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Abstract

In this paper, we investigate the stability of immiscible viscous fingering in Hele-Shaw cells with
spatially varying permeability, across a range of capillary numbers. We utilise a coupled boundary
element - radial basis function (BE — RBF) numerical method that adapts and moves with the
growing interface, providing an efficient, high accuracy scheme to track the interfacial displacement
of immiscible fluids. By comparing the interfacial evolution and growth rate in varying perme-
ability cells to that in uniform cells, we can assess the relative stability of the perturbations as a
consequence of the variable permeability.

Numerical experiments in Hele-Shaw cells with gradually varying permeability highlight 3 aper-
ture effects that control the interfacial stability: 1) Gradients in the capillary pressure 2) Local
changes in fluid mobility 3) Variation in the viscous pressure gradient. In low capillary number
regimes, we find that aperture effect 1 and 2 dominate, which (relatively) stabilise interfacial per-
turbations in converging geometries and destabilise perturbations in diverging geometries. In high
capillary number regimes, aperture effect 3 dominates meaning the relative stability transitions;
the interface is destabilised in converging cells and stabilised in diverging cells. We find an upper
bound critical capillary number Cag: at which the relative stability transitions in our gradually
varying cell as 1000 < Cag4¢ < 1250, which is independent of both o and €y. This result is much
lower than the value of Clag; = 9139 predicted by linear stability theory, due to significant non-
linear perturbation growth. This transition links the results found in previous works performed
at low and high capillary numbers, providing new insight into the viscous fingering instability in
variable permeability cells.

To conclude, we present simulations in Hele-Shaw cells with large geometric heterogeneities
and anisotropy, in order to demonstrate the significant fluid re-distribution that can occur due to
localised variations in cell permeability. Using periodic permeability distributions, we show the
significant re-distribution of fluid that can occur due to large capillary pressure gradients in the
capillary limit, and the channelling of flow that can occur in the viscous limit along anisotropic
features.

Keywords: , Spatially varying permeability, Capillary number, Viscous Fingering Instability, BE
- RBF

1. Introduction

Since the work of [1], there has been extensive research on the viscous fingering problem oc-
curring in Hele-Shaw cells, where the fluid flows between two thinly separated plates. When a
fluid of high viscosity is displaced by one of a lower viscosity, interfacial instabilities can evolve
forming complex interfacial patterns in which long fingers of the less viscous fluid penetrate the
more viscous fluid. The mobility M of a fluid within a Hele-Shaw cell is defined by the cell plate
separation b and the viscosity pu, M = b*/12u giving rise to an intrinsic permeability k = b?/12
analogous to that in porous media flows. The study of viscous fingering in Hele-Shaw cells is often
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used to provide insight into the more complex problem in porous media, whereby effects such as
anisotropic permeability and wetting conditions play a significant role in the interface evolution.

One such porous media flow, and the motivation behind the current work is the injection and
storage of supercritical CO3 in deep subsurface aquifers (carbon sequestration). When COs is
injected into a deep saline geological formation suitable for storage, it will displace the resident
brine, creating an immiscible two-phase flow regime. The injected C'O; will rise upwards due to
buoyancy forces, eventually hitting a low permeability cap rock where a permeability and capillary
barrier stops the C'Os from rising out of the aquifer. After this stage, the C'O, will spread laterally,
further displacing brine. In this work, we are interested in the lateral spreading of COy and brine
under the cap rock, for which we use the analogy between Hele-Shaw and porous media flows.

During the immiscible displacement of brine via the injection of supercritical CO5, the flow
regime depends greatly on the capillary number at the interface between the fluids [2]. The local
capillary number, Ca; is defined as uU, /v, where p is the dynamic viscosity of the displaced fluid,
U,, is the normal interfacial velocity and ~ is the surface tension. At capillary numbers above
roughly 1 x 10~% with a mobility ratio greater than one, viscous fingering can occur, where long
fingers extend into the porous domain from the injection site [3].

A typical subsurface aquifer will have an inhomogeneous permeability that varies in space as a
consequence of the way it has been formed and re-shaped over many millions of years, altering the
natural stress state of the aquifer [4]. Abrupt changes in aquifer permeability can exist due to fault
lines and changes in the aquifer material [4]. As well as pre-existing variations in permeability,
the C'Oy injection process itself can alter the permeability of the aquifer. During C'O5 injection,
formation dry-out and precipitation of minerals (such as salt from pre-existing brine) near the
injection well can reduce the porosity and permeability of the aquifer [5]. The formation of carbonic
acids in the brine due to reactions with the injected C'Os can dissolve the calcite in sandstone
aquifers, increasing the permeability [6]. Injection pressures over the formation pressure of the
aquifer can also induce fracturing and fault slip, which can increase the permeability in a region
surrounding the injection well [7]. Understanding the effect of these permeability variations on
the flow regime and interfacial evolution of injected C'O5 is critical in understanding the long term
storage capabilities of supercritical C'O5 and forms the motivation behind the current work.

A spatially varying permeability in a Hele-Shaw cell (k = b%/12) is a consequence of the plate
separation b, which also gives rise to a fluid mobility that varies spatially. Although the viscosity
in the fluid mobility could also vary spatially (due to temperature gradients etc.), in this work we
analyse the case of an inhomogeneous fluid mobility arising purely from the spatial variation in
plate separation and cell permeability.

Recently, several analytical and experimental works have shown that small changes in the
plate separation (and hence permeability) in a Hele-Shaw cell can have significant effects on the
interface evolution, allowing the control and suppression of fingering instabilities [8]. Using a
rectilinear Hele-Shaw cell set-up, [9] investigate secondary tip-splitting instabilities occurring under
high capillary number regimes when the cell has a small gradient in plate separation in the flow
direction. Experiments show that a small positive gradient flattens the finger tip, making it easier
for the finger to bifurcate. In the converging cell case, the finger sharpens, and remains stable
for a much longer period compared to the flat plate configuration. Physically, with an almost
constant curvature around the finger front in the rectilinear set-up, the finger tip is accelerated
most strongly by the converging geometry, creating a sharper tip. The analytical stability analysis
of [9] reveals a large dependence of the growth rate of instabilities with the magnitude of the plate
separation, but no dependence on the sign of the separation gradient, contrary to experimental
results.

[10] use a similar stability analysis to [9] but employ mode coupling theory to provide analysis
into the slightly non-linear regime of finger tip splitting in a rectilinear cell. They find dependence
on the sign of the plate separation gradient on the finger tip growth in contrast to [9]. Their findings
agree with the experimental findings published by [9] for the case of high capillary numbers in the
weakly non-linear stage of finger growth.

In contrast to [9] and [10], [11] present results in a rectilinear cell with a gradually varying
plate separation under much smaller capillary number regimes, looking at the onset and subsequent
control of the fingering instability. In very low capillary number flows, the gradually converging cell
can completely stabilise the flow due to the variation in transverse curvature around the interface.



Areas of the interface displaced further into the cell have a larger transverse curvature, resulting in a
larger capillary pressure and stabilising action from the surface tension. The large capillary pressure
helps to stabilise the front and can produce a completely flat interface if the capillary number is
below a critical value. [11] predict a critical capillary number through experimental testing and
analytically using an equation derived from a linear stability analysis (LSA) of the governing
Darcy flow regime. This analysis gives a critical capillary number under which perturbations of
any wavelength can be stabilised, depending on the viscosity contrast, contact angle and plate
gradient. The analytical predictions agree remarkably well with the experimental findings, with
small discrepancies likely due to dynamic wetting effects [11].

Utilising a radial Hele-Shaw cell set-up, [12] provides early insight into the case of a slightly
diverging cell, showing that viscous fingering is initially delayed. This was later confirmed analyt-
ically by [8], who show that the radial growth of a finger has an offset given by —arq/hg, where
« is the gap gradient, rg is the interface position and hg is the plate separation respectively. This
offset is negative in the diverging geometry causing the interface to be slowed and viscous fingering
delayed. [8] also analyse how the radial set-up is affected by converging geometry, showing a similar
capillary number limit for which viscous fingering can be completely suppressed.

Another strategy to suppress the fingering instability is the use of a Hele-Shaw cell with an
elastic upper membrane, replacing the classic rigid plate. The elastic membrane displaces vertically
upon the injection of the less viscous fluid, creating a profile that converges to a uniform plate
separation far from the injection site. The expansion of the elastic upper membrane occurs at a
rate much faster than the displacement of the outer fluid, meaning the viscous fingering stability
can be modelled in a similar vein to the radial case presented by [8], i.e. in a static manner. [13]
and [14] show that the converging geometry caused by the rapid cell expansion helps to stabilise the
interface between the fluids. This is also demonstrated experimentally by [15], where the interface
can be completely stabilised using an elastic membrane for short time periods under low capillary
number regimes. At higher capillary numbers, the interface proceeds to form short stubby fingers,
also identified by the numerical model in [14].

These theoretical and experimental findings confirm that the evolution of viscous fingering has a
large dependence on the plate separation variation (and hence cell permeability) in both rectilinear
and radial Hele-Shaw flows. Although a significant amount of previous work exists on the linear
growth and early stages of the tip splitting instability with a variable plate separation, analysis
of the long term non-linear evolution is lacking. Research has focused on control of the fingering
instability, where linear stability theory can be effectively used to analyse the growth rate and finger
morphology if the instabilities are suppressed early in time. However, to fully understand the non-
linear finger interactions and late stage interfacial evolution in radial Hele-Shaw flow subject to a
variable plate separation requires extensive numerical simulation [10].

The contrasting results at low and high capillary numbers in rectilinear cells mentioned previ-
ously (in converging cells, fingers are smoothed at low capillary numbers and sharpened at high
capillary numbers) indicate a transition in fingering mechanisms with capillary number. This tran-
sition has not been explored in detail, with previous authors generally focusing on one region due
to the application of their study. However, in the present work the transition region is explicitly
explored, in order to provide detail on the regimes that could occur under the flow regimes present
in C'Oy sequestration. Here, the capillary number is initially high, but decreases with time, in-
dicating that both high and low capillary number regimes may be experienced by the advancing
plume.

By varying the capillary number in a simple uniformly converging/diverging cell, we can sys-
tematically explore the transition in effects that have been alluded to in the results of previous
papers. The numerical method allows analysis at much later time-scales and in greater detail than
has previously been attempted. After these initial experiments, we present simulations in Hele-
Shaw cells with much larger heterogeneities. We demonstrate the significant fluid re-distribution
that can occur in more complex geometries when 1) the capillary number is low and gradients in the
capillary pressure (due to the plate separation) control the flow regime and 2) when the capillary
number is high and anisotropic permeability controls the flow regime. Unlike previous studies, we
do not provide a control strategy for the fingering instabilities, instead presenting detailed analysis
and discussion on the long term effects of varying cell permeability on the interfacial evolution.

Throughout this work we refer to both plate separation and cell permeability interchangeably,



since a change in one induces a corresponding change in the other, i.e. k = b2/12. All the
conclusions drawn concerning the effects of changing plate separation on the immiscible flow regime
are therefore also true when considering the corresponding change in permeability and vice versa.

In the following paper, we start by formulating the mathematical model in §2 followed by an
overview of the numerical methods. We provide numerical verification of the coupled scheme in
84. In §5 we present numerical experiments with detailed discussion and comparison with previous
work, concluding in final remarks and findings in §6.

2. Mathematical model

We consider a circular Hele-Shaw cell of infinite radius, in which high viscosity fluid is displaced
by the injection of a less viscous fluid. The low viscosity invading fluid (such as C'Os) occupies
region €y whilst a high viscosity fluid (such as brine) occupies the external region Qs shown in
Figure 1. The initial interface has a perturbation given in Figure 1, where ¢y and 6 are the
perturbation amplitude and the azimuthal angle around the interface. Throughout this article,
vectors are written in bold and scalars or components of vectors are written in normal face. The
fluid mobility in region I at a point & = (1, x2) is related to the Hele-Shaw plate separation b(x)
and the fluid viscosity p; by:

(1)

The b(x)?/12 term in the mobility ratio refers to the intrinsic permeability k& of the Hele-Shaw cell,
defined by the plate separation. For the flow between two thinly separated plates in a Hele-Shaw
cell, the depth averaged pressure P and two dimensional cross-sectional average Darcy velocity u
in each fluid region can be expressed through Darcy’s law:
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The flow field satisfies conservation of mass that can be written in terms of the Darcy velocity and
the plate separation as:

=0 (3)

Substituting the Darcy velocity (2) into the conservation of mass equation (3):

0 oP\ B
oz, (b(m)Ml(m)&m) =0 zeQy, 1=1,2 (4)

At a boundary point £ on the fluid interface S between ; and s, there are two matching
conditions (kinematic and dynamic) that must be met by the advancing interface. Firstly, the
kinematic condition requires the continuity of normal velocity u;(&)n;(€), i.e.

P (§) Oy (§)
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Secondly, the dynamic condition describes the pressure jump across the interface:

P&~ Pa€) = (5 + 34O )

where 7 is the surface tension and k(€) is the curvature. k(£) is considered a continuous function on
the interface surface with a w/4 scaling term included for consistency with the asymptotic analysis
of [16]. The contact angle of the meniscus has been assumed to be zero and we neglect dynamic
wetting effects. Dynamic wetting has been shown by various authors to have a considerable effect
on the interfacial displacement in a Hele-Shaw cell at high capillary numbers and requires study
in its own right, putting it beyond the scope of the current work [17], [18], [19].
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Figure 1: (a) Planar view of the 2D radial injection problem, with 8 finger symmetric perturbation. (b) Side view
of a radially symmetric converging Hele-Shaw cell.

The displacement of the outer fluid is initiated by the injection of the inner fluid with a point
source of strength @ at the origin, with velocity given by:

_ Qi
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here, r is the distance from the collocation point, x, to the source point located at the origin; i.e.
r = |x|. The far field pressure tends to that generated by the source at a distance & — oo:
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Equation (4), subject to matching conditions (5, 6), and asymptotic condition (8) represents a well
posed problem that can be solved with a variety of numerical methods in order to find the pressure
in the domain and subsequently the interface velocity. In this work, in order to characterise the
specific effects of the varying plate separation in comparison to the uniform cell case (which has
been presented previously by [20], the variables that depend on the plate separation are decomposed
into homogeneous and perturbed components. In this way, we solve the homogeneous components
in a similar fashion to [20] and the perturbed components using a robust radial basis function
meshless approach in order to characterise the effect of the variable plate separation from the
homogeneous case.

Firstly, the plate separation can be represented with homogeneous and perturbed components
as:

b(x) = b+ b(x) (9)

The perturbed component, l;(:c) represents the variation in b(x) with respect to the homogeneous
separation (the characteristic value defined at the origin) and the corresponding variation in per-
meability from the homogeneous base value in a porous medium. This gives the mobility of the
fluid in zone [ as:

i) = I @) + () (10)
=y M) = 2D (11)



In equation (4) the plate separation b(x) can now be incorporated into a new modified mobility
term:

T
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We now introduce non-dimensional variables utilising the characteristic length, time, velocity,
pressure and mobility of the problem, given by:

2
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In equalities (14) - (15), apostrophes identify non-dimensional variables with ¢ as time and M as
the the homogeneous mobility of the displaced fluid (corresponding to the homogeneous thickness
b). From this point onwards, the apostrophe of all non-dimensional variables will be dropped, and
all variables will be assumed to be in their non-dimensional form unless otherwise stated.

Consistent with the above representation of the mobility, in order to analyse the flow effects
arising from the perturbed plate separation B(:c) the total pressure can be represented as a sum of
homogeneous and perturbed components:

Fi(z) = pi(x) + pi() (16)

Expanding (4), noting that 0m;/0x; = 0, the following equation is obtained:

2
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The homogeneous pressure is constrained to satisfy Laplace’s equation, in order to characterise the
case of uniform plate separation and the effects of variable plate separation. i.e.:
0?py ()
Ox?

=0; (18)

To derive the correct matching and boundary conditions for the pressure field at the interface and
the far field, the homogeneous and perturbation pressures can be substituted into (5) and (6). The
homogeneous pressure is subject to the following matching and asymptotic conditions:

PO -76) = i (57 + 1HO) for €3 (19)
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Here, Ca, is the global capillary number, appearing due to the non-dimensional scaling of the
problem. The global capillary number in (19) describes the ratio of viscous driving forces to
surface tension forces in terms of the homogeneous mobility Mo and plate separation b at the
origin:

Cay =
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where r( is the initial unperturbed interface radius. By considering the global conditions given
by (5), (6) and (8), equation (17) is then subject to the following matching conditions at the



interface, S, and asymptotic conditions near the origin and in the far field:
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where 3 = M,/Msy = [iz/Jiy is the mobility ratio. The flux matching condition in equation (24)
has a homogeneous pressure term on the RHS of the equation. We note that here, because the plate
separation b(€) is continuous at the interface, BMs(€) = M (£), meaning there is no contribution
from the homogeneous pressure. We include the term for clarity so that the total flux matching
condition in equation (5) is clearly met by the addition of equations (20) and (24).

Asymptotic conditions (21), (25) and (26) ensure that the total pressure and total velocity
tend toward that arising solely from the injection source near the origin and in the far field. Since
b(x — 0) = b, the velocity field is defined solely by the homogeneous solution arising from p(x)
near the origin.

The perturbed pressure flux matching condition (24) can be scaled by the plate variation
b(&) (i.e. my(&) will appear instead of M;(£€)) in order to maintain consistency with the effective
diffusion in equation (17). In this way, the homogeneous pressure evaluates the flow in a constant
plate separation, and the perturbed pressure the effect due to changes in geometry of the flow
path.

The obtained values of p; and p; can be used to reconstruct the normal velocity at an interface
point, &, in order to track the fluid:

Un(g) = ﬂn(é) + ﬂ71(5) (27)
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The evaluation of the perturbed and homogeneous pressure requires discretisation of the domain
and interface as well as the use of a coupled BE — RBF-FC numerical method, discussed in the

next section.

3. Numerical methods

Here, we describe the solution procedure to evaluate the perturbed and homogeneous pres-
sure components and the subsequent reconstruction of the interface velocity with equation (28).
The numerical methods have largely been presented in previous works by the authors, so where
appropriate we refer the reader to these.

The homogeneous pressure is solved using a boundary element method presented by [20] and
[21], in which the interface is discretised with boundary elements for the solution of an integral
equation; see the interface in Figure 2. The boundary element method described by [20] explicitly
tracks the interface, providing greater accuracy compared to front capturing methods, at the
expense of increased meshing computational complexity. Using a convergent (Neumann) series
technique, the computational cost scales quadratically with the number of boundary elements,
significantly reducing running times compared with traditional LU solvers of fully populated BEM
matrices. As the surface interface grows, the number of boundary elements are adaptively increased
to maintain a target element size.

In this work, we use an indirect formulation of the boundary element method akin to [21],
which provides an identical homogeneous pressure and velocity as the direct method in [20], whilst
allowing more efficient evaluation of domain pressures and velocities which are required for the
perturbed pressure equation (17). For full details on the indirect boundary element method, the
reader is referred to [21].
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Figure 2: Discretised solution domain, with symbols referring to: circles - interface nodes (connecting boundary
elements), diamonds - boundary nodes, crosses - internal zone nodes, plus signs - external zone nodes.

The perturbed pressure equation (17) is solved via a strong form radial basis - function finite
collocation (RBF-FC) method which is also presented in [21]. Here, we require both internal and
boundary nodes as seen in Figure 2 [22], which are adaptively added and removed from the domain
based on the interface location using a quadtree data structure. To decrease the solution cost for
this method we use an 8 finger symmetric interface throughout the numerical simulations; this
enables the RBF-FC method to make use of symmetry in the domain and solve only 1/8" of the
entire domain.

We note that any form of symmetric could be used here to reduce computation time, but the
conclusions drawn will be exactly the same. A change in wavelength and wavenumber of initial
perturbation will alter the magnitude and time-scale at which fingering events occur, but the
mechanisms for fingering (and stability) will remain unchanged. We choose an 8 finger symmetry,
since it is efficient to split a quadtree dataset into eighths, as opposed to a 6 finger symmetry
which would require displacement of nodes in the quadtree dataset so that they fall onto the line
of symmetry.

In the work of [21], the RBF-FC method is formulated with adaptive quadtree datasets on single
zone transport problems, which we extend in this work to multi-zone problems for the solution of
the steady-state perturbed pressure in equation (17). By displacing nodes to coincide directly with
the interface, two stencils can be formed at each interface node, so that multi-zone flux and solution
matching conditions can be enforced. This global collocation of matching conditions is performed
in the same manner as the multi-zone formulation in [23], where they use a finite difference (FD)
approach to enforce the underlying PDE.

Here, we use a finite collocation approach to enforce the governing PDE, in which the PDE
collocation only appears in the local systems and globally the solution variable is reconstructed.
The RBF-FC method has been shown to have several benefits over the RBF-FD method, most
importantly the implicit upwinding effect for strongly convective fields using centrally defined
stencils [22]. Incorporating an adaptive dataset that evolves with the interface also significantly
reduce computational time whilst maintaining solution accuracy [21].

The quadtree dataset is initialised using a distance based scheme to cluster cells around the
boundary element interface, in which a cell will split if the following equality is met: D.B; > R..
Here, D, refers to the diagonal length of the cell, R, is the distance from the cell centre to the
closest point on the interface and By is the band thickness. The band thickness refers to the ‘bands’
of constant nodal discretisation that are formed around the interface. Increasing B; creates more
nodes at each particular level, creating wider bands. After initialisation, the cells closest to the
interface are deformed such that their vertices lie directly on the interface and the centres lie at
the geometric centre of the cell. Vertices move in a purely orthogonal direction to maintain spatial
consistency.

After the quadtree has been generated, the nodal points for the RBF-FC local systems can
be created based on the vertices and cell centres of the leaf cells. A simple tree search can be
performed, with nodal locations picked out as the tree is recursively traversed, and grouped into
local stencil configurations. At interior and boundary stencils, we use the 1-1 stencil configuration
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Figure 3: RBF-FC solution domain showing different operator types. The curved solid black line indicates the
fluid-fluid interface.

presented in [21]. For multi-zone stencils, we form two stencils at each interface node, which follow
the same 1-1 configuration, but extend purely into the zone of influence. This means the number
of nodal points can vary, depending on the topology of the interface, but generally varies between
11 and 17. Extension of the stencils as opposed to truncation is preffered to maintain solution
accuracy, see [22].

After formation of the local stencils and global collocation of the solution variable (the perturbed
pressure in this case), the sparse global matrix system can be solved with any direct LU solver.
The perturbed pressure solution can then be fed back into the data vectors in the local systems,
which can then be used to reconstruct the perturbed pressure gradients to evaluate the velocity at
the interface.

The full numerical algorithm for solution of the homogeneous and perturbed pressures and
subsequent evaluation of the normal interface velocity is summarised below:

1. Initialise the interface with an 8 finger perturbation and discretise into B-Spline boundary
elements.

2. Initialise the quadtree dataset, deforming it around the initial interface position.

3. Solve the double layer potential density around the interface and find the homogeneous
pressure along the interface..

4. Reconstruct the normal homogeneous velocity around the interface by taking the spatial
derivatives of the double layer potential and reconstruct the source term for equation (17) at
every internal node.

5. Solve equation (17) using the RBF-FC method and reconstruct the normal perturbation
velocity around the interface.

6. Find the total normal velocity at the interface using equation (27), and advance the boundary
element nodes using a forward Euler time step scheme: Ax; = n;U,At.

7. Re-form the boundary elements around the new interface position. Adapt the quadtree
dataset to the new interface position. Increase time by At.

8. Repeat steps 3 to 7 until the simulation end time has been reached.

4. Mass conservation verification

In this section, we demonstrate the full numerical scheme on the case of the displacement of an
initially circular interface, with zero perturbation. Perturbations will only grow after a long period



of time due to numerical error, meaning that the interface should propagate as a growing circle with
an increasing volume equal to that injected at the origin. By comparing the numerical volume of
the growing plume and the analytical volume injected at the origin, we can verify that the coupled
scheme is mass conservative (since the density is constant) and that the governing equation of the
flow (4) is being satisfied. The total volume of injected fluid is given in non-dimensional form as:

Vo, = bt (29)

To ensure that mass has been conserved in the numerical method, the total volume of injected
fluid can be calculated through numerical integration of the evolving interface (using the average
interface position 7) and compared to the analytical value given by equation (29). Although there
are no fingering effects present due to the constant curvature, the problem still provides validation
of the coupling of the RBF method and the BEM. The BEM has been verified for homogenous
mobility cases in previous work by [20], meaning the mass conservation tests presented here will
verify that the RBF-FC method is contributing a correct velocity to displace the interface. The
RBF method still solves the full multi-zone steady-state pressure problem, but with the interface
given by a simple circle instead of the convoluted interface usually found in viscous fingering
problems.
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Figure 4: Gradually diverging Hele-Shaw cell diagram (gradient exaggerated for display purposes). The dashed line
at the far left of the domain shows the line of symmetry at the origin.

For a variable permeability test case we study the gradually varying cell geometry in Figure
4. The choice of variation is chosen so as to mimic the uniformly converging/diverging geometries
used by previous authors [8]. Although the cell is not uniformly converging/diverging along its
whole length, the constant slope section is made long enough so that the interface displaces within
it for the entire duration of the simulation, effectively mimicking uniform variation. Using the
uniformly varying cell, we can compare the results across a range of capillary numbers with that
given by previous authors.

The cell is axisymmetric around the origin, with values of b(z) and db(x)/dz; at the different
radial locations r = || in Figure 4 as:
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In equation (31), subscript [ refers to fillet 1 or 2 in Figure 4. f; is the centrepoint of fillet
| with coordinates (f;(1), f1(2)), with radius of curvature k,. The +/— sign in b;() refers to a
converging/diverging fillet (27¢/1%¢ fillet in Figure 4). R, is the length of the fillet, i.e., R, =
Rs; — Ry. The fillet is defined by inputs of Rg, R, R,, and simple trigonometric identifies. In the
simulations in this section b = 0.01, the gradient of the slope |a] = 0.001, Ry = 0.6, R, = 5 and
R, = 0.1. These parameters ensure that plate separation varies gradually through the cell and
that the circular interface, with an unperturbed radius of o = 5 cm, exists entirely in the constant
gradient section from ¢ = 0 to the end of the simulation.

Given the symmetry of the problem, we use a triangular solution domain for the RBF-FC
method, similar to that shown in Figure 3, with an outer boundary at ;1 = 32. For the validation
cases we vary the maximum quadtree cell level from 8 - 10 whilst maintaining a minimum quadtree
cell level of 3. The band thickness values are varied for each cell level, with the maximum cell
level having B; = 3. This value is increased in increments of 0.5 up to the minimum cell level. We
maintain a constant non-dimensional shape parameter value of ¢* = 70 for all simulations. The
time step size is varied to showcase the temporal convergence properties. In the boundary element
method the full interface is solved, around which a target element size is maintained throughout
the simulations at Az ~ 0.06, ensuring a mesh-independent boundary element solution.

Property Value (SI Units)
HBrine 1x 1073 Pas
HCOs(sc) 1x 10~* Pas

K MineralOil 2.5 x 1072 Pa.s

1 Air 2 x 107° Pa.s

B CO4(sc)/ brine 10

B Air/Mineral Oil 1250
7(COy-Brine) & ~v(Air-Mineral Oil) | 0.03 kg/s?

Table 1: Fluid properties used in the numerical experiments

The fluid properties used for the numerical experiments in both this section and the results
section are summarised in table 1. In this validation study, we use COs and brine as the working
fluids, with a global capillary number C'a, = 1000.

The results showing the relative error between the numerical and analytical volumes of fluid in
the Hele-Shaw cells for various « at time ¢t = 10 are displayed in table 2. It can be seen that the
relative errors for all time step and mesh discretisations shown are relatively low, with the largest
error being 1.42 x 10~2 for the o = —0.0025 case. In this case, the sharply converging cell causes
significant acceleration of the interface which creates a large amount of error in the time stepping
scheme. The datasets with their maximum quadtree level (MQL) equal to 8 show the largest error
generally, due to the very coarse discretisation around the interface. With MQL = 8, the RBF
dataset is roughly 2x coarser then the boundary element mesh, meaning that several elements can
exist between RBF nodes. This is undesirable as the interface could curve significantly between
data points, meaning the interface matching conditions are not adequately represented in the RBF
dataset. As the nodal points are ‘snapped’ to the nearest position on the boundary element mesh,
the resulting RBF dataset is not as uniform if the nodal discretisation is very much larger than
the boundary element discretisation.
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When the MQL is increased from 8 through to 10, the relative error drops significantly, espe-
cially at the smaller time step sizes. At the lowest time step size of At = 0.005, the error is 9 to 16
times lower than at MQL = 8, representing close to 2"¢ order spatial convergence. The increased
solution quality is due to the MQL = 10 dataset being twice as refined as the boundary element
mesh around the interface. This means that in between the RBF nodes, the interface is much
closer to a linear approximation, making the strong form RBF collocation of matching conditions
more consistent, leaving less space for the flux and solution matching conditions to vary between
points. At MQL = 10, the time stepping scheme exhibits 1st order convergence as expected due
to the forward Euler implementation.

In some instances, the error can be seen to plateau due to the spatial or temporal accuracy of
the scheme being reached. This is apparent in some diverging cases with the same time step size,
when increasing MQL from 9 to 10 has not caused a reduction in error, since it is limited by the
temporal accuracy. A significant reduction in time step size would be needed to see an increase in
accuracy for these cases. Similarly, in the converging case with @ = —0.025, the spatial accuracy
has been reached when using relatively large time step sizes, meaning no further reduction increases
the accuracy. To increase the accuracy in these cases, the spatial resolution has to be increased
significantly.

MQL = 8 MQL =9 MQL = 10

Ax = 0.125 Ax = 0.0625 | Ax = 0.03125
Relative error | Relative error | Relative error
0.040 3.97x 1073 214 x 1073 1.29 x 1073
Converging 0.020 3.35x 1073 1.51x 1073 6.60 x 1071
a = -0.001 0.010 3.05 x 1073 1.18 x 1073 3.45 x 10~%
0.005 2.90 x 1073 1.04 x 1073 1.87 x 1077
0.040 1.22 x 1072 5.29 x 1073 519 x 1073
Converging 0.020 1.28 x 102 5.87 x 1073 4.25x 1073
a = -0.025 0.010 1.35 x 1072 4.48 x 1073 4.50 x 1073
0.005 1.42 x 1072 5.99 x 1073 5.54 x 1073
0.040 3.02x 1073 9.46 x 10~ 71 1.56 x 1073
Diverging 0.020 2.22x 1073 1.77 x 1072 757 x 1077
a = 0.001 0.010 1.83x 1073 2.02x 1077 3.67x 1077
0.005 1.64 x 1073 4.02x 1074 1.78 x 1072
0.040 9.39 x 1073 6.10 x 10~% 1.59 x 1073
Diverging 0.020 8.39x 1073 7.38x 1077 7.53 x 107%
a = 0.025 0.010 8.02x 1073 1.18 x 1073 3.60 x 1077
0.005 830 x 1073 1.35 x 1073 1.46 x 1072
0.040 143 x 1073 1.43x 1073 1.43x 1073

Hele-Shaw | time step
cell case size, At

Uniform 0.020 716 x 1077 716 x 1077 716 x 1077
a = 0.000 0.010 358 x 1077 3.58 x 1077 3.58 x 1077
0.005 1.79 x 1077 1.79 x 10772 1.79 x 1077

Table 2: Relative errors between the numerical and analytical volumes of fluid in the cell at t = 10 with different
mesh and time step discretisations. MQL = maximum quadtree cell level.

The time evolution of the relative errors between the numerical and analytical volume of fluid for
the a = —0.001 cases can be seen in Figure 5. For a fixed low time step of At = 0.005 in Figure 5a,
the error for the different nodal discretisations becomes much more consistent as Ax is lowered.
The coarse discretisation of Az = 0.125 (MQL = 8), shows fairly erratic behaviour due to the
interface representation. However the error evolution becomes much smoother as Az — 0.03125.
As time progresses the error drops since the interfacial velocity becomes lower and the fixed Euler
time stepping scheme becomes more accurate.

The first order temporal convergence can be seen in Figure 5b, where the time step size is varied
for the finest spatial discretisation (Az = 0.03125). Due to the smoothness of the error evolution
and the generally low relative error, we choose the finest dataset (Az = 0.03125, MQL = 10) for
simulations in the following results sections. For practicality, we use At = 0.02, to provide a good
balance between solution accuracy and simulation running times. For these parameters, the largest
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Figure 5: Time evolution plots of the relative error between analytical and numerical volume of fluid in the converging
Hele-Shaw cell & = —0.001. (a) Different nodal discretisations, At = 0.005. (b) Different time step discretisations,
Az = 0.03125.

error in the above verification examples is only 4.25 x 10~3, showing the proposed accuracy of the
parameters chosen.

5. Numerical results and discussion

In this section we present results from several numerical experiments exploring the variable
plate separation problem. In order to compare with previous work, initially we present studies
based on air injection into mineral oil, corresponding to the cases of negligible viscosity of the
injected fluid considered by [9], [11] and [15]. In the present cases, the low viscosity of the injected
fluid is included in the model, resulting in a (high) finite mobility ratio between the air and mineral
oil. As well as the high mobility ratio cases, a lower mobility ratio regime is considered in order to
analyse the injection of supercritical C'Os into brine. The fluid properties used for the numerical
experiments are summarised in the previous section in table 1.

Throughout the results, we present expressions and contour plots showing the variation in plate
separation b(x) as opposed to the variation in cell permeability k(z) = (b*(x) + bb(x))/12 (the
homogeneous permeability is k& = b%/12). This is purely because the plate separation itself is
varied in order to change the permeability, and it is easier to view the gradually varying plate
separation variation. All plate separation values can be scaled using the above expression to form
the appropriate variation in permeability if needed.

Throughout the numerical simulations, we use an 8 finger symmetric pattern as the initial
interface condition, given in Figure la as:

r =14 €y cos(86) (33)

where €y and 6 are the perturbation amplitude and the azimuthal angle around the interface
respectively.

5.1. Gradually converging/diverging Hele-Shaw cells

This section explores the immiscible displacement in a gradually varying cell geometry with a
small constant gradient « in the radial direction, as shown in Figure 4 in the previous section. In
the simulations in this section b = 0.01, Ry = 0.6, R, = 5 and R,, = 0.1. The initial perturbation
amplitude ¢y = 0.05. These parameters ensure that plate separation varies gradually through the
cell and that the interface, with an unperturbed radius of o = 5 cm, exists entirely in the constant
gradient section from ¢ = 0 to the end of the simulation.
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Given the symmetry of the problem, we use a triangular solution domain for the RBF-FC
method, similar to that shown in Figure 3, with an outer boundary at x; = 32. The minimum
quadtree cell level is 3 with a maximum level of 10, B; varies uniformly from 3 at cell level 10 to
6.5 at cell level 3 and ¢* = 70. In the boundary element method the full interface is solved, around
which a target element size is maintained throughout the simulations at Az ~ 0.06 and time step
size of At = 0.02. This ensures that the RBF-FC nodal refinement is around twice that of the
BEM around the interface, and that both pressure solutions are mesh and time step independent.

We break the analysis into subsections to aid discussion, starting with the general system
behavior below.

5.1.1. General system behaviour

In Figure 6 we present results for different capillary number and mobility ratio flows in uniform,
converging and diverging cell geometries. 5 = 1250 corresponds to air injection into mineral oil,
and 8 = 10 corresponds to supercritical C'Oq injection into brine. In the converging cases in
Figures 6a and 6d, the interfaces have been stabilised in the low capillary number regimes, where
the bases of the fingers have been pushed outwards, resulting in more circular interfaces. The lower
mobility ratio in Figure 6d has stabilised the interface even further compared to Figure 6a. This
is due to the higher finger base velocities present in low mobility ratio cases, as the inner fluid has
a non-negligible viscosity. This, coupled with the converging cell geometry, produces a very stable
interface that shows almost no signs of the usual viscous fingering regime. The stabilising effect of
the converging geometry is also present in Figures 6b and 6e; however, with an increasing capillary
number the stabilisation becomes less prominent.

The stabilisation in the low capillary number regime in the converging cases is due to the
dominating effect of the transverse curvature in the capillary pressure jump condition. Here, as
Cayg is taken lower, the 2/b(x) transverse curvature term has more effect. Parts of the interface
which are further back in the plane of the cell are at a larger plate separation than those further
forward, and hence the 2/b(x) term is smaller. The increase in transverse curvature is effectively
creating a positive gradient in capillary pressure through the cell. This capillary pressure gradient
overcomes the viscous pressure gradient to control the flow and smooth the interface, working
against the viscous fingering mechanism.

At the higher capillary numbers, the effects of the capillary pressure gradient are smaller, and
the interfaces in the converging cases can be seen to displace beyond the uniform cases in Figures
6¢c and 6f. The magnitude of the normal pressure gradient |0P(x)/0n| increases in the converging
section to ensure mass conservation, directly competing with the stabilisation from the capillary
pressure and the reduction in fluid mobility through the converging section. The converging cell
therefore induces the following effects that control the stability of the displacing interface:

1. Stabilisation through an increased transverse curvature (positive capillary pressure gradient).
2. Deceleration due to a reduced fluid mobility.
3. Acceleration due to an increased (viscous) pressure gradient.

These effects can be thought of as aperture effects, as they result directly from the spatial
change in cell aperture (plate separation). In Figure 6 we can see that the combined effects of the
converging geometry appears to transition from stabilising at a low capillary number (aperture
effect 1 and 2 dominate), to destabilising at a high capillary number (aperture effect 3 dominates).
These effects are relative in relation to the uniform cell cases, i.e., at lower capillary numbers
the interface is stabilised in comparison to the uniform cell, but it may still be ‘unstable’ in an
absolute sense and exhibit viscous fingering instabilities. We refer to this as ‘relative stability’, i.e.
the converging cell interface in figure 6a is relatively more stable than the uniform cell interface.

In contrast to the converging cases, the aperture effects listed above are exactly opposite for
the diverging cases; the diverging cells in Figures 6a and 6d create a more convoluted interface in
the low capillary number regime, but smooth the interface in the high capillary numbers regime
in Figures 6¢ and 6f. The transition in relative stability in both converging and diverging cases
corresponds to a change in the flow regime from capillary dominated to viscous dominated.

The aperture effects of the converging/diverging Hele-Shaw cells are further highlighted by
the different components of the solution in Figure 7. The difference between the solid lines and
the dashed lines shows the effect of the stabilising 2/b(x) term (i.e capillary pressure). The solid
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(c) B = 1250, Ca, = 2500 (f) B =10, Ca, = 2500

Figure 6: Interface plots at ¢ = 24 for different cell geometries. |a| = 0.001. — Uniform cell, — — — Converging cell,
— — — — Diverging Cell

lines have the transverse curvature term included in the capillary pressure jump, and as such the
interface is smoothed from the dashed lines in the converging case 7b, and destabilised in the
diverging case 7a.

The effect of the change in (viscous) pressure gradient can also be seen in Figure 7 by considering
the solution with and without the perturbed pressure component. Without the perturbed pressure
component, the change in pressure gradient due to the converging/diverging geometry (aperture
effect 3) is not included. This means the interface velocity consists of the uniform cell pressure
gradient with a variable mobility and transverse curvature (solely aperture effects 1 and 2). Figure
7b shows that the black interfaces have all been displaced beyond the grey interfaces which do not
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Legend

Figure 7: (a) and (b) - Solution component plots at ¢ = 24. Ticks in the legend indicate which interfacial displace-
ments in (a) and (b) include the curvature term 2/b(x) and the perturbed pressure p(a). The dotted lines represent
the uniform cell case. 8 = 10, Cay = 2500.

include the perturbed pressure. The converging geometry creates a decreasing perturbed pressure,
whose gradient accelerates the interface. Without the perturbed pressure, the grey interfaces are
not displaced even as far as the uniform cases, showing the dramatic effect that the increased
pressure gradient has on the interfacial evolution at this high capillary number. The inclusion
of the perturbed pressure has only significantly affected the finger fronts, with the base position
remaining relatively unchanged, being affected more significantly by the transverse curvature. The
accelerating flow from the perturbed pressure in the converging case has made the finger bifurcate
earlier. In the diverging case, the perturbed pressure gradient slows the interface, helping to
stabilise it and hinder bifurcation; clearly visible in Figure 7a.

The increased flattening and bifurcation present in the converging cases here is in contrast to
the findings of [9] in a rectilinear converging cell, whereby the finger shape was found to sharpen.
This contrast is due to the rectilinear geometry, where one long prominent finger is produced with
a uniform width throughout its length, roughly equal to half the cell width. In [9], the plate
separation varies solely along the length of the cell. When the long finger is formed in a converging
cell, the front is sharpened, since the tip is accelerated more strongly in comparison to the rest of
the finger. However, in the case of a constant radial variation in the plate separation, the sides
of the fingers are accelerated in a similar manner to the finger tips, and the front becomes flatter
promoting bifurcation. The contrast in results is due to the variation in the plate separation with
respect to the flow path of the fingers. In radial displacement, the finger tips and sides displace
into pathways of similar convergence, whereas in rectilinear flow, the tip evolves in a much more
converging pathway than the sides, sharpening the finger. These differences are discussed in more
detail in §5.3.

5.1.2. The transition in relative stability

We analyse the transition in relative stability for the converging/diverging cases between low
and high capillary numbers by considering the growth rate of the finger front perturbation, which
can highlight the relative stability between cases. The dimensionless non-linear growth rate of a
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perturbation with radial position r is given by:

”r — (Un(r,t)—Uno(r,t)> (5+1) (34)

eoUno(rt) B

where, U, (r,t) is the normal velocity at the perturbed interface and U,,o(r, t) is the normal velocity
at the unperturbed interface (in a uniform cell). The perturbation amplitude ¢y and the mobility
ratio B are used as scalings to be consistent with the linear stability equation of [8] presented
later. The velocity of the unperturbed interface with time is given purely by the source injection

velocity at the corresponding radius, r = 1/“‘%. The non-linear growth rate (34) subtracts the

linear velocity of the base growth giving the non-linear growth of the perturbation with time. The
non-linear growth rate for the finger fronts (using the rightmost finger in each plot in Figure 6
along y = 0) has been plotted with time for the Ca, = 500, 1000 and 2500 cases in Figure 8.
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Figure 8: Plots showing the non-linear growth rates with time for uniform, converging and diverging cells. g = 10

Figure 8 shows that the converging cell has a smaller growth rate than the uniform cell at
Cag, = 500, supporting the stabilising mechanism of the transverse curvature highlighted by Figure
6d. Increasing the capillary number to Ca, = 1000, the growth rate increases beyond that of the
uniform cell, as the front becomes more unstable. Interestingly, the diverging case at Ca, =
1000 also exhibits a very slightly higher growth rate than the uniform, with remnants from the
destabilising mechanism of the transverse curvature still apparent. In this transition regime, the
growth rates show similar profiles due to the combined magnitude of the aperture effects. Prediction
of the relative stabilisation compared to the uniform case in the transition regime therefore becomes
very difficult in the full non-linear state.

At the highest capillary number of Ca, = 2500 in Figure 8, the cases all show post stability
transition properties, whereby the converging case has a higher growth rate than the uniform, and
the diverging case has a smaller growth rate than the uniform. This relationship holds until ¢ ~ 14
in the Figure, at which point bifurcation starts to occur. Bifurcation here refers to points along the
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interface where the curvature sign changes between time steps, and the normal velocity is reduced
significantly in comparison to an unperturbed interface. After bifurcation at t ~ 14 in Figure 8§,
the growth rate of the converging case drops below that of the uniform case, with the reverse true
of the diverging case.

The low capillary number results in converging cases in the figures above show similar stabil-
ising attributes to those presented by [11], in which air is injected into wetting mineral oil, with
similar fluid properties to the high mobility ratio case presented here. They inject with a constant
volumetric injection into a gradually converging rectilinear cell. As is the case with our converging
cell, at low capillary numbers, [11] find that the interface can be almost completely stabilised to
form a flat front.

Further work by [8] formulates the analytical growth rate for a circular fluid-fluid interface
subject to an initial perturbation ¢y with a constant radial injection flux and a constant radial
gradient in the cell separation. For this linear stability analysis to be valid at early times, the
length scale of interface perturbation rg/n should be much smaller than the variation of the cell
separation |by/«|. The non-dimensional growth rate o, is given by [8] as:

B B+1 arg B—1  2a+ (w/4)b3/rd (7/4)b3 /rd
”“__( 5 )<1+bo>+< e 0)”_ Ca " @Y

N 12412QU (r0)
To

In equations (35) and (36), U, (ro) refers to the non-dimensional normal interface velocity at a
radial location rg with corresponding plate separation by. m is the non-dimensional wavenumber
of the perturbation (8 in the current work). The parameter Q)/rq in (36) appears due to the non-
dimensional velocity U, (r¢). Note we have also used the mobility ratio 8 instead of the viscosity
ratio originally used by [8] and we have included a correction of 7/4 to be consistent with the
Young-Laplace matching condition used in this work.

To compare the early time frame linear stability of the numerical system with that given by
the equation (35), we form a linear numerical growth rate o;:

() (2

The linear numerical growth rate in (37) represents the growth rate of the interface at the
perturbed initial state minus the growth rate at the unperturbed initial state. This growth rate
differs from (34) in that it subtracts the non-linear velocity of the unperturbed interface as opposed
to the linear velocity in (34). The non-linear growth rate includes a component due to the changing
geometry, meaning at small initial amplitudes (37) gives a linearised approximation to the growth
rate. Using corresponding scalings e, § and U, (r¢), the linear numerical growth rate is comparable
to the analytical linear stability given in (35) at small initial perturbations ¢y and at early time
stages.

The linear analytical and numerical growth rates have been plotted for two different perturba-
tion amplitudes in Figure 9. We plot the growth rate against the global capillary number, rather
than the local capillary number in (35) to be consistent with our numerical simulations. The local
capillary number in (35) can be found from the appropriate initial values, in order to work out the
growth rate for a specific global capillary number.

In Figure 9 it can be seen that the numerical growth rate at the initial state shows very good
agreement with that given by the analytical rate in (35). As the perturbation value is lowered to
€ = 0.01 the numerical and analytical values become closer, as the numerical growth rate becomes
more linear and closer to the approximation given by the LSA.

The initial state growth rates can be used to give insight into the front evolution when the
capillary number is low. For the C'a, = 500 cases, the growth rate is negative when the plates
are converging in Figure 9, meaning the interface will be stable to perturbations of wave number,
n. This is clearly demonstrated in Figure 6a and 6d, where the interfaces are almost completely
stable. The reverse is also true of the uniform cell, in which the growth rate is positive, and clearly
defined fingers form.

C’al (36)
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Figure 9: Plots showing the analytical and numerical linear growth rates for different initial perturbations €y at
the initial state. 8 = 10. Solid lines and crosses represent the analytical growth rate (o4 ), diamonds represent the
numerical growth rate (o;). — Uniform cell, — Converging cell, — Diverging Cell

In Figure 9, the initial state growth rates of the converging cases are always below that of
the uniform cases, i.e. they are always more stable in the range 250 < Ca, < 1000, with the
reverse true for the diverging cases. However, in the non-linear simulations with C'a, = 1000 at
t = 24 in Figure 6e, the front is further displaced in the converging case compared to the uniform
case, indicating a higher growth rate. The initial state linear stability therefore cannot accurately
predict the relative stability transition at high capillary numbers. Although the converging and
uniform curves in Figure 9 will eventually cross and transition, this does not occur until much
higher capillary numbers. Equation (35) can be used to find the relative stability transition point,
by setting the growth rate with o = 0 equal to the growth rate when « # 0. After rearrangement,
the local and global critical capillary numbers for transition, C'a;; and C'ag; respectively, are given

by:
B on bo _ dmn (719
Can = 1+7<T0>’ Cg = 1+’Y<b0> (38)

The above transition capillary numbers are therefore independent of the slope of the cell «,
and the initial perturbation e¢y. For the values in the previous simulations, C'a;; = 0.14545 and
Cag = 9139.2. The critical capillary numbers for transition are largely over predicted using the
LSA, with the simulation critical capillary number lying in the range 500 < Cage < 2500. Using
a critical capillary number for transition based on the LSA provides an upper limit for which the
capillary number must reach before the regime transitions to viscous dominated.

The over prediction of Cag; from the LSA and the numerical linear growth rate is mainly due
to the relatively small contribution from viscous effects in comparison to capillary effects as €g
reduces. The over prediction is best understood by considering the numerical linear growth rate.
Here, since U,,(r¢ + €) and U, (r¢) both include the perturbed pressure induced from the varying
plate separation (aperture effect 3), the final growth rate o; only has a small, linear contribution
from the perturbed pressure as €¢; gets smaller. However, the capillary contribution from the
transverse curvature only features in U, (rg + €), since U, (r¢) comes from a circular interface with
constant b(r). The final growth rate o; therefore has a larger contribution from the transverse
curvature than the perturbed pressure, meaning the transition to a viscous regime occurs much
later than in the non-linear simulations.

The over prediction of Cay using the linear approximations is also due to the fact that they are
taken at the initial state with €y. In the simulation setup, the ratio of the length scale of interface
perturbation to the variation of the cell separation is |arg/nbg| = 0.013, which is is below the initial
perturbation amplitude of ¢y = 0.05, showing the initial non-linearity of the system. The relatively
large initial perturbation also quickly evolves, with non-linear effects becoming more prominent and
the effective € increasing, meaning that the early time stage growth can be significantly different
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to the late stage growth. To better predict the transition in relative stability, we therefore turn to
the non-linear growth rate, discussed in the next section.

5.1.3. The effect of ¢g and o on the transition in relative stability

To analyse the dependence of C'ag; on €y and o, the non-linear numerical growth rate is plotted
at the initial state for various values of a and ¢y in Figure 10. There exists a clearly defined point
in each plot where the relative stability transitions, which is independent of «. This is expected
from the LSA value of Cage, which does not include any contribution from «, since at this point
the capillary and viscous contributions are equal regardless of the slope of the cell.

X Uniform C 12

Capillary | Viscous = Uniform Case

10t —a=25x10" 10l
—a=50x10"

8t —a=10x10" sl

D
T

Growth rate, oy
o

Growth rate, oy
o

2+ 2+
0+ 0+
-2 [ . . . . -2 . . . . .
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Capillary number, Ca, Capillary number, Ca,
(a) €0 = 0.025 (b) €0 = 0.050
12 i
Capillary | Viscous ===
107 : ~rz===—
|
s 8 :
< 6 I
b
= |
= I
z 4r !
8 \
—
O a9l }
|
L |
0 |
!
-2 s I ‘ ‘ |
0 500 1000 1500 2000 2500
Capillary number, Ca,
(c) €0 =0.100

Figure 10: Plots showing the initial state non-linear growth rates in cells with different o and ¢, 5 = 10. The black
dashed line marks the transition point from a capillary dominated to viscous dominated regime. The legend for

each plot is shown in (a).

Interestingly, when ¢y is decreased in Figure 10, the apparent transition point also decreases.
This appears at first counter intuitive, since it would be expected that as €g reduces, the transition
point would increase towards that given by the LSA, i.e. Cag = 9139.2. However, the disparity
is due to the functional form of the non-linear growth rate at the initial state, which has a larger
contribution from viscous effects compared to the linear growth rate. In the non-linear growth rate,
the perturbed pressure is only included in the U, (r,t) term, meaning as ey decreases the growth
rate comes almost entirely from the perturbed pressure (since the transverse curvature approaches
a constant). Therefore, the initial state gives a smaller C'ayy when € is reduced, as viscous effects
dominate in the early stages of the simulation. This result, although counter intuitive, is physical,
since in the limit of ¢y = 0 there will be no transverse curvature effects, and the regime will be

entirely viscous dominated.
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Although the above result is physical, it does not indicate the actual transition in relative
stability seen in the non-linear simulations (nor does the linear Cay prediction), since the initial
perturbations grow with time and quickly reach a size where capillary effects become prominent.
The question is now raised as to the transient behavior of the system, and if there is a point in the
simulations at which perturbations of any starting ey have reached a size at which the transition
in stability can be accurately predicted. We address this point by considering the difference in
non-linear growth rates between the fronts in diverging and converging cells, i.e.:

Aat = Ot,div — Ot,conv (39)

where 0y 4iy and ot cony are the growth rates of the finger fronts in a diverging cell and con-
verging cell respectively, with the same magnitude of «. Negative values of Ao, indicate a viscous
dominated regime, whereby the interface in the converging cell is displacing quicker than the in-
terface in the diverging cell, due to the relatively large contribution from the perturbed pressure
over the transverse curvature. Positive values of Ao, indicate a capillary dominated regime.
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Figure 11: Plots showing the difference in growth rates between diverging and converging cells with time, for different
€. |o| = 0.001. The legend for each plot is shown in (a).

In Figure 11, Ao, has been plotted for various Ca, at different ¢y values. From this, it can
be seen how some simulations (particular at ¢y = 0.025) start in a viscous dominated regime, i.e.
Aoy < 0, but change to a capillary dominated regime later in time once the perturbation has
grown. This implies that the transition in relative stability is both dependent on the capillary
number and time. Assessing the growth rates from the simulation at different points in time can
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yield entirely different results for the capillary number at which the relative stability transitions,
i.e. in Figure 11(b) at t = 0, 625 < Cag < 750, whereas at t = 5, 1000 < Cage < 1250.

Due to the transient issues above, we define the transition in relative stability as the capillary
number Cag: at which Aoy < 0 for all time in the simulation up until the first bifurcation. This
statement requires that the interfacial displacement is always viscous dominated, and the growth
rate in the converging case should always be larger than the corresponding converging case, up
until bifurcation occurs. This transition point is therefore an upper bound measure of when the
regime is in the viscous limit, in which it always exhibits post-transition aperture effects.

In Figure 11, the capillary number at which the transition in relative stability occurs is in
the range 1000 < Cag < 1250. This range is independent of €, since €y only changes the
absolute magnitude of Ao and not the relative spacing between the C'a, curves in Figure 11. The
transition in relative stability will therefore occur indefinitely for any initial perturbation, with €g
only controlling the time it takes for the transition to become apparent in the system. For very
small €q, the initial perturbation starts in the viscous regime for all but the very smallest capillary
numbers, meaning the transition in relative stability can take a long time to become apparent in
the system, but will occur at the same capillary number as larger values of ¢y given enough time.

From this analysis, it can be concluded that the initial growth rate (whether linear or non-
linear) cannot be effectively used to predict the transition in relative stability, since the interplay
between viscous and capillary effects with the growing perturbation can change dramatically with
time. Instead, the relative stability must be assessed at all times up until the first bifurcation,
with the condition that Ao, < 0 defining the capillary number for transition. Cag is independent
of both o and ¢ as predicted by the LSA, with only the timescale of events altered by €.

The results presented in this section link the linear stability analysis works of [11, 8] and the
experimental results of [9], detailing the explicit mechanisms that cause the transition in relative
stability when the capillary number is increased. Although the linear stability analysis gives a
good prediction for the point at which absolute instability occurs and defined viscous fingers form,
it cannot accurately predict the point at which the relative stability (compared to an interface in a
uniform cell) transitions. By using the non-linear numerical growth rate, we can predict the critical
capillary number at which a relatively stable interface becomes relatively unstable in comparison to
the corresponding interface in a uniform cell. At lower capillary numbers, the flow is in a capillary
limited regime, where gradients in the capillary pressure control the flow path and stabilisation
can occur in converging geometries (e.g. the work of [11]). However at high capillary numbers
,after the transition point, the flow is in a viscous limited regime and the permeability distribution
controls the flow path meaning fingers can be sharpened and channeled in converging rectilinear
geomtries (e.g. the work of [9]).

5.2. Sharply converging/diverging geometry

To further analyse low capillary number aperture effects on the fingering regime, we now focus
on the fingering instability after defined fingers have formed. For this we use a uniform cell with
a sharply varying section occurring far downstream of the initial interface position. We use a
constant gradient variance from the same homogeneous separation as before, b = 0.01; however,
the magnitude of the gradient is larger at |o| = 0.0025. The constant gradient section begins
at » = 4 and finishes at r = 5, allowing the late stage exploration of secondary tip-splitting
instabilities.

Before we proceed, it is worth discussing the validity of the lubrication approximation in Hele-
Shaw cells when the plate separation varies sharply. We do this in order to provide some justifica-
tion for the use of the model in the work presented here, whereby the spatial derivatives of plate
separation can be quite large.

In the works of [24],[25] and [26], the validity of the lubrication approximation for fractures is
discussed when the fractures are small and surface roughness may affect the flow regime. Under
certain conditions, [26] finds that the difference in fluxes predicted between the lubrication and
Stokes models can vary by a factor of two. [24] and [25] provide quantitative limits for the validity
of the lubrication theory, based on the profile of the fractures. [24] find that the wavelength ~,
of the aperture variation must exceed fifty times the standard deviation of the aperture height
distribution o, for the lubrication model to be valid. This ensures that the velocity gradients
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along the length of the fracture are much smaller than perpendicular to the fracture. [25] later
refine this limit to only 50p,.

Applying the ratio r; = vy /0p to the cases here, the validity of the lubrication model can be
assessed. The ratio of the wavelength of the variation of the plate separation to the standard
deviation of the plate separation profile here is r; = 1384. This is much greater than the lowest
limit of 5 given by [25], validating the use of the lubrication model in this work. The very large
values here are due to the fact that although the spatial derivatives in the plate separation are
quite large, the absolute change in the cell profile is small, meaning the velocity gradients in the
plane of the cell will still be much smaller than those in the perpendicular direction.

Figure 12 shows the late stage interfacial evolution of the converging case for Ca, = 500. Here,
the rapid stabilisation of the interface causes it to form a very flat front, with the finger sides
almost merging into one continual interface. The finger bases have remained entirely unaffected,
as they exist in regions of uniform geometry and have almost stagnated.

Figure 12: Time evolution plots for the converging cell case, o = —0.0025, Cay = 500. — Converging cell, ----
Uniform cell. 8 =10

(a) t = 30 (b) t =35
Figure 13: Time evolution plots for the diverging cell case, a = 0.0025, C'a = 500. — Diverging cell, ---- Uniform
cell. B =10

Although the front is relatively flat and has been accelerated by the converging geometry in
Figure 12, the stabilisation given by the increasing capillary pressure at the finger front keeps the
interface from bifurcating into many smaller fingers. The fingers proceed to spread and expand
under the stabilising aperture effect 1 of the converging geometry, with small lubrication layers
forming between the fingers. Due to the complete immiscibility of the fluids in these simulations,
there will always exist a small layer of the outer fluid separating the advancing fingers, meaning
that droplets of the external fluid inside the moving plume never completely form. The lubrication
layer formed in Figure 12 is fully resolvable with both the BEM and RBF-FC methods, in which
several overlapping local systems exist within the layer itself.

In the diverging geometry case in Figure 13, the front is rapidly destabilised as it enters a
region of very large plate separation. This causes a sudden decrease in capillary pressure, meaning
it is much easier for the interface to displace in this region. The interface quickly forms a throat
of very small radius at the entrance to the diverging section at » = 4, which becomes thinner and
thinner with time. After ¢ = 45, the throat continues to shrink until it reaches a stage where it is so
thin that it collapses and the finger downstream of the throat detaches to form a separate bubble.
The simulation ends before the breaking effect, as the throat size is too small to fit sufficient
nodal points inside to form suitable local systems in the RBF-FC method. Also, the model cannot
accurately predict the bubble detachment and surface tension snapping effect. However, the model
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can predict up until a time very close to the ‘breaking’, where it can be fairly accurately predicted
that the throat will collapse and the finger will detach. After this, the same process will likely
occur again, as the remaining interface that forms the main plume will enter the expanding region,
where the same destabilising effects would be felt. In this way, we infer that the expansion acts as
a barrier breaking the plume into a succession of droplets that will be convected by the displaced
fluid.

Physically, a sudden change in cell geometry is analogous to a sharp change in porous medium
permeability. For the diverging case, the interface effectively travels from a region of low perme-
ability (such as sandstone), to a region of very large permeability (such as fractured shale). The
periodic shedding of the interface would be highly desirable in C'Os sequestration, as the interface
surface area would be effectively increased, meaning the rate of dissolution and total amount of
dissolution trapping would increase significantly. For the converging case, the interface hits a per-
meability barrier, where the permeability decreases rapidly. This could represent an area of porous
medium under greater compression than at the origin of the injection, where the interface would
stabilise and the amount of trapping would decrease.

5.3. Periodic Hele-Shaw cells

In this final results section, we analyse immiscible displacement in Hele-Shaw cells with signif-
icant heterogeneities and anisotropy in the cell permeability, in order to demonstrate the different
flow features that can occur when the permeability variation is not necessarily aligned with the
flow direction. Up until this point, the maximum gradient in plate separation (and permeability)
has been aligned with the direction of displacement of the fingers, as in previous rectilinear and
radial works [8, 9, 11]. This is useful to derive the key mechanisms behind the stability of the
viscous fingers and the associated transition in relative stability, in geometries that are easy to
replicate both numerically and experimentally. However, in real porous media, the variation in
permeability will not be aligned with the direction of displacement, and will vary anistropically in
the domain, which can lead to significant variation from the displacements in homogeneous media.

Using a periodic function for the plate separation and cell permeability, viscous fingering can
be analysed in geometry that more closely resembles the natural variations found in aquifer per-
meabilities. We use this section to discuss fluid trapping and preferential flow mechanisms that
occur due to permeability heterogeneity, and the relative magnitude of the aperture effects with
more localised variations in permeability. For brevity we do not present the analytical functions
used to define the plate separations, instead showing contour plots of the associated variations,
noting that in all cases b = 0.01

We present results from a Hele-Shaw cell with a plate separation that varies periodically in
both Cartesian coordinates. The same eight finger starting interface is used as in previous simula-
tions, however, the plate separation now exhibits quarter-fold symmetry. The separation variation
contour is shown in the background of Figure 15. In Figure 14, interface plots for the periodic
cells and corresponding uniform cells can be seen at ¢t = 40 for different capillary number regimes.
In Figure 15 we see the transient evolution of the interfaces, overlaying contour plots of the plate
separation.

In the low capillary number regime in Figures 14a and 15a, the interfacial displacement has been
completely controlled by aperture effect 1. The interface bears little resemblance to the uniform
case, with local gradients in capillary pressure due to the changing transverse curvature altering the
flow path significantly. The initial stabilisation of the interface due to locally converging sections
(and hence positive capillary pressure gradients) leads to an almost circular interface. However,
shortly afterwards, small fingers are formed from the residual perturbations that extend into the
domain. This presents an example of flow at the capillary limit, where the capillary pressure
gradient (aperture effect 1) has significantly re-distributed the fluid from its original flow path,
with the heterogeneity defining the distribution of fluid.

In the higher capillary number regime in Figures 14b and 15b, we see a completely different
flow regime that is viscous limited. The finger evolving in the periodic cell at 45° to the horizontal
has a completely different bifurcation mode to the fingers travelling parallel to the x- and y-axes in
14b. The fingers travelling parallel to the axes have been sharpened significantly due to continued
acceleration of the finger tips in an anistropic medium, whereas the 45° finger evolves in a very
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similar manner to the uniform case due to the relatively homogeneous permeability along the
direction of travel.

> O >
2
-4
4 7 2 0 2 4 4 7 2 0 2 4
X X
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Figure 14: Interface plots at t = 40 for the Cartesian periodic cell and uniform cell. — Cartesian periodic cell,- - -

Uniform cell
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Figure 15: Interface plots at At =5 increments from ¢ = 0 to ¢ = 40 for the Cartesian periodic case. The interfaces
overlay a contour plot of the plate separation variation, b(x).

Due to the large capillary number in this case, the transverse curvature and capillary pressure
gradient (aperture effect 1) have very little effect on the overall finger evolution. The fingers
parallel to the axes generally have their tips in regions of higher permeability (and hence mobility)
compared to the sides of finger fronts as the interface displaces, which aperture effect 2 causes
the finger sharpening. As the overall change in plates separation is small, the change in pressure
gradient (aperture effect 3) is relatively small. Here, although the plate separation and permeability
do not vary in magnitude significantly, they do vary anisotropically, meaning in the viscous limit
the flow can be directed down the path aligned with high permeability.

The sharpening behaviour is similar in nature to that in the rectilinear case presented by [9].
In [9], a gradually converging rectilinear cell was found to sharpen the fingers, as the tip would
be accelerated more significantly than the sides of the finger fronts. The pressure gradient at the
finger tip would be increased locally, with aperture effect 3 causing the increased tip velocity (the
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mobility variation is small around the finger front). However, in the present case, a locally high
mobility (aperture effect 2) causes the increased velocity. The result in both cases is that the finger
tip experiences a higher velocity than the sides of the finger front, and the finger is sharpened.
This result is in contrast to what has been seen in previous sections using radially symmetric cases,
as the finger tip and the sides of the finger front exist in areas of significantly different mobility
and spatial variation in mobility.

The result presented in Figure 15 shows the difference in finger morphologies when the plate
separation and permeability vary non-uniformly with respect to the flow direction. Although the
case presented is for radial Hele-Shaw flow in a periodic cell, the features clearly highlight the
difference between high capillary number (viscous limit) Hele-Shaw flow in gradually converging
radial and rectilinear cells. For radial cells, the acceleration of the flow through a constant gradient
converging geometry flattens the front and enhances bifurcation, as the finger fronts and sides
both displace into equally converging flow paths. However, in rectilinear cells with a constant
gradient converging geometry, the front is sharpened as the finger tip displaces into a more sharply
converging path than the sides of the finger fronts.

These final results demonstrate the effect of local variations in cell plate separation (and cell
permeability). This can also be viewed in the sense of aquifer permeability, with large permeability
changes such as cracks and fractures resulting in highly directional flow paths. In the results
presented here, small changes in permeability result in largely the same interfacial displacement
if the capillary number is high enough, unless the permeability distribution is highly anisotropic.
This infers that in the C'Os injection cases, small variations in aquifer permeability across the
whole plume are unlikely to alter the resulting displacement regime in the early stages of injection
when the capillary number is high, unless there are faults or features with drastically differing
permeabilities present. However, when the capillary number is very small (capillary limit), the
finger displacement can change significantly, and is completely controlled by local capillary pressure
gradients.

6. Conclusion

In this work, we investigated the stability of immiscible viscous fingering in Hele-Shaw cells
with spatially varying permeability, comparing the interfacial displacements and growth rates with
corresponding cases in cells with uniform permeability. We examined the onset of fingering and late
stage tip splitting instabilities for different cell geometries across a wide range of capillary numbers,
demonstrating the transition in fingering mechanisms. Numerical experiments with gradually con-
verging /diverging Hele-Shaw cells highlighted three aperture effects that controlled the interfacial
stability, for regions of locally decreasing (converging) permeability these were:

1. Stabilisation through an increased transverse curvature (positive capillary pressure gradient).
2. Deceleration due to a reduced fluid mobility.
3. Acceleration due to an increased (viscous) pressure gradient.

In regions of locally increasing (diverging) permeability, the effects were reversed. At low
capillary numbers, aperture effect 1 and 2 were found to dominate, stabilising the interface in
converging cases and destabilising in diverging cases (when compared to interfaces in uniform cells).
At higher capillary numbers, the relative stability transitioned, and converging cells destabilised
the interface in comparison to uniform cells, with diverging cases being relatively more stable.

The transition in relative stability was found using the transient, non-linear numerical growth
rate to be in the range 1000 < Cag < 1250, independent of both o and €j, providing a better
accordance with the numerical results than the initial state growth rate. These results using simple
Hele-Shaw geometry link the previous works performed at either a low or high capillary number,
providing a detailed analysis of the mechanisms behind the displacement and the relative stability
transition.

Further analysis on more anisotropic Hele-Shaw cells revealed the effects of local variations
in permeability and fluid re-distribution that could occur. Below the relative stability transition
point, the flow can be re-distributed by gradients in the capillary pressure. This created interfacial
displacements that were far from the uniform cell case when the permeability distributions were
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periodic. When the capillary number was increased beyond the relative stability transition point,
the flow becomes viscous dominated, meaning the flow regime is largely controlled by the underlying
permeability distribution. If the permeability distribution is significantly anisotropic, the fluid can
be directed through areas of high permeability in preference to low permeability regions, forming
elongated fingers.
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