuses.
irst we derive an expression for the likelihood of the observed and
ugmented data. Let

 = (�, e�, tq, b, v, �a, �f , �h, �, s)

here

 = (�I, �I, �F , �F , �R, �R, �Q , �Q ),

o that the components of � are parameters that are assumed
nown, and where s = (s0, s1, . . .,  sN−1), where for i = 0, 1, . . .,  N − 1,
i is equal to 1 if individual i is vaccinated and 0 if not. These vacci-
ation statuses are assumed known for the majority of individuals,
ith a small number of exceptions, as shown in Table 2.

We  define e, i, q and � as the unknown sets of exposure
not including the initial exposure e�), infection, quarantine and
emoval times, respectively. Similarly, we define r as the known
et of rash times for all infectives. Then we define the augmented
ata as

 = (e, i, q, �, p),
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

here p = (p0, p1, . . .,  pN−1) contains the unknown protection status
f each individual, specifically with pi = 1 if individual i is protected,
nd pi = 0 if they are not.
 PRESS
cs xxx (2016) xxx–xxx

For an individual j = 0, . . .,  N − 1 who  is susceptible at time t we
define �j(t) as the infectious pressure acting upon them at time t,
so that

P(j is exposed in (t, t + ıt])  = �j(t)ıt + o(ıt),

whilst for an individual j who is no longer susceptible at time t we
set �j(t) = 0. From the model definition, if j is susceptible at time t
then �j(t) can be written as

�j(t) =
∑

k ∈  Ninf (t)

m(k, t) ×

⎧⎨
⎩

�a

N − 1
+ �f ıf (k, j)

n − 1
+ �hıc(k, j; t)

nc,fk
(t) − 1

if fk = FTC,

�a + �f

N − 1
+ �hıc(k, j; t)

nc,fk
(t) − 1

otherwise,

where

m(k, t) =
{

b if ik ≤ t < rk,
1 if rk ≤ t < min(�k, qk),
0 otherwise,

and (i) ıf(j, k) = 1 if both k and j are FTC and zero otherwise; (ii)
ıc(j, k;t) = 1 if both k and j live in the same compound at time t
and are of the same confession, and zero otherwise; (iii) n = 120,
the number of FTC individuals in the population; (iv) nc,fj

(t) is the
number of individuals in j’s compound of the same confession as j at
time t, including j themselves, and (v) Ninf (t) is the set of individuals
infective at time t.

We  denote the likelihood of the data r given the model parame-
ters � as 	(r|�). This is practically intractable since its evaluation
involves integrating over all possible unobserved events. We
instead proceed by augmenting the data r with � to obtain the
tractable likelihood

	(r, �|�) =

⎛
⎝ ∏

j ∈ Ninf

�j(ej−)

⎞
⎠ × e

−
∫ T

e�
�(t)dt

×
∏

j ∈ Ninf

fI(ij − ej)fF (rj − ij)fR(�j − rj)fQ (qj − max(rj, tq))

× v

N−1∑
r=0

pr sr

(1 − v)

N−1∑
r=0

(1−pr )sr

, (1)

where (i) for t ≥ e� ,

�(t) =
N−1∑
j=0

�j(t)

denotes the total pressure acting on all susceptible individuals
at time t; (ii) �j(ej−) = lim

t↑ej

�j(t) is the pressure on j just before

their exposure; (iii) Ninf is the set of individuals who ever become
infected; (iv) T is the end of the epidemic, i.e. the first time at which
no infectives or exposed individuals remain in the population (in
practice we  set T equal to the final rash time); and (v) fA, for A = (I, F,
R, Q), is the probability density function of a �(�A, �A) distribution.
The augmented likelihood function in (1) is of a fairly standard form
(see e.g. O’Neill and Becker, 2001) and contains the following com-
ponents. The first product term accounts for the exposure of each
of the observed cases and the exponential term gives the proba-
bility of individuals avoiding infection (either until they become
infected, or throughout the entire epidemic). The second product
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

term gives the likelihood of the times spent in each of the disease
progression states for each individual who  ever becomes infected.
The final terms give the probability of the protection statuses for
all individuals in the population.

dx.doi.org/10.1016/j.epidem.2016.11.005
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Table  5
Parameter estimates and equal-tailed 95% posterior credible intervals for the Abakaliki smallpox outbreak from the true likelihood approach, with results from Eichner and
Dietz  (2003) for comparison (ED). 100,000 MCMC  samples were used. Here R0 = (�R + b�F)(�a + �f + �h) and RF = b�F(�a + �f + �h).

Parameter Posterior mean Posterior median Credible interval ED estimate ED confidence interval

�a 0.041 0.035 (0, 0.093) 0.0281 (0.00447, 0.101)
�f 0.063 0.059 (0.009, 0.010) 0.0562 (0.0187, 0.127)
�h 0.358 0.349 (0.150, 0.565) 0.335 (0.192, 0.527)
v 0.808 0.817 (0.668, 0.947) 0.816 (0.644, 0.922)
b  0.522 0.374 (0, 1.500) 0.157 (0, 1.89)

i
i
o
e
B
p

	

w
i

	

F
p

tq 50.4 50.2 

R0 7.96 7.79 

RF 0.531 0.431 

One practical drawback with our data augmentation scheme as
t stands is that it includes protection statuses pi for all N = 31,200
ndividuals in the population. However, it is possible to integrate
ut these parameters for all individuals outside the compounds,
ssentially because the number of protected individuals follows a
inomial distribution. The calculations are fairly lengthy and so are
rovided in the supplementary material.

By Bayes’ Theorem, the posterior density of interest is

(�, �|r) ∝ 	(r, �|�)	(�),

here 	(�) denotes the prior density of �. We  assume a priori
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

ndependence of the components of � so that

(
) = 	(�)	(tq)	(b)	(v)	(�a)	(�f )	(�h)	(�)	(s).

ig. 1. The diagonal shows posterior densities for the 6 parameters of interest, based on 10
anels show scatter plots of the MCMC  samples and the upper panels show posterior cor
(42.4, 58.4) 51.5 (44.7, 59.6)
(4.33, 11.56) 6.87 (4.52, 10.1)
(0, 1.364) 0.164 (0, 1.31)

We  set �a, �f and �h to have �(103, 106) prior distributions which
corresponds to vague prior assumptions for these parameters, set v,
b and tq to have uniform prior distributions on (0, 1), (0, ∞) and (0,
∞)  respectively, and set � to have a discrete uniform distribution
over all infected individuals. Since � is assumed known, 	(�) is just
a point mass. Finally, 	(s) consists of a point mass at the known vac-
cination statuses with a uniform distribution over the five possible
configurations of twelve unknown vaccination statuses as shown
in Table 2.

We  use an MCMC  algorithm to produce samples of the param-
eters of interest from the target posterior distribution, updating
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

both the model parameters and the unknown event times as well
as protection statuses and vaccination combinations. The algorithm
is non-standard, and although it is similar in principle to that in
O’Neill and Roberts (1999), in practice it is far more complex and

0,000 MCMC  samples. Dotted lines give the Eichner and Dietz estimates. The lower
relation coefficients.

dx.doi.org/10.1016/j.epidem.2016.11.005
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Fig. 2. Estimation for who-infected-whom during the Abakaliki outbreak. The first
figure shows the most likely infector for each individual, i.e. the infector shown
has the highest posterior probability among all possible infectors. Labels C1, . . .,  C9
denote compounds 1, . . .,  9, respectively. Individuals 7 and 8 moved into compound
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nvolves considerable book-keeping. Full details of the algorithm
re provided in the supplementary material.

. Results and analysis

.1. Parameter estimates and reproduction numbers

Table 5 contains posterior summaries for the model parame-
ers along with the corresponding maximum likelihood estimates
rom Eichner and Dietz’ approximate likelihood method, and Fig. 1
ontains corresponding density plots, scatter plots and posterior
orrelation coefficients. Our estimates are fairly similar to those of
ichner and Dietz, and in particular the posterior modal values for
he six basic model parameters are quite close. Although they rep-
esent different quantities, our posterior credible intervals and the
onfidence intervals of Eichner and Dietz are also quite similar. Our
ean estimate of the basic reproduction number R0 is 7.96, which

s slightly higher than Eichner and Dietz’ estimate of 6.87. Similarly,
ur estimate of the reproduction number for the fever period RF is
.53 compared to Eichner and Dietz’s 0.164. In this case the differ-
nce can be explained by the highly skewed posterior density for b,
o that the mean and mode are clearly different. The scatter plots
nd correlation coefficients suggest that the basic model parame-
ers can be separately estimated from the data and that the model
s not over-parameterised.

.2. Who  infected whom

Since the MCMC  algorithm involves imputation of all event
imes, it is straightforward to obtain estimates of the path of infec-
ion, i.e. who infected whom. Specifically, if an individual j is subject
o infectious pressure �j(t) = ∑m

k=1ak(t) at the time of their expo-
ure, where ak(t) is the pressure from the kth of m infectives at time
, then the probability that individual k actually infected j is simply
k(t)/�j(t). Fig. 2 shows the most likely infector for each observed
ase and also a greyscale plot which illustrates the associated
ncertainty. We  see that most infections occurred within com-
ounds; note that individuals 7 and 8 moved from compound 1 to
ompound 2 during the outbreak and so in reality most of the infec-
ions caused by individual 8 were probably also within-compound.

ost individuals give rise to one secondary case, but individuals
 and 8 both cause multiple secondary cases. The greyscale plot
hows that there is a modest degree of uncertainty around the
dentity of each infector.

.3. Exposure times

Fig. 3 illustrates the posterior distribution of the initial expo-
ure time for each of the 32 cases. Generally speaking there is
elatively little uncertainty, and most of the exposure times follow
he ordering of the rash times, both features that are likely to be
onsequences of the distributions assumed for disease progres-
ion. The figure also shows the temporal aspects of the outbreak
n terms of generations of infection: the first two  generations (i.e.
hose infected by the index case, and those they infect) are clearly
iscernible, while the third and fourth generations are less distinct
rom each other, although (according to Fig. 2) the fourth generation
nly contains two individuals. We  see some groups of individuals
ith very similar exposure times and who are all infected by the

ame person, according to Fig. 2, individuals 4, 5, 6 and 10, 11, 12
eing two examples. Such clustering, more akin to a point-source
utbreak, illustrates the high transmission potential for smallpox
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

n close-contact settings. Finally, we comment that Eichner and
ietz (2003) also provide a plot showing likely exposure times,
long with other event times, but that this is based entirely on
ack-calculation using the assumed disease progression model. In
2  during the outbreak; the figure shows the initial configuration. The second figure
shows the posterior distribution of possible infectors for each infectee.

particular, their plot takes no account of the transmission model
itself.

3.4. Sensitivity analysis

We  now briefly explore the sensitivity of our results to the
underlying model assumptions, and in particular the assumed val-
ues for the periods of time spent in each disease state. Fig. 4 displays
posterior densities for the parameters of interest over a range
of values taken from Meltzer et al. (2001) and Gani and Leach
(2001). As might be expected, when �R, the mean length of the
rash period before removal, is reduced to make shorter average
infectious periods, the estimates of the infection rate parameters
increase to compensate. It is of interest to note that estimation of
R0 is somewhat sensitive to the choice of �I, �F and �R. This is likely
to be an artefact of the fact that that there are relatively few cases,
the population structure and the introduction of control measures,
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

since in a large uninterrupted outbreak we would expect R0 to be
more or less determined by the outbreak size. Fig. 5 shows the effect
of varying �Q and �Q, the parameters which govern the time taken
for a case to be quarantined. Specifically, we  consider the effect of

dx.doi.org/10.1016/j.epidem.2016.11.005
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Fig. 3. Heatmap showing the posterior distribution of tim

alving or doubling the mean time, while keeping the coefficient of
ariation fixed at unity. Here we see relatively little impact, which
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

s reassuring since we have very little information on which to base
ur modelling assumptions, in contrast to those which depend on
ore generic features of smallpox.
posure for each of the 32 cases in the Abakaliki outbreak.

3.5. Model assessment
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

In order to assess how well our model fits the data we use its
posterior predictive distribution. Specifically, we take samples of
the basic model parameters from the MCMC  output and simulate

dx.doi.org/10.1016/j.epidem.2016.11.005
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Fig. 4. Posterior densities of the model parameters and R0 using different mean
durations of the disease stages. The solid line represents the baseline case as used
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Fig. 5. Posterior density of the model parameters and R0 as the time taken to quar-
antine a detected case is varied.

Fig. 6. Final size of 5000 outbreaks simulated from posterior estimates (mean 23.5,
dashed line), and the subset of 848 outbreaks in which at least one of the four indi-
viduals who moved compound was infected prior to the move (mean 29.3, dotted
line). The solid line shows the observed final size (32).
n  Eichner and Dietz and our primary analysis.

he model forwards in time for each set of parameter values. We
hen compare various aspects of the observed data to the ensemble
f simulations to see if the former aligns in some sense with the
atter.

We start with the final size of the epidemic, i.e. the total number
f cases. Fig. 6 shows that although the observed final size (32) is
ot untypical of those produced by the model, it is some way from
he mean (23.5) and mode of the distribution. This underestimation
ppears to be largely due to the fact that in the actual outbreak, four
ndividuals, of whom two  were infected, moved from compound 1
o compound 2, leading to new cases in compound 2. To account
or this, Fig. 6 also shows a histogram of the final size distribution
mong those simulated epidemics in which at least one of the four
oving individuals was infected (note that in all our simulations,

he individuals move as in the real data). It can be seen that this
djustment gives a better fit to the observed final size.

We next consider epidemic duration, defined as the length of
ime between the first case detection (rash) time and the last. Fig. 7
hows a histogram of the durations of 5000 simulated outbreaks.
he mean duration is 76.8 days, which is very similar to the Abaka-
iki outbreak (76 days). Including only those outbreaks in which
nfected individuals moved compound only increases the mean by

 few days.
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

We  next compare the simulated cumulative number of cases
ith the Abakaliki data. This is complicated by the fact that dif-

erent simulated outbreaks usually have different total numbers of
cases, and so to facilitate the comparison we consider only simu-
lated outbreaks that have the same total number of cases (32) as
the data. Fig. 8 shows the results of 1000 simulations, from which it
appears that the observed data are reasonably well captured by the
model behaviour. To quantify this more precisely, we  calculated
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

a posterior predictive p-value as follows. Recall the chi-squared

dx.doi.org/10.1016/j.epidem.2016.11.005
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Fig. 7. Duration of 5000 outbreaks simulated from posterior estimates, with the
solid line showing the duration of the Abakaliki outbreak.
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ig. 8. 1000 simulated epidemics each with a total of 32 cases. The solid line is the
bserved cumulative number of cases.

iscrepancy measure (see e.g. Gelman et al., 1996), which here takes
he form

(r, �) =
∑

j

(rj − E(rj|�))2

Var(rj|�)
,

here � denotes the model parameters and r = (r1, . . .,  r32) denotes
 vector of case-detection (rash) times. Note that neither the mean
or variance term are available analytically, and so in practice
hey are obtained via simulation: given �, we simulate epidemics
epeatedly until we have a sample of size M1, all with 32 cases. The
ean and variance of the jth rash time is then estimated directly

rom this sample. Suppose now that we have M samples from the
osterior density of the model parameters, labelled �(1), . . .,  �(M).
e use the ith sample to obtain a simulated epidemic with 32 cases

nd rash times rrep
i

by repeatedly simulating epidemics until we
btain one with 32 cases. Denoting a typical simulation replicate
rep and letting robs denote the observed rash times, the posterior
redictive p-value is defined as

ppp-value = P(D(rrep, �) ≥ D(robs, �)|robs)

≈ 1
M

M∑
i=1

1{D(rrep
i

,�(i))≥D(robs,�(i))}.

Roughly speaking, if typical simulations are close to the
bserved data then we would expect the ppp-value to be around
.5, since then both D(rrep, �) and D(robs, �) should have similar
istributions. Conversely if one of the D values is consistently larger
r smaller than the other then the ppp-value will be close to zero
r one, indicating a poor model fit. We  carried out this procedure
ith M1 = M = 100 and obtained a value of 0.42, which is sugges-
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
http://dx.doi.org/10.1016/j.epidem.2016.11.005

ive of a good model fit. A more accurate value could in principle
e obtained using larger values of M and M1, but the procedure is
ighly time-consuming in practice due to the fact that we require
imulated epidemics of a given final size.
 PRESS
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As a final assessment of model fit, from 5000 simulations we
found that on average 91% of those infected were FTC members,
compared with 94% in the data, although we  also found that around
20% of those infected were from outside the compounds, compared
to no such individuals in the data.

4. Discussion

4.1. General remarks

We have presented an analysis of the Abakaliki smallpox data
set. The underlying stochastic transmission model is essentially
the same as that defined by Eichner and Dietz (2003). As dis-
cussed below, some assumptions of this model are questionable,
and there is scope for further modelling studies which incorpo-
rate additional features into the model. However, our main focus
has been to analyse the original model while avoiding the like-
lihood approximation methods of Eichner and Dietz (2003). The
data-augmented MCMC  methods that we have used have the ben-
efits of (i) flexibility, since they can be applied in many contexts;
(ii) providing estimation and consideration of unobserved quan-
tities, such as infection times; (iii) providing estimates not only
of model parameters, but functions of model parameters such as
reproduction numbers, along with associated uncertainty (in con-
trast, maximum likelihood estimation usually requires asymptotic
results to go beyond point estimates, but general theory does not
usually apply to transmission models); and (iv) providing estimates
of between–parameter relationships, which can indicate issues of
parameter identifiability and inform model choice.

Since our analysis is based on a transmission model, we are
also able to obtain simulations from the model which enable us to
assess model fit and also explore what-if scenarios. This is in con-
trast to methods which use a model conditionally constructed on
the observed data, such as tree-reconstruction methods (Wallinga
and Teunis, 2004). One drawback with our approach to simulation-
based model fit assessment is that it can be time-consuming to
obtain simulations which are in agreement with the observed data
(in our case, the final number of cases). It would be of benefit to
develop methods to improve the efficiency of this approach.

4.2. Transmission

The posterior estimates of the basic model parameters indicate
clearly that the dominant mode of transmission was within-
compound between individuals of the same confession. Our
estimates of who-infected-whom align with this; for instance, from
Fig. 2, the vast majority of transmission events occurred within a
compound in the most-likely infection pathway. The epidemiolog-
ical investigation reported in Thompson and Foege (1968) found
that spread within compounds, and within families in particular,
appeared to drive the epidemic and that membership of FTC itself
was not the primary transmission route. This is in agreement with
our findings. As in Eichner and Dietz (2003), we  found that infec-
tiousness is markedly less during the fever period than the rash
period, although our mean estimate of the reduction parameter b
is larger than their maximum likelihood value, which is most likely
due to the skewed shape of the marginal posterior density.

4.3. Reproduction numbers

Our posterior mean estimate of R0 is close to 8. This is slightly
larger than the Eichner and Dietz estimate (6.87) but underlines
yesian analysis of the Abakaliki smallpox data. Epidemics (2016),

the potentially devastating nature of smallpox. Such values are
radically different from those obtained using simpler models: for
instance, assuming an SIR model in a homogeneously-mixing pop-
ulation of 120 FTC individuals typically results in R0 estimates

dx.doi.org/10.1016/j.epidem.2016.11.005
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lightly larger than one, even allowing for the infection rate to
ary with time (see e.g. O’Neill and Roberts, 1999; Xu et al., 2016).
his highlights the importance of models which properly take pop-
lation structure into account. As previously stated, R0 can be

nterpreted as the average number of secondary cases produced by
 single infective individual in a large susceptible population. For
he Abakaliki data, such an interpretation is hard to apply directly
ince the compounds, wherein most transmission occurs, are small
nough to provide a rapid saturation effect via the depletion of
vailable susceptible individuals.

.4. Model adequacy

Our model appears to fit the data reasonably well, with the
ossible caveat that the model invariably predicts cases occurring
utside of the compounds. The fact that the entire population of
bakaliki is rather unrealistically modelled as a homogeneously
ixing population goes some way to explaining this; in particu-

ar, the potential for contacts between those inside and outside the
ompounds, and especially between FTC members and those out-
ide the compounds, could well have been rather less than that
ssumed in the model. According to Thompson and Foege (1968),
he FTC community was largely isolated from the community at
arge, although several of its adult members were involved in trad-
ng activities in and around Abakaliki. Consequently, a model in

hich some fraction of FTC members had contact with the out-
ide community might be more realistic, although there are no
ata to directly inform this. Our model also takes no account of any
rior immunity within the population at large, meaning that some
raction of the population might have been previously exposed to
mallpox and no longer susceptible.

Another aspect that is missing from our model is that of age cat-
gories; Thompson and Foege (1968) states that the highest attack
ates were among children. However, there do not appear to be suf-
cient data on compound composition to accurately incorporate
ge categories, and it seems likely that a model with age-specific
ransmission rates may  be over-parameterised. We  also do not
xplicitly model potential transmission between individuals in the
ame compound who are of a different confession, other than via
he general �a rate (recall that �h applies to individuals in the same
ompound who are also of the same confession). However, Table 2
hows that most compounds are almost entirely made up of either
TC or non-FTC individuals, and so including an additional term into
he model is unlikely to have a material impact on the results. The
ompound that is most heterogeneous is compound 5, compris-
ng seven FTC and fifteen non-FTC individuals, but here there were
nly four cases, all of whom were FTC. This in turn suggests that
here is little in the data to inform estimation of a cross-confession
ransmission parameter.

.5. Control measures and the end of the outbreak

It seems likely that the advent of control measures at time tq

layed a crucial role in bringing the outbreak to its conclusion
apidly. Under the model assumptions, control measures reduce
he rash period from an average of 16 days to just 2 days, which in
urn reduces the number of new infections. Interestingly, the pos-
erior mean of R0 after tq (i.e. R0 with �R = �Q = 2.0) is around 1.5,
ut this in itself is insufficient to permit further large-scale spread
ue to the depletion of susceptibles within the compounds, and the
act that the epidemic in the population outside the compounds
s sub-critical (i.e. the basic reproduction number is less than 1).
Please cite this article in press as: Stockdale, J.E., et al., Modelling and Ba
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xpanding the latter point, if we define pre- and post-control mea-
ure reproduction numbers for spread within compounds, FTC and
he wider population (e.g. Ra = (�R + b�F)�a, etc.), then posterior

ean estimates show that (i) within compounds, the epidemic
 PRESS
cs xxx (2016) xxx–xxx

is super-critical before and after tq; (ii) within the FTC commu-
nity, the epidemic switches from super- to sub-critical; (iii) in the
wider population, the epidemic is always sub-critical. Despite this,
increasing the value of tq in simulations was found to increase the
outbreak size; for instance, setting tq to be 50, 100 and 200 gave
mean outbreak sizes of around 24, 44 and 64, respectively. How-
ever, with no restrictions, we found the average outbreak size to
be around 86, which underlines the fact that the epidemic was
sub-critical in the wider population.

4.6. Accuracy of the Eichner and Dietz likelihood approximation

It is of interest to see that our results are fairly similar to those
obtained by Eichner and Dietz (2003). The most plausible explana-
tion for this is the fact that distributions used for the length of time
in each disease stage do not have particularly large variances, which
in turn means that the model is not all that different to one in which
all event times are assumed known. For such a model, the approxi-
mation method used by Eichner and Dietz gives the true likelihood,
essentially because the distributions used to approximate uncer-
tain event times collapse to point masses around the true values. A
further point of interest is that the Eichner and Dietz approxima-
tion produces a likelihood function which is numerically but not
analytically tractable, specifically because it involves integrals that
must be evaluated numerically. Although this is sufficient for opti-
mization purposes such as maximum likelihood, in practice such
likelihood functions can be computationally prohibitive for use
within MCMC  algorithms since they must be repeatedly evaluated.
It would therefore be of interest to develop analytically tractable
approximate likelihood functions.
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