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a b s t r a c t 

This paper is a study of the dependence of the volume of voids in a granular material on the particle 

size distribution. It has previously been proposed that the volume of voids is proportional to the volume 

of the smallest particles. In a particle size distribution which is progressively becoming wider (e.g. as 

occurs due to crushing during the compression of sand), the smallest size of particle decreases, yet there 

are only ever a few of these particles out of many thousands or millions. This paper attempts to identify 

which particles govern the overall density of a granular material, and a new definition of the ‘smallest 

particles’ is proposed. These particles are shown to govern the void space in a range of simulations of 

spherical and non-spherical crushable particles. The theory also applies to idealised Apollonian sphere 

packings. 
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. Introduction 

The packing characteristics of granular materials have been

tudied for over a century. It is generally accepted that the com-

arative density of any granular material is a function of particle

hape, size range and size distribution ( Burmister, 1938 ), however

redictions for the density or porosity for a granular assembly

re usually empirical, and are only semi-analytical at best (e.g.

atham et al., 2002 ). 

The packing of granular material has a direct influence over

ts engineering properties. For sands, the density determines the

ilatancy and peak strength when sheared ( Bolton, 1986 ); the

ize and interconnectivity of the voids govern the permeability

 Hazen, 1892 ); whilst the distribution of interparticle contacts af-

ects the induced particle stresses which govern particle break-

ge ( McDowell and Bolton, 1998 ). In addition to geotechnical en-

ineers, achieving or predicting maximum packing densities is of

elevance to the mining and construction industries. 

Given the dependence of packing characteristics on the parti-

le size distribution, particle crushing, which changes the distribu-

ion therefore also has a major influence on the constitutive be-

aviour. The importance of crushing in sands for example has long

een acknowledged; when a sand is subjected to monotonic in-

reasing stress (normal compression), it is well known that after a

igh enough stress is reached, particle crushing begins and causes

 permanent decrease in volume (e.g. Nakata et al., 2001 ). Particle
∗ Corresponding author. 

E-mail address: john.debono@nottingham.ac.uk (J.P. de Bono). 

o  

m  

b  

(

ttps://doi.org/10.1016/j.ijsolstr.2018.07.011 

020-7683/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article u
rushing also has a direct influence on the dilatancy of sand when

heared, and is associated with either a significant volumetric con-

raction or an increase in pore pressure if the pore fluid cannot

scape. 

Recent Discrete Element Method (DEM) simulations incorporat-

ng particle crushing have enabled all the main features of sand

ehaviour to be reproduced. This has led to new micro mechanical

nsights into the normal compression and shearing of sands, criti-

al states, and yielding; and has further highlighted the influence

hat particle crushing and the particle size distribution (PSD) has

n the observed macroscopic behaviour for sand (e.g. de Bono and

cDowell, 2018a ). 

The work presented here focuses on how the PSD controls the

verall volume of a soil sample, with a particular focus on how

rushing, and therefore a change in the size distribution, governs

hanges in overall volume. 

A background to the theory linking the particle size distribu-

ion (in particular the smallest particles) to the current voids ratio

r porosity is given in the next section. Section 3 provides a de-

cription of the numerical simulations, followed by results and a

uantitative analysis in Section 4 . Section 5 provides some discus-

ion followed by concluding remarks. 

. Background 

When sand is subjected to increasing stress (e.g. isotropic or

ne-dimensional), after yielding the sample follows a unique nor-

al compression line (NCL) in volume-stress space, known to

e caused by particle crushing. Following Pestana and Whittle

1995), McDowell (2005) proposed analytically that the normal 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Notation 

e voids ratio, = V V / V S 

n porosity, = V V / V T 

V S volume of solids 

V sm 

volume of the smallest particles 

V T total volume, = V S + V V 

V V volume of voids 

compression line for a sand should be linear on log e –log σ axes,

where e is the voids ratio, defined as the ratio between the volume

of voids ( V V ) and volume of solids ( V S ): e = V V / V S , and σ is the ap-

plied stress. The above theory was based on the assumption of a

fractal particle size distribution and the kinematics of particle frac-

ture. This was subsequently investigated using DEM ( McDowell and

de Bono, 2013 ) by performing simulations of crushable sands, and

led to a new compression law in which the normal compression

line can be expressed as: 

e ∝ σ−1 / 2 b (1)

where σ is the applied stress and b describes the size-effect on

strength for the particles: 

σav ∝ d −b (2)

where σ av is the average crushing strength for particles of diam-

eter d . The strength here corresponds to bulk failure, i.e. catas-

trophic splitting into smaller fragments, and can be measured from

crushing single particles between platens. The parameter b de-

scribes the rate at which the average strength increases with de-

creasing particle size (a common observation for most brittle ma-

terials), and is related to the distribution of imperfections/flaws in

the material. 

The slope of the NCL is therefore a function of the particle

strength size-effect. In deriving Eq. (1) , two major steps were nec-

essary: firstly, to relate the applied stress to the current size distri-

bution of particles; and secondly to relate the current particle size

distribution to the current void space. The first step was achieved

by assuming that following yielding, the strength of the smallest

(strongest) particles, σ sm 

is proportional to the applied stress: 

σsm 

∝ σ (3)

which accounts for the hardening of the soil. If a fractal distribu-

tion develops via the continuous fracturing of the smallest grains,

these grains will be in self-similar configurations as stress in-

creases, loaded in the same manner, so the strengths must be pro-

portional to the applied stress. Substituting Eq. (1) into Eq. (2) then

links the applied stress to size of the smallest particles d sm 

: 

σ ∝ d −b 
sm 

(4)

The second step—relating the particle size distribution to the

current void space will now be revisited, and is the subject of a

more detailed analysis. A fractal particle size distribution is usually

defined as one in which (e.g. Turcotte, 1986 ): 

N(l > d) ∝ d −D (5)

where N ( l > d ) is the number of particles with diameter greater

than a ’cut-off’ particle size d , and D is the fractal dimension. For a

discrete, hierarchical size distribution, in which there is a constant

ratio between consecutive particle sizes, the number of particles of

a given size d can be expressed as ( McDowell, 2005; Palmer and

Sanderson, 1991 ): 

N ( l = d ) ∝ d −D (6)

The collective volume of particles of size d can then be ex-

pressed as: 

 ( l = d ) ∝ d 3 −D (7)
nd the cumulative volume of the smallest particles (size d sm 

) can

herefore be written as: 

 sm 

∝ d 3 −D 
sm 

(8)

A fundamental assumption used by McDowell (2005) was that

he volume of the smallest particles, V sm 

is proportional to the

vailable void space ( V v ): 

 sm 

∝ V v (9)

nd so: 

 V ∝ d 3 −D 
sm 

(10)

For the confined compression of a granular material, the vol-

me of solids ( V S ) remains constant, meaning the volume of voids

s proportional to the voids ratio: V V ∝ e , and therefore: 

 ∝ d 3 −D 
sm 

(11)

Substituting Eq. (10) into Eq. (3) , and taking the typical fractal

imension of 2.5 (e.g. Turcotte, 1986 ) therefore gives the compres-

ion law in Eq. (1) , which is able to correctly predict the NCLs for

 range of real sands ( de Bono and McDowell, 2018b ). The assump-

ion in Eq. (8) however has been difficult to quantitatively confirm

n any simulations due to the nature of crushing. For crushed sand,

here is invariably a numerically insignificant number of the small-

st particles, irrespective of their actual size. For example, there are

ypically only 2 fragments of the smallest physical size in samples

f > 30,0 0 0 particles. The cumulative volume of these 2 particles

learly provides no information about the overall pore space or its

nterconnectivity. 

The rationale behind the assumption in Eq. (8) was that as the

mallest particles become smaller and fill the available voids, the

vailable voids become smaller, and the typical void space must be

ore closely related to the volume of one of those particles as op-

osed to the larger particle(s). Incidentally, it has been shown pre-

iously that for space-filling sphere packings (such as Apollonian

acking), the porosity of an assembly of spheres can be expressed

s ( Anishchik and Medvedev, 1995; Manna and Herrmann, 1991 ):

 (l > d) ∝ d 3 −D (12)

here n ( l > d ) is the porosity of the packing calculated only con-

idering particles greater than size d, derived assuming that the

olume of voids tends to zero as the smallest particle size tends to

ero: 

lim 

 sm → 0 
V V = 0 (13)

The porosity n of a material is defined as the ratio between

he volume of voids and the total volume, i.e. n = V V / V T . Putting

he minimum particle size into Eq. (11) therefore gives the overall

orosity of the packing: 

 (l > d sm 

) ∝ d 3 −D 
sm 

(14)

Apollonian sphere packing is the process of iteratively filling the

oids between existing spheres with the largest possible mutually-

angent sphere (e.g. Anishchik and Medvedev, 1995 ). The inser-

ion of new spheres means the total enclosing volume V T remains

onstant whilst the cumulative volume of particles V S increases.

herefore the porosity is proportional to the volume of voids:

 ∝ V V , which substituting into Eq. (14) gives Eq. (10) , providing

n analytical basis to the simple assumption invoked in the com-

ression law. 

In a previous attempt to quantify the volume of the small-

st particles, from simulations of crushable spheres it was found

hat the most suitable method was using the coordination num-

er, defining the so-called smallest particles as those with mini-

al contacts (as opposed to using some finite physical measure).
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Fig. 1. Particle shapes used in DEM simulations. 
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Fig. 2. Illustration of cyclic particle shapes used in Clump D simulation. 
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his approach seemed logical as it was capable of tracking a con-

inuously and gradually evolving PSD, whilst also taking into ac-

ount any local variations in the PSD through the sample. Thus,

efining the ’smallest particles’ as those (spheres) with 5 or fewer

ontacts, there emerged a direct proportionality between the cu-

ulative volume of these smallest particles, V sm 

and the overall

oids ratio e , for all states on the normal compression line, and

as interpreted as confirming the assumption that the volume of

he smallest particles is proportional to the void space. It was also

ound that this relation held true for all states on the critical state

ine, which justified why the critical state line is parallel to the NCL

 de Bono and McDowell, 2018a ). 

In this previous analysis, which used spheres, it was speculated

hat the value of 5 contacts was unimportant and assumed to be a

unction of particle shape. Although ostensibly arbitrary, the value

f 5 was taken based on the fact that higher coordination numbers

re only possible if a particle is surrounded by smaller particles.

or a dense random packing of spheres, the minimum number of

ontacts a load-carrying particle may have is 4. The only feasible

ay for a sphere to be in contact with a much greater number

f surrounding particles is if they are much smaller. Although the-

retically the greatest number of contacts possible with equally-

ized neighbouring spheres is 12 (strictly for hexagonal close pack-

ng), for real, random packings this number will be much lower. 

This work seeks to define a more rigorous definition of the

smallest particles’, avoiding the use of an arbitrary value of

ontacts by investigating non-spherical particles, and further ex-

lore what governs the overall density of a granular material.

ew isotropic compression simulations are presented for crushable

ands using a range of particle shapes, followed by a brief analysis

f sphere-packing. 

. DEM model 

Isotropic compression simulations were performed on crushable

amples with varying particle shapes, for the purpose of achieving

 decrease in overall volume caused by a changing particle size dis-

ribution. The principles and modelling procedure behind all simu-

ations are identical to previous work by the authors, the only dif-

erence being the use of non-spherical particle shapes. Modelling

etails such as the contact model, simulation procedure, break-

ge mechanism and criterion, and all other mechanical properties

re given in several prior publications (e.g. de Bono and McDow-

ll, 2018c ). These details have no effect on the present analysis,

hich is only concerned with volumetrics, so will be omitted for

revity; only relevant details and the new particle shapes will be

iscussed. 

All simulations were performed using PFC ( Itasca, 2014 ). Parti-

les were modelled using ‘clumps’—comprised of overlapping ‘sub-

pheres’. All particles are crushable, and isotropic compression

imulations were performed on each sample in order to generate a

ormal compression line and fractal particle size distribution. 

A total of 5 different shapes were used including spheres. Three

imple clump shapes consisting of 2 or 3 sub-spheres are illus-

rated in Fig. 1 . Particles were allowed to undergo bulk failure,
hereby breaking particles were replaced by 2 smaller fragments

f the same shape, obeying conservation of mass (and temporar-

ly overlapping). The final clump simulation uses a combination of

ore complex particle shapes (the motivation behind this case was

o minimise fragment overlap when placing new fragments, how-

ver this is outside the current scope and the details are irrelevant

o the present analysis). This case involves a cycle of 3 different

article shapes, whereby a particle splits into two fragments of the

ext shape in the cycle (meaning each shape has a different aspect

atio), which repeats itself, shown in Fig. 2 . 

The compression simulations were performed on cylindrical tri-

xial samples, illustrated in Fig. 3 . These were enclosed vertically

y rigid platens and laterally by a flexible, faceted cylindrical mem-

rane, which were used to apply the axial and radial stresses. The

ajority of the initial samples (before isotropic compression) con-

isted of approximately 800 randomly packed particles, with spher-

cal equivalent diameter d e = 2 mm (diameter of a sphere of equal

olume), shown in Fig. 3 (a). Although this initial number of par-

icles is small, this was to enable simulations to be performed



136 J.P. de Bono, G.R. McDowell / International Journal of Solids and Structures 187 (2020) 133–140 

Fig. 3. Triaxial samples (Clump B): initial (a); after compression (b). 
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in an acceptable timeframe. The crushing that occurs in all sim-

ulations results in a great quantity of (mainly fine) particles, e.g.

Fig. 3 (b). An important feature of all simulations is that there was

no comminution limit—i.e. no lower limit to particle size. This al-

lows the unadulterated evolution of realistic fractal particle size

distributions. A consequence of this however is that the numeri-

cal timestep used in the simulations (influenced by d min ) becomes

very small ( Itasca, 2014 ). Thus, to enable the simulations to be per-

formed whilst not imposing artificial conditions, the initial number

of particles was small, helping minimise the calculation time once

extensive crushing has occurred. 

4. Results 

4.1. Normal compression 

The stress-strain results which are used to perform volumetric

analysis are presented in Fig. 4 . Fig. 4 (a) shows the normal com-

pression results for all clump simulations. The simulations demon-

strate the familiar sand behaviour: an initial elastic response, until

the onset of crushing causes yielding, followed by a more dramatic

decrease in volume. All simulations demonstrate tend towards the

same slope, which is to be expected as all materials have the same

size-effect on average particle strengths. Fig. 4 (b) shows the nor-

mal compression results obtained previously for spheres, as well as

all critical states that were obtained from shear tests on samples at

various stresses ( de Bono and McDowell, 2018c ). Also shown is the

normal compression results for a new simulation of spheres using

a larger sample (60 0 0 initial spheres rising to > 150,0 0 0). 

All initial samples have identical, uniform initial PSDs. The fi-

nal PSDs from all normal compression simulations are shown in

Fig. 5 in the conventional manner, showing the varying degrees of
reakage that have occurred, which correlate with the decrease in

olume (taking into account the different initial volumes). Simi-

ar PSDs exist at the critical states, with more crushing associated

ith higher stresses and lower voids ratios ( de Bono and McDow-

ll, 2018c ). All particle size distributions tend towards a fractal dis-

ribution with a fractal dimension of 2.5, plotted in Fig. 6 . The frac-

al dimension is most clear in Fig. 6 (b), and once D = 2.5, remains

onstant as the span of fractal particle sizes broadens. 

.2. Void space as a function of the smallest particles 

A similar approach to defining the ’smallest particles’ based on

he coordination number is used here. The average coordination

umber for the various clump simulations varies greatly from that

or spheres. Before crushing, the average coordination number for

pheres is around 6, whilst that for clumps varies between 6 and

2 depending on the shape (with greater variation once crushing

egins). The prism-shaped clumps ( D ) invariably exhibit the high-

st coordination numbers, which should be expected due to the

ncreased capacity for multiple contacts between two particle sur-

aces. 

It therefore seemed logical to use some relative measure of co-

rdination number, and it was found that a more robust definition

f the smallest particles is achieved by comparing the number of

ontacts a particle has with smaller and bigger neighbouring parti-

les. If Z sm 

is the coordination number with smaller particles, and

 bg is the coordination number with bigger particles then: 

f Z sm 

≤ Z bg 
′ smallest particle ′ , representative of the local void 

space 

if Z sm 

> Z bg many contacts , not representative of the void space 

(15)
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Fig. 4. Normal compression results: clumps (a); spheres, including critical states (b). 

Fig. 5. PSDs from all compression simulations. 
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The use of particle contact information to determine whether or

ot a particle is effectively the smallest means that these ’smallest

articles’ will include particles with different physical sizes, and

as the advantage of taking into account local differences in the

ample grading. 

Calculating the cumulative volume of all such smallest particles

s V sm 

, demonstrates a unique direct proportionality with the vol-

me of voids ( Eq. (8) ), and therefore the voids ratio. For the sim-

lations here, V sm 

is of the order 10 –6 , so the plotted values have

een normalised by the volume of solids: V sm 

∗ = V sm 

/ V s . Fig. 7 (a)

lots e as a function of V sm 

∗ for the clump simulations. As soon

s breakage initiates, all clump simulations follow a linear path

irected towards the origin, as the volume of the smallest parti-

les and overall void space decrease. Before any breakage the sam-

les consist of a single size of particle, all being simultaneously

he smallest and largest, and V sm 

∗ = 1, and the relationship does
learly not apply. The prism clumps ( D ) appear to have a differ-

nt coefficient of proportionality, which is likely to be a function

f the particle shape, although the other clump simulations appear

pproximately coincident. 

Fig. 7 (b) shows the equivalent data for the simulations using

pheres; the use of V sm 

∗ facilitates a comparison between the two

imulations with different sample size. All simulations appear to

ave the same constant of proportionality. The large samples of

pheres displays almost perfect linearity, suggesting that the noise

n the data calculated from other simulations could be due to the

elatively small sample size. 

One observation is that the relation V sm 

∝ e holds for a wide

ange of states, including states immediately following yielding,

efore the PSD becomes fractal in character; V sm 

∝ e appears to

pply to all states except the initial states when the samples con-

ists of a single particle size. The same constant of proportion-

lity between the compression simulations and the critical states

uggests a unique relation between V sm 

and e , independent of

he stress path or applied stress ratio. To investigate this further,

he same analysis was applied to results from a previous simu-

ation which was used to explore the elastic–plastic stress space,

lso plotted in Fig. 7 (b). The stress-path of this simulation is sum-

arised in the inset, full details showing the location of the yield

urface can be found in de Bono and McDowell (2018d) . For this

ase, V sm 

∝ e remains true even for elastic states when particle

rushing is not occurring. 

.3. Application to sphere packing 

To further investigate the proposed theory—that particles with

ainly larger neighbours are representative of the voids—the anal-

sis will now be applied to an Apollonian sphere packing. Apol-

onian sphere packing is the process of iteratively filling the

oids between existing spheres with the largest possible mutually-

angent sphere (e.g. Anishchik and Medvedev, 1995 ). For this pro-

ess, it has been shown that the emergent PSD is also fractal with

 = 2.5, the same as observed from crushing. 

An Apollonian packing was created starting with 4 initial

pheres of unit radius, see Fig. 8 (a). Following 9 iterations, the

nal arrangement consisted of ≈50 0,0 0 0 spheres, shown in Fig.

 (b) and (c). In this case the volume of the smallest particles, V sm 

,

hould be proportional to the porosity n rather than the voids ra-

io, as the volume of solids is increased with each iteration. 
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Fig. 6. PSDs showing fractal nature. 

Fig. 7. Voids ratio as a function of volume of the smallest particles: clump simulations (a), spheres simulations (b). 
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Despite the apparently regular process of sphere insertion, the

resulting particle size distribution is far more continuous than that

obtained from the compression simulations, in which particles un-

dergo hierarchical splitting. Of the 473,039 particles, there are over

10,0 0 0 different sizes; 4 spheres with the maximum size d = 2,

and 24 spheres with the minimum size d ≈ 0.001824. The ultimate

PSD is shown in Fig. 9 (a), showing a clear similarity with those

obtained from the crushing simulations (as well as experimen-

tally), exhibiting a fractal dimension of 2.5 across a broad range

of sizes. The calculated values of V sm 

are plotted against porosity

in Fig. 9 (b), which is plotted from the 1st iteration onwards and

annotated with the total number of spheres. The graph shows a

very good correlation using this definition of the smallest particles

with seemingly perfect proportionality emerging as the number of

spheres and range of sizes increase. For the first 2 iterations there

is clearly an inadequate number of spheres and/or range of sizes,

and the relationship between n and V sm 

does not apply. 

5. Discussion 

The initial motivation for trying to relate the PSD to the cur-

rent voids ratio was in the derivation of a compression law, able to
redict the compressibility of crushable soil. The follow-up anal-

sis here appears to reveal a more fundamental relation between

he smallest particles, which are representative of the surrounding

oids, and the overall packing density or voids. 

The proposed definition is that these ’smallest particles’ are de-

ned as those with predominantly larger neighbouring particles.

he cumulative volume of these effectively-smallest particles ap-

ears to correlate directly with the overall pore space, and appears

o be valid irrespective of stress path or whether the PSD is fractal,

s long as there is some range of physical particle sizes. The fact

hat crushing leads to a fractal distribution, allows a prediction to

e made of the quantity and volume of these particles, and pro-

ides the link needed for the compression law. In a fractal distri-

ution, at the fine end of the PSD, the geometrical configuration is

lways the same—for example in an Apollonian packing the small-

st particles are always mutually tangent to exactly 4 surround-

ng larger spheres. In other words, the distribution of contacts is

elf-similar. However this self-similarity will be different for dif-

erent stress paths—for example, samples compressed under one-

imensional conditions, or critical states, are loaded anisotropically

nd will have a different distribution of contacts, and the ’smallest
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Fig. 8. Apollonian sphere packing: initial 4 spheres (a); same perspective of the final packing (b), internal view (c). 

Fig. 9. Apollonian packing: PSD (a), and porosity as a function of volume of smallest particles (b). 
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particles’ will be different in each case. For spheres, in Fig. 7 (b)

the overall void space appears to be a unique function of these

smallest particles; the constant of proportionality for V sm 

∝ e ap-

pears the same for all loading configurations, independent of the

contact distribution. This insensitivity to stress path or stress ra-

tio is most supported by the stress-path simulation, which was

subjected to positive and negative shear stresses causing plastic

strains, and then isotropic compression, and during all of this V sm 

remains proportional to e . 

Going forward, it would seem sensible to attribute a new term

to these particles, such as the ’mechanically-smallest’ or ’effective’

particles, or some such expression, avoiding repeated and poten-

tially confusing use of the term smallest particles. In any case, it is

hoped that the proposed definition of the effectively-smallest par-

ticles, which govern the overall porosity will form the basis of fur-

ther analytical solutions or predictions of granular densities. It has

already been shown that if it can be predicted (or it is known) how

the PSD changes, then the change in volume of these smallest par-

ticles can be inferred, which under the same loading conditions

can be taken as a measure of the change in voids ratio. Know-

ing which particles control the overall density or porosity could

have possible applications in issues of internal erosion (in which

fine particles are gradually removed, changing the soils engineer-

ing properties), as well as in predicting changes in permeability

due to changes in grading (e.g. caused by crushing). The perme-

ability of any granular or soil sample depends on more factors than

simply the void space, however empirical solutions typically use

values such as d 10 
2 ( Hazen, 1892 ) or similar—a more suitable lin-

ear dimension could be d sm 

. 

6. Conclusion 

This work aimed to clarify what governs the void space in gran-

ular soil. It has previously been speculated that the volume of

voids is linked to the volume of the smallest particles. A new defi-

nition of ’smallest particles’ has been proposed, where the smallest

particles are those that have relatively fewer contacts with smaller

particles compared to larger particles. The volume of such parti-

cles is proportional to the void space, and this is true for all parti-

cle shapes investigated, as well as idealised Apollonian packings of

spheres. 

For soil, the strength of the smallest particles gives the harden-

ing law as stress increases. It appears that the normal compression

of soil is the breakage of particles in order to achieve an efficient
pace-filling packing, similar to Apollonian packing and with the

ame fractal dimension. 
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