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Abstract 
Change detection in satellite images is a key concern of the Earth Observation field for 

environmental and climate change monitoring. Satellite images also provide important clues 

to both the past and present surface conditions of other planets, which cannot be validated on 

the ground. With the volume of satellite imagery continuing to grow, the inadequacy of 

computerised solutions to manage and process imagery to the required professional standard 

is of critical concern. Whilst studies find the crowd sourcing approach suitable for the counting 

of impact craters in single images, images of higher resolution contain a much wider range of 

features, and the performance of novices in identifying more complex features and detecting 

change, remains unknown.  

 

This paper presents a first step towards understanding whether novices can identify and 

annotate changes in different geomorphological features. A website was developed to enable 

visitors to flick between two images of the same location on Mars taken at different times and 

classify 1) if a surface feature changed and if so, 2) what feature had changed from a pre-

defined list of six. Planetary scientists provided “expert” data against which classifications 

made by novices could be compared when the project subsequently went public.  

 

Whilst no significant difference was found in images identified with surface changes by expert 

and novices, results exhibited differences in consensus within and between experts and 

novices when asked to classify the type of change. Experts demonstrated higher levels of 

agreement in classification of changes as dust devil tracks, slope streaks and impact craters 

than other features, whilst the consensus of novices was consistent across feature types; 

furthermore, the level of consensus amongst regardless of feature type. These trends are 

secondary to the low levels of consensus found, regardless of feature type or classifier 

expertise. These findings demand the attention of researchers who want to use crowd-

sourcing for similar scientific purposes, particularly for the supervised training of computer 

algorithms, and inform the scope and design of future projects. 

 

1. Introduction 
 

Detection of change in satellite images of Earth and other planetary bodies is of significant 

scientific interest in the monitoring of environmental and climate change. Automating the 

detection of surface features over different spatial and temporal scales, however, remains 

complex and computationally expensive. Variation in the quality and coverage of images 

render them difficult for computers to process, in addition to the atmospheric and 

morphological influences on the “visibility” of features (Kim et al., 2005). Although we 

anticipate the development of increasingly subtle and powerful image processing and machine 

learning systems (Sidiropoulos and Muller, 2016), there remains a role for the human analyst 
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particularly when variability is emphasised and human aptitudes of flexibility and judgement 

are called into play (e.g. interpreting rare events or features to make serendipitous 

discoveries). However, there is currently a clear, growing and profound imbalance between 

the number of expert observers and the sheer volume of satellite data available to the wider 

scientific community (See et al., 2016). One solution to this is to crowdsource analysis of 

imagery – a process often discussed within the realm of Citizen Science (Bonney et al., 2009). 

However, the viability of this solution rests on the fundamental question of whether a collection 

of suitably equipped amateurs can generate data of comparable quality to that produced by 

experts (Salk et al., 2016).  

 

This paper investigates the potential power of novices to address two challenges that face the 

future application of a crowd-sourcing approach for the analysis of satellite imagery: detection 

of a wider range of surface features and changes in the appearance of these features that 

reflect dynamic changes on the surface. Crowdsourcing has successfully classified surface 

features in Earth Observation, through calibration with ground truth (Zhao et al., 2014; See et 

al., 2016). The crowd is commonly used to count craters for estimating the age of lunar 

surfaces, a task which implicitly assumes that craters can be reliably identified, and further 

relies on measurements of crater diameter for age calculations (Robbins et al., 2014). In lunar 

images factors such as atmospheric distortion and the range of surface features are reduced 

so that the effects of human subjectivity can be isolated (Gault, 1970; Kirchoff et al., 2011). 

Robbins et al. (2014) investigated the consistency of expert classifications of craters in relation 

to terrain type, size and frequency, across different user interfaces. For all variables, only 

annotations of the smallest craters (<10 pixels in diameter) were significantly different. They 

concluded “volunteers are approximately as good as experts in identifying craters…so long as 

enough volunteers examine the image to derive a robust result,” with the caveat that accuracy 

for any single crater or cluster of craters is not important (Robbins et al., 2014, 126). 

Comparison of automated feature detection with the subjectivity introduced by humans has 

found differences between and within the classifications of individuals, for example on different 

days (Tar and Thacker, 2016). Successful cataloguing of geological landmarks could facilitate 

the filtering of imagery according to features of interest but the future utility of any automated 

process for this would require a significant human effort to label examples for training the 

algorithm (Wagstaff et al., 2012; Wagstaff et al., 2015). Whilst the work of Robbins suggests 

that novices can produce comparable annotations of impact craters to experts, their ability to 

identify other surface features of interest remains untested. 

 

The present study extends previous work to detecting changes in images of the surface of 

Mars, in which features change at different rates, from rapidly moving dust devils, seasonal 

and inter-annual fluctuations of the polar ice caps and recurring slope lineae (indicating 

contemporary water activity), and slowly shifting sand dunes. Scientific interest in detecting 

changes in features such as impact craters (Kim et al., 2005; Bue and Stepinski, 2007; Li et 

al., 2015), gullies (Stepinski and Collier, 2004) and sand dunes (Bandeira et al., 2013) on Mars 

is high because changes reveal the evolution of the climate and geology of the planet; repeat 

image coverage for change detection is increasingly available and, until surface data can be 

validated with any certainty, alternative approaches are needed. 

 

Although beyond the scope of this study, the introduction of human analysts, even within the 

context of the crowd-sourcing approach, brings into play other potential confounds on 

performance. Visual search is known to be affected by feature complexity (Lloyd and 
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Hodgson, 2002) and size (Warner et al., 2015), scene context (Castelhano and Heaven, 

2010), information density and presentation method (Chang et al., 2012), in addition to the 

human factors associated with performing visual search for a prolonged period of time (See, 

2012). Change detection studies are also relevant in this context (Rensink, 2002), as well as 

those concerned with the quality of Volunteered Geographic Information (Haklay, 2010; Foody 

et al., 2013).       

                                                                                                                                                                                                                                                                                                                                                                                                                                                              

The ultimate goal of the on-going development of the algorithm is to achieve fully automated 

change detection and characterisation. Such a task is typically tackled with a supervised 

learning approach using a ground-truth dataset, but no publicly available ground-truth 

currently exists for planetary surfaces. The crowdsourcing this paper presents is thus intended 

to produce annotations for developing a fully automatic change detection algorithm. More 

information about the co-registration and the change detection algorithm can be found in 

Sidiropoulos and Muller (2016). 

 

Section 2 now sets out the approach used to study these questions. Section 3 will present the 

consensus found within and between novices’ and experts’ classifications of change, and 

feature type that changed. Section 4 will discuss key findings and their implications for the 

remote sensing community, and designers of crowd-sourcing platforms for the classification 

of geomorphological features. 

 

2. Method 
 

2.1 Experimental Design 

To investigate novice performance in detecting 1) more complex features and 2) changes in 

features over time, this work presents the results of a Citizen Science project built with the 

project builder ‘Panoptes’ on Zooniverse.org and tested with experts and novices to directly 

their classifications of dynamic geological changes in Martian images, with a task designed 

for participants to compare two images of the same location but at different times (Bowyer et 

al., 2015). 

 

The current interest in Martian exploration and the volume of images that have amassed since 

the planet was first imaged forty years ago represent an outstanding opportunity for the 

investigation presented. The images under study were processed from genuine images of the 

surface of Mars, so that participants would not anticipate what they would see. Prior to public 

release, doctoral Planetary Science students and post-docs classified images within a 

workshop at University College London’s (UCL) Mullard Space Science Laboratory. Their 

exclusive access over the two days enabled separation of their “expert” classifications from 

those of volunteer “novices” over the following months. 

 

2.2 Apparatus/Materials 

The study used images extracted from high-resolution image strips acquired by four orbital 

cameras described in Table 1.  

 

Camera Spacecraft 
Dates of 

Operation  
Resolution Reference 
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Context Camera (CTX) 

Mars 

Reconnaissance 

Orbiter 

2006-

present 
6m/pixel 

Bell et al. 

(2013) 

High-Resolution Stereo 

Camera (HRSC) 
Mars Express 

2004-

present 
12.5m/pixel 

Jaumann et 

al. (2007) 

Thermal Emission Imaging 

System (THEMIS) 
Mars Odyssey 

2002-

present 
17.5m/pixel 

Christensen 

et al. (2004) 

Mars Orbiter Camera - 

Narrow Angle (MOC-NA) 

Mars Global 

Surveyor 
1997-2006 1.5-12m/pixel 

Malin et al. 

(2010) 

Table 1 Description of the cameras that took the images used in this study 

First, the raw images were projected, or “co-registered”, to a single coordinate system, to 

enable comparison. Since no high-resolution global datum exists for Mars, a mix of High-

Resolution Stereo Camera (HRSC) Orthorectified Images (ORI) and Digital Terrain Models 

(DTMs), covering almost 50% of Mars, was selected for use as a baseline (Sidiropoulos and 

Muller, 2015). The co-registration technique was developed to achieve a fast and fully 

automatic co-registration of large volumes of data for generating an abundant input for change 

detection (Sidiropoulos and Muller, 2016). The subsequent set of co-registered images 

comprised of overlapping image pairs, which were then processed by an algorithm for 

detection of “regions-of-interest” (Sidiropoulos and Muller, 2016). The algorithm selected 868 

regions-of-interest, each 512X512 pixels in size, as surface change candidates.  

 

The change detection algorithm used is a “late fusion classification scheme” (Ye et al., 2012), 

and defines four types, or “classifiers”, of change. Each classifier models a distinct type of 

surface change and produces a single, independent output in the form of a “confidence score” 

(Ye et al., 2012) from 0 to 1 for the probability of a positive classification, with 1 meaning 100% 

certainty that a pair of images includes a change of this type. The results of these classifiers 

are combined by means of a secondary “meta-classifier”, which generates a final score that 

is compared to a threshold to determine the presence of change. The flowchart of this scheme 

can be found in Figure 1. 
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Figure 1 The flowchart of the change detection algorithm. Details of the auto co-registration of 
image pairs and creation of the High Resolution Stereo Camera Digital Terrain Model (HRSC 
DTM) are documented in Sidiropoulos and Muller (2016) and Gwinner et al. (2016) respectively. 

Classifiers were defined according to visual characteristics and not according to scientific 

context, i.e. classifiers were not defined to directly map to features on the Martian landscape 

(Figure 1). Classifiers were designed to find four types of change: 

1. Texture changes, which are identified in images in which the surface texture has 

changed (e.g. created by Aeolian activity). 

2. Binary large object (Blob) changes, attributed to image pairs in which an approximate 

homogenous patch only appears in one of the two images and are used here as 

proxies for new large-sized features (e.g. slope streaks). 

3. Anticorrelation changes, which are identified by negative spikes in the image pair 

correlation and are used here as proxies for new small-sized features that emerge (e.g. 

a new impact crater). 

4. Motion-type changes, which are found through the detection of a local mis-registration 

between the two images. 

 

To increase certainty, a final classifier estimates and compares the surface slope in images 

since they are co-registered and ortho-rectified to the High Resolution Stereo Camera (HRSC) 

Digital Terrain Model (DTM). 

 

This classification scheme is based on supervised learning, which requires training with both 

positive and negative annotations. Such annotations are currently sparse, since large-scale 

studies of changes in geomorphological features on Mars are unavailable. Therefore, the 

approach we use includes a feedback loop between the automatic change detection results 

and the crowdsourcing annotations. More specifically, this study used a preliminary automatic 

change detection algorithm, which used a small set of manually annotated images to estimate 

classification parameters. Subsequently, the crowdsourcing annotations are used to train the 
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automatic change detection scheme, which then produce a second round of lower false 

positive rate, while possibly more repeats will happen in the future. 

 

A project was built on Zooniverse.org to run the test. Zooniverse is a consortium of researchers 

from the Adler Planetarium in Chicago, USA and the Department of Physics at the University 

of Oxford. It uses Amazon Web Services to host a plethora of Citizen Science projects, 

spanning fields from Astronomy to Zoology. A project builder interface negates the need for 

coding and frees researchers to create their own projects for volunteers to classify or analyse 

images according to their needs. 

 

Crucially, the project builder manages the order in which volunteers classify images. In general 

it applies rules so that no individual volunteer sees the same image pair more than once if 

they are registered and logged in; if they are not logged in it will randomly select an unretired 

image from across the images that remain.  

 

2.3 Participants 

 

22 Planetary Scientists attended a workshop on 3D data and were invited to participate in the 

experiment; the group mostly comprised PhD students and post-doctoral researchers funded 

by the Europlanet 2020 Research Infrastructure, a European Commission Horizon 2020 

project to integrate and support Planetary Science activities across Europe. The requirements 

for participation in the workshop ensured that participants had the necessary planetary 

imagery expertise to provide “expert” (“gold standard”) data in place of ground truth; this paper 

will now refer to these participants as “experts” for clarity. 

 

After the workshop, the project was launched informally on social media and local email 

networks to collect data from volunteers. When five different volunteers had independently 

classified an image pair, the image pair was removed, or “retired” from any further analysis in 

a tradeoff between having enough data to compare with the Planetary Scientists’ annotations 

for any one pair of images, and the need to analyse as much of the planet’s surface as 

possible. Data collection for the present study stopped after four months, when enough data 

had been volunteered. 

 

2.4 Procedure 

Experts signed an information sheet and consent form to ensure that they understood the 

task, why they were doing it, and gave their permission to use their classifications for stated 

purposes; furthermore, they could leave the study and/or request removal of their data at any 

time. The experiment was described and participants registered on www.zooniverse.org 

during a half an hour session before a lunch break. This had two benefits: it gave attendees 

time to consider their participation and ask questions about it during the lunch break, but also 

ensure participants were ready to start the task together.  

 

The workflow depicted in Figure 2 shows that participants began the task by inspecting two 

images of the same location on the surface of Mars at different times and selecting whether 

or not features had changed (Figure 3).  
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Figure 2 Task workflow: Mars in Motion  

 
Figure 3 The task for workshop participants (Step 1 in Figure 2)  

If they were unsure what type of changes to annotate they could click on a ‘Need some help 

with this task?’ button for a hint (Figure 4). The help information was deliberately designed to 

provide only a high-level hint so that participants would understand what changes they should 

mark but also use their judgment. 
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Figure 4 The ‘help’ text provided with the first part of the task 

If participants marked a change, a subtask asked them to select which type of surface feature 

they had just marked, from a list of six: impact crater, gully, dune, slope streak or recurring 

slope lineae, dust devil track and seasonal fan (Figure 5). The presentation of multiple features 

types at this stage of the task was a deliberate design decision to make the task less repetitive 

and to mitigate the detrimental effect of fatigue (See, 2012).  

 
Figure 5 The subtask of feature identification (Step 3 in Figure 1) 
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These features were chosen for their scientific interest, and the frequency with which they 

appear on the surface of Mars. A field guide provided examples of change for each feature 

type to assist classification (Figure 6). 

 

 
Figure 6 Example to demonstrate the type of feature change that should be marked. If 
participants did not feel that any of the listed features matched what they had marked then they 
could amend their classifications, until they clicked “Done”, which logged their classifications 
and presented participants with a new pair of images. 

Expert participants were encouraged to provide feedback on their experience of the website 

via a semi-structured online survey after using the website for one hour; they were also invited 

to take notes anonymously on post-it notes during the experiment so that they could note their 

thoughts as they occurred. The purpose of this was to provide context for the data during 

analysis. In contrast, public participants were not asked to complete the feedback survey or 

restricted to one hour of participation; their participation was discretionary and not under the 

controlled conditions of the experts, so they could return to the website and classify as many 

image pairs as they liked without seeing the same image pair twice. 

 

2.5 Data captured 

The Zooniverse.org collects classification data automatically each time the “Done” button is 

clicked and can be downloaded by the creators of the project at any time. For the purposes of 

this study, three sets of data were of interest: whether or not a change was seen, the type of 

feature(s) marked as changed, and the time taken to make the classification. Analysis did not 

directly compare the location of feature annotations on the image, but instead considered 1) 

the proportion of people who saw a change between images, and 2) the type of surface feature 

participants labelled. Importantly, analysis was restricted to images seen by more than one 

person in order to calculate a consensus for an image pair.  

 

Classification data also includes the start and finish time for each individual classification to 

millisecond accuracy. These were used to calculate task time and explored to determine 

whether or not the expert and novice classifiers spent a similar length of time classifying each 

image pair and extend comparison of their performance. 
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2.6 Consensus Analysis 

This data was collected with the objective of calculating a measure of classification consensus, 

which the crowdsourcing approach uses to assess the accuracy and trustworthiness of 

volunteered data; the higher the level of agreement, the more confidence with which 

researchers can use its analysis.  

 

In the study presented classification consensus was first calculated to determine if levels of 

agreement on seeing a change (i.e. Step 1, Figure 3) varied between the two groups. Figure 

7 shows this calculation, which was carried out for each image pair for novice and expert 

classifications independently, where two or more people from one of those groups had 

classified an image. 

 

 

 
Consensus analysis was then extended to calculate the consensus for change with each type 

of landscape feature (e.g. crater, gully, dune) for every image pair seen by more than one 

person. For each type of landscape feature, consensus was defined as the percentage of 

people who marked one or more changes on the image pair with the total number of views of 

the image pair (Figure 7). For example, consider an image pair seen by five people. Three 

people marked changes in slope streaks. Regardless of the number of slope streaks they 

marked, this image pair would have a consensus of 60% for slope streaks. 

 

With a consensus calculated for each type of change (e.g. crater, gully, dune) for each image 

pair, the mean consensus for each type of change was calculated across all images in which 

each type of change had been marked. The mean consensus for each type of change could 

then be compared to assess the relative difficulty of spotting a change in each type of 

landscape feature. 

 

3. Results 

This section reports the analysis of classifications provided by both experts and novices in 

three parts. First we consider the experts’ classifications and summarise them with details of 

how many image pairs they analysed, how many of these had changed and calculate the 

consensus within their classifications for changes in each feature type. Second, the 

classifications provided by novices were analysed in the same way.  Finally, this section 

compares agreement between novices and experts’ classifications of change for each feature 

type. 

 

3.1 CONSENSUS REGARDING ‘IS THERE CHANGE?’: EXPERTS VS NOVICE 

First, the classification consensus amongst expert and novices is compared for the first part 

of the task, presented in Figure 3, for each image pair. In total, two or more people from within 

each group classified 1301 image pairs; two or more novices classified 738 image pairs and 

two or more experts classified 563 image pairs. A Mann-Whitney U test on the consensus for 

change on these 1301 image pairs revealed no significant difference in the level of agreement 

for change between expert and novice classifiers (U=197605, p=0.078). 

Consensus = nChange/NN × 100 

where: N = Total number of people who classified an image pair 

nChange = Number of people who annotated an image pair with a change 

Figure 7 Consensus Calculation 
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Figure 8 Examples of a) 100% agreement between classifiers that a landscape features has 
changed; b) 50% agreement, and; c) 100% agreement that no landscape feature has changed. 

 

 

a 

b 

c 
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3.2 CONSENSUS OF EXPERTS 

In total, experts contributed 1,877 classifications during the time allotted in the two-day 

workshop, of which 1553 (82.7%) were classifications of ‘no change’ and 324 (17.3%) were 

classifications of surface changes. Of the full set of 868 image pairs, experts classified 783 

unique images pairs, of which 580 (25.9%) had no changes annotated. In order to calculate 

consensus, 220 image pairs that were only seen once were eliminated from analysis. Of the 

remaining 563 unique image pairs, seen by more than one expert, 175 were marked with 

change, with the mean % consensus for change 55.9% (standard deviation=8.3, standard 

error=2.1).  

 

Table 2 describes the data associated with these image pairs according to feature type. The 

first two rows show the percentage of the whole image set that experts marked with each type 

of change, followed by the number of image pairs marked with each type of change. The mean 

consensus is then presented for each type of change amongst experts. 

 

Feature Crater Gully Dune 
Slope 
Streak 

Dust Devil 
Seasonal 

Fans 

% Image pairs with 
no change 

95.20 98.22 94.14 91.83 88.28 96.80 

% Image pairs with 
change 

4.80 1.78 5.86 8.17 11.72 3.20 

No. of image pairs 
with change 

27 10 33 46 66 18 

Mean % consensus 38.55 32.50 35.35 55.92 63.81 37.41 

Standard Deviation 16.61 9.98 12.36 26.17 26.80 12.26 

Standard Error 3.20 3.15 2.15 3.86 3.30 2.89 

Table 2 Consensus amongst experts with a change detection task on 563 image pairs seen by 
more than one 

3.3 NOVICE CONSENSUS 

In total, volunteers contributed 2,919 classifications in the first four months of the project’s 

release, of which 2,446 (83.8%) were classifications of ‘no change’; the remaining 473 (16.2%) 

were annotated with surface changes. For image pairs seen by more than one person there 

were 2,834 individual classifications, of which 2,385 (84.2%) were entries of ‘no change’ and 

449 (15.8%) were annotations of change. 

 

Novices classified 823 unique images pairs from the full set of 868, of which 531 (64.5%) were 

not annotated with changes. However, for calculating consensus, analysis excluded 85 image 

pairs that were only seen by one person. Of 738 unique image pairs seen by more than one 

person, 445 (60.3%) were identified as having ‘no changes’; for the remainder (identified by 

at least one person as an area in which the surface changed), the mean consensus for change 

was 41.1% ( standard deviation 22.1, standard error 1.3). Table 3 presents statistics for these 

image pairs.  
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Feature Crater Gully Dune Slope Streak Dust Devil Seasonal Fans 

% Image pairs with no change 92.41 92.68 90.38 89.70 88.48 96.21 

% Image pairs with change 7.59 7.32 9.62 10.30 11.52 3.79 

No. of image pairs with change 56 54 71 76 85 28 

Mean % consensus 29.31 31.07 30.13 32.98 38.00 32.24 

Standard Deviation 12.90 10.70 17.08 14.64 21.74 12.00 

Standard Error 1.72 1.46 2.03 1.68 2.36 2.27 

Table 3 Consensus amongst novices with a change detection task on 738 image pairs seen by 
more than one 

3.4 COMPARING THE CONSENSUS OF EXPERTS OF NOVICES 

These data can be used to compare how the consensus of experts and novices compares for 

different features types. The means and standard errors from Table 2 and Table 3 are plotted 

in Figure 9, which graphically illustrates their differences. 

 
Figure 9 Bar chart comparing the mean % consensus for different surface features between 
experts (Table 2) and novices (Table 3) with standard error bars to illustrate the significance of 
differences 

 

Figure 9 shows that the most significant differences between the two groups of classifiers are 

found in annotations of slope streaks and dust devil tracks, both of which are linear in their 

morphology; the third most significant difference is found in the marking of changes in craters, 

which goes against the results of Robbins et al. (2014). There are two possible conclusions 

regarding these features that have the least agreement; either 1) more eyes are better, or 2) 

the smaller the agreement, the harder and more subjective changes in the feature are for 

untrained users to detect.  
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3.5 AGREEMENT BETWEEN EXPERTS AND NOVICES 

The next stage of analysis directly compares expert and novice classifications of the same 

image pair. Of the 783 unique image pairs viewed by more than one expert, a subset of 434 

image pairs were also viewed by more than one novice in the four months that followed. This 

subset of images is now used to compare the performance of volunteers (“novices”) with 

Planetary Scientists (“experts”). Table 4 describes, for each feature type, how many of the 

image pairs experts marked with a change, and the proportion of those that novices marked 

with the same change, to directly compare the consensus of experts and novices for the same 

individual image pairs. The first two columns of Table 4 show the overall rate at which the two 

distinct groups marked changes in each type of surface feature; the final two relay the 

proportion of images marked by experts with a change, which were marked with the same 

type of change by novices. 

 

Feature 
% Images 
marked by 
experts 

% Images 
marked by 

novices 

% Agreement of 
novices with experts for 

images with change 

% Disagreement of 
novices with experts for 
images with change 

Impact 
crater 

4.61 6.91  25 75 

Gully 1.15 6.68 0 100 

Dune 4.38 8.99 21.0 79.0 

Slope 
streak 

6.68 9.91 24.1 75.9 

Dust Devil 
Track 

11.52 9.91 52 48 

Seasonal 
Fan 

2.76 4.15 16.7 83.3 

Table 4 Comparison of change detection performance.  

 

3.6 TASK TIME: EXPERTS VS NOVICES 

Raw task time data was copied into SPSS from Microsoft Excel for a more detailed statistical 

analysis of the time spent on the task by experts and novices for the 434 image pairs that had 

been seen by more than one expert and more than one novice. 

 

The mean and standard deviation of the task time for these 434 image pairs were tested for a 

normal distribution, for expert and novices independently, to ascertain whether they should be 

compared with a parametric or non-parametric test and results indicated that neither group 

was normally distributed (Table 5).  

 

 Kolmogorov-Smirnov* Shapiro-Wilk 

Statistic df Sig Statistic df Sig 

Experts .352 434 .000 .320 434 .000 

Novices .414 434 .000 .174 434 .000 

* Lilliefors Significance Correction 

 Table 5 Results of test for normal distribution 
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On this basis, the non-parametric Wilcoxon Signed Ranks test was carried out for differences 

in task time between novices and experts for the same image pair. The results (Z=-0.519 

based on negative ranks, and asymptotic significance 2-tailed p-value = 0.603) indicated no 

significant difference. 

 

4. Discussion 
 

Analysis of the results presented in the previous section, and their implications, cannot be 

discussed before factors that must be considered are described.  

 

Second, workshop participants’ feedback, via the online survey, expressed a particular 

concern that the quality of many images was not sufficient to be able to discern that a feature 

had changed, and the interface did not allow them to report the poor quality of image pairs. If 

participants were unsure whether to mark a change or not, their comments suggested that 

they erred on the side of caution and tended to answer that there was no change in the 

imagery. Such uncertainty could arise due to artefacts in the images or spotting a feature that 

did not match the categories offered and could bias classifications towards no changes. Live 

Citizen Science projects, however, cannot practically control for image quality, since it is 

subjective and in the case presented was controlled by keeping the resolution of images 

constant. Future projects might trial a button for participants to click when the image is of poor 

quality, but the use of such a button must be judicious in case participants use it by default. It 

might be used by too frequently in the case that participants will use it by default, so that it 

remains within the analysis set and prevents other images from being analysed. 

 

Third and finally, implicit to the study is that participants marked features that had changed. 

This is important to acknowledge in any analysis; results do not reflect (expert and novice) 

participants’ ability to identify any one individual feature because, in the context of the study 

presented, participants were not asked to mark features unless the feature had changed. 

Results instead demonstrate the relative success with which participants identified features 

that had changed, and differences would suggest how easy certain changes are to spot than 

others. 

 

The results and their implications are now discussed accordingly, with respect to the study’s 

aims and objectives. 

 

Difference between features 

Changes in some types of geological feature appear to be easier than others to spot; this is 

most clear in Figure 9, which shows that dust devil tracks and slope streaks are easier to 

identify, since the consensus for changes in these features is highest. The emergence of 

differences between novice and expert classifiers only when asked to identify the landscape 

feature that has changed suggests a subtle effect of expertise on this task. Given the literature 

concerning visual inspection and change detection, results are likely to have been confounded 

by factors beyond the scope of the paper and attributes of the individual image pairs; however, 

experts and novices were deliberately shown the same image set to mitigate these effects 

having an impact when classifications are compared. 

 

Difference between experts and novices 
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There was a insignificant difference in the identification of change between novices and 

experts; differences only began to emerge when they were asked to classify features. The 

feature with the highest consensus amongst both experts and novices was dust devils, which 

might be due to their comparatively simple morphology. The low level of agreement within and 

between experts and novices is surprising; the highest level of agreement, amongst experts, 

is 64% for dust devils. This raises questions over the “expertise” required for this task, and the 

genuine difficulty of spotting changes in geological features from satellite imagery, and 

perhaps points to the need for a more detailed tutorial on the task than was provided for this 

study. 

 

Relation to previous work 

The results presented add nuance to the conclusions of Robbins et al. (2014) and suggest 

that there are subtle limitations in the tasks Citizen Scientists can perform to the standard of 

professional scientists. Whilst the strengths of Citizen Science are widely discussed, 

comparatively little is said about its limitations, which increase with the complexity of the tasks 

Citizen Scientists undertake. This paper contributes an appraisal of the Citizen Science 

approach for the more complex task of change detection and results especially suggest that 

the task of change detection places new demands upon untrained volunteers, which they do 

not appear to meet for many geological features. 

 

Implications for the Earth Observation field 

The levels of agreement between experts and novices presented in Table 4 cast doubt on the 

range of tasks researchers can reasonably expect novices to perform to a professional level. 

Change detection is ostensibly a task that can be carried out with minimal training, but the 

results presented suggest otherwise. We may therefore have to re-evaluate our expectations 

of the Citizen Science approach for contributing to change detection studies, and untrained 

volunteers’ performance with a geological change detection task on remote sensing imagery.  

 

Implications for Citizen Science and Volunteered Geographic Information 

The results presented concern Citizen Science researchers because they raise questions 

regarding the number of volunteers required for meaningful results when annotating changes 

between images. The first question the study set out to answer was whether volunteers can 

be given the task of looking for changes on the surface of Mars and produce results that are 

comparable to those produced by Planetary Scientists, on the premise that it is conceptually 

similar to ‘Spot the difference’; however, the answer to this is clearly not as simple as might 

be assumed, as we found that differences emerged when classifiers were asked to classify 

feature type.  

 

The debate over how to handle input data quality surfaced in the study presented. Whilst 

researchers using the Citizen Science approach tend to espouse the use of forced choice in 

task design, in the interest of the data collected being useful, the experience of this study 

points to tensions between image quality and scientists’ trust and use of volunteered data 

analysis, and a trade off between the engagement of the volunteer and goals of the project. 

Whilst the project this study focused on collected data for the training of a change detection 

algorithm, the interaction of the discussion of this point will required with a second iteration of 

the algorithm. 

Limitations and Future Work  
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Future studies should continue to investigate how and why the data for different feature types 

varies as this could have implications for the extension of the crowd sourcing approach from 

crater counting to other landscape features. The differences found in the consensus for 

different features types - both within and between experts and novices - suggest that the 

number of novice volunteers required to produce data comparable to a group of experts is 

inconsistent and the reasons for this remain unclear. 

 

The set of images used in this study was also limited, and further work is required with more 

imagery, to examine the interplay between a change detection algorithm and novice 

classifications in more detail, and if and how they can work together effectively and efficiently. 

Work on the automatic change detection pipeline presented here is ongoing and will be 

published in more detail. 

 

Further work can also investigate differences between novices’ and experts’ performance with 

a simplified task concerned only with feature identification. Such a study would go some way 

to determine whether the differences found in the present study can be attributed to the 

detection of change in a feature or whether they are also partly explained by the morphology 

of the features themselves. 

 

5. Conclusions 
 

This paper has explored the potential of novices to detect change in remotely sensed imagery 

of geomorphological features to a standard comparable with a group of expert classifiers, to 

further understand the strengths and limitations of the crowdsourcing approach within the 

fields of Earth Observation and Planetary Science. To do this, a Citizen Science project was 

created and tested on a group of Planetary Scientists before was made public. The task 

showed participants two images of the same location on the surface of Mars at two different 

point in time and where they marked change they were asked to select the feature type they 

had marked. 

 

In short, the study found similarities in novice and expert identification of image pairs that have 

changed, but differences in the classification of the type geological features both within and 

between experts and novice classifiers, which should inform future work into the suitability of 

crowd-sourcing for similar scientific aims. It has demonstrated that consensus on changes in 

some geological features is much higher, suggesting that the analysis of these features is 

much more suited to crowd sourcing than others. Future work will investigate the underlying 

causes of these differences, to determine the effect of factors suggested by this study, such 

as the inherent complexity of feature morphology, prior exposure to imagery and whether a 

more detailed training in the task can improve classification consensus.  
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