Full SiC Version of the EDA5 Inverter

Shajjad Chowdhury*, Emre Gurpinar, Alberto Castellazzi
Power Electronics, Machines and Control Group
The University of Nottingham
Nottingham, UK
Email: MD.chowdhury@nottingham.ac.uk

Abstract

Recently, a novel hybrid multilevel inverter topology, the EDA5, was presented. The novel inverter topology comprises of two floating capacitors and 16 active switches to achieve five-level output voltage waveform and achieves higher efficiency at low-modulation index compared to a five-level Active Neural Point Clamped (5L-ANPC) converter. In this work, a full SiC MOSFET version of the inverter is presented, using commercially available 1200 V rated devices. A balanced mix of simulation and experimental results are presented to point out the salient features of the topology. The topology is compared with 5L-ANPC inverter in simulation, and experimentally demonstrated up to 12 kW output power with 1 kV DC link voltage.

Keywords-SiC MOSFETs; multilevel converter; hybrid single phase converter.

I. INTRODUCTION

Electricity generation from renewable energy sources such as wind, tidal, wave and solar has been one of the trending topics in power conversion research in order to reduce carbon emissions and dependency to limited fossil fuel supplies. Generating electricity by using photovoltaic panels and wind turbines has been one of the most studied topics. One of the main aims of the research in this area is increasing efficiency of the power electronics system that delivers the generated power from renewable sources to the grid.

Multilevel inverters have been discussed in literature as good candidates for high power conversion systems due to improved output voltage distortion, reduced voltage stress across power semiconductors and reduced filtering requirements [1-3]. The first multilevel converter designs were based on neutral point clamped (NPC) and flying capacitor (FC) based topologies. These two approaches have been proposed for three and higher number of voltage levels [2, 4]. At high number of voltage levels (five and more), NPC based inverters suffer from high semiconductor count, high conduction losses and asymmetrical semiconductor switching loss. On the other hand, FC based topologies require complex control schemes for balancing flying capacitors and high energy storage in floating capacitors [1, 2]. Due to the limitations of NPC and FC based topologies for high number voltage levels (five and above), various hybrid topologies have been introduced [5]. One of the most popular hybrid topologies is five-level active neutral point clamped (ANPC) inverter.

ANPC is a member of half-bridge neutral point clamped inverter family and it was introduced in [6] as an
alternative to three-level NPC inverter for improved loss balancing and better utilization of semiconductor chip areas in the inverter. Replacing diodes in NPC inverters with active switches provides additional zero states, and at the same time different modulation strategies can be applied with a flexible utilization of the redundant switching states. The three-level ANPC topology is extended to five-level ANPC (5L-ANPC) in [7-9] and presented in Fig. 1. In Fig. 1 the 5L-ANPC converter is formed by 12 active switches and a floating capacitor C_{fl}, where the voltage of the floating DC link capacitor is maintained at one fourth of the main DC link voltage. Addition of the floating capacitor along with active clamping switches the topology can achieve five voltage levels $(+2 E,+E, 0,-E,-$ $2 E)$ across the load.

Similar hybrid five-level topology based on two floating capacitors and 14 active switches has been introduced in literature [10]. The floating capacitor voltages are kept at one fourth of DC link voltage and an inductor is used for limiting inrush current between DC link capacitors and floating capacitors due to voltage variation across floating capacitors. Another hybrid multilevel inverter concept called `Stacked Multicell Converter` (SMC) is discussed in [11, 12]. The concept is based on increasing number of voltage levels at the output of the converter by introducing floating capacitor and active switch based cells. In all three inverters discussed here has four series connected switching devices for every commutation loop thus the blocking voltage requirement of the power semiconductor devices reduced to one fourth of the main DC link voltage.

In this paper, a new five-level hybrid converter is presented. The converter topology comprise of 16 active switches, two floating capacitors and can achieve five level output voltage waveform across the load. The converter topology achieves higher efficiency than 5-level ANPC converter at lower modulation index due to redundant switching states. The proposed converter system is compared with 5-level ANPC converter using simulation platform along with the experimental results to validate the findings.

II. PROPOSED INVERTER TOPOLOGY

The proposed five-level inverter topology in this paper is based on a hybrid configuration of neutral-point-clamp and floating capacitors. The topology is named as 'Efficiency and Dense Architecture: EDA5' and filed for patent application [13]. The topology is formed by 16 active switches $S_{l}-S_{I 0}$, two floating capacitors $C_{f 1-2}$ and two DC-link capacitors $C_{D C 1-2}$.

The schematic of EDA5 is shown in Fig. 2. Each switch in the converter is rated at E , one-fourth of the total DC link voltage $4 E$. The charge state of floating capacitors $C_{f l-2}$ is controlled by utilizing redundant states in order to keep capacitor voltages at E to achieve five-level output voltage waveform ($2 E, E, 0,-E$ and $-2 E$).

A. Switching States

The switching states of the converter based on unity power factor operation are presented in Table I. Series connected switches such as $S_{X 1}$ and $S_{X 2}$ are switched on and off simultaneously, and therefore are represented as a single switch S_{X} in the switching state table. Single state is available for $+2 E$ and $-2 E$ output voltage levels while two states are available for $+E$ and $-E$ output voltage levels and three states are available for zero output state. The two switching states for $+E$ and $-E$ levels are achieved by introducing floating capacitors to the path of output current $I_{\text {OUTr }}$. Depending on the polarity of output current and voltage, the floating capacitors are charged or discharged.

Fig. 1. Active neutral point clamped five level converter.
In Table I, the switching states E_{C} and E_{D} define the charging and discharging states respectively for floating capacitors at unity power factor operation and inverter mode. To achieve zero output voltage, three possible states can be used: first, upper path O_{P} can be formed by S_{3}, S_{7} and S_{9}. The second path O_{N} formed by S_{4}, S_{8} and S_{10} finally, parallel path 0_{X} formed by simultaneous conduction of upper path O_{P} and lower path O_{N}. The main benefit of parallel zero state path O_{X} is the reduction of conduction losses in the power cell during low modulation indexes or higher DC link voltages, where zero state conduction is dominant.

The current paths for four different switching states during positive half of output voltage for inverter mode are shown in Fig. 3. It can be seen from Fig. 2 and from Fig. 3 that four devices are conducting during all switching states except zero state 0_{X} where the output current is divided into two zero state
branches. Charging or discharging state can be selected during $+E$ and $-E$ states in order to control the floating capacitor voltage to one fourth of the main DC link capacitor voltage. For example, during unity power factor operation for inverter mode, at $+E_{C}$ state, switches S_{l}, S_{3} and S_{9} are turned-on in order to apply $+E$ state to the output by subtracting floating capacitor voltage E from DC link capacitor voltage $+2 E$ while charging the floating capacitor. During $+E_{D}$ state, the voltage across floating capacitor is applied to the output of the converter by turning on S_{5} and S_{7} switches. The charging or discharging status of a switching state can be defined by polarity of output voltage and direction of output current.

Fig. 2. Proposed five level converter: EDA5.

Fig. 3. Current paths for different switching states during positive half of the output voltage.

III. Commutation Scheme

The commutation procedure between switching states, which are shown in Table I, has to be determined for transition of continuous output current from one state to another. The
possible commutation schemes for the positive half of the output voltage for positive and negative output current are shown in Fig. 4. The blue and red curves for Vout represents output voltage with positive and negative output currents respectively. Due to the nature of the topology, suitable commutations can be realized between $+2 E$ and $+E_{D}$ or $+E_{C}$ and O_{P} states. The commutation between $+E_{C}$ and $+E_{D}$ is not possible without clamping the output to another voltage state. In the first commutation scenario from $+2 E$ to $+E_{C}$ in Fig. 4(a), S_{9} switch is turned-on first, and after the dead-time period $t_{d t}, S_{5}$ is switched-off and finally S_{3} switch is turned on. Depending on the direction of output current, the output voltage changes from $+2 E$ to $+E_{C}$ state after $t_{d t}$ or $2 t_{d t}$. Commutation schemes in Fig. 4 (b), (c) and (d) have similar structure with Fig. 4 (a), and all of the schemes can be realised by applying logic gates to PWM signals coming from the controller.

Fig. 4. Commutation scheme for EDA5 converter.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The proposed topology was simulated using PLECS simulation platform. To achieve results the main DC link voltage was set to 1 kV and the floating inverters reference voltages were set to 250 V . Switching frequency was set to 10 kHz for all the operation points of the converter. The results are shown in Fig. 5 where a five level phase voltage can be seen along with the load current. The main and floating DC link voltages are shown in Fig. 6. It can be seen from the
results that the converter system is able to control the floating capacitor voltage and can achieve multilevel output voltage waveform. The semiconductor losses including conduction and switching losses were also calculated by fixing the modulation index and by varying output power from 1 kW to 10 kW , and the semiconductor losses are presented in Fig. 7. Finally, efficiency results of the power cell with these two topologies are also compared with varying modulation index and shown in Fig. 8. It can be seen from the figure that the proposed topology EDA5 has almost the same performance with 5LANPC topology with fixed modulation index, as shown in Fig. 7 and EDA5 provides higher efficiency at lower modulation index due to parallel conduction of SiC MOSFETs at zero states. The paralleling of devices at zero states brings the conduction losses by a factor of 4 as the conduction losses increase with the square of device current in unipolar devices, SiC MOSFET in this case. It should be noted that the deadtime between complimentary switches, which is 500 ns in this case, is small in comparison to switching period ($100 \mu \mathrm{~s}$), and therefore body diode conduction losses can be neglected.

Fig. 5. Output voltage and current of the converter at 12 kW output power.

Fig. 6. Main and floating DC link voltages of the converter at 12 kW output power.

To validate the theory and simulation results, single phase prototype with 12 kW continuous output power has been build, and shown in Fig. 9. It can be seen from the figure that the experimental converters has RC snubbers and balancing resistors to achieve dynamic and static voltage sharing between series connected devices. The prototype parameters are presented in Table II. In order to achieve results using experimental rig, the main DC link voltage was supplied with a constant DC voltage source and the main DC link voltage was set to 1 kV . The modulation index was set to 0.8 and the
converter was operated with an RL load to achieve continuous output current. A 1200V SiC MOSFET (C2M0040120D) with $40 \mathrm{~m} \Omega$ on-state resistance has been selected for the prototype[14]. It should be noted that the blocking voltage rating of the selected devices is much higher than required rating due to lack of available 650 V SiC MOSFETs at required current rating. Ideally, devices at 400 V or 600 V blocking class can be used to operate the converter with 1 kV DC link voltage as each device will be subject to 250 V blocking voltage with 150 V or 350 V safety margin.

Fig. 7. Efficiency comparison of EDA5 in contrast with 5-L ANPC converter with a fixed modulation of 0.8 .

Fig. 8. Efficiency comparison of EDA5 in contrast with 5-L ANPC converter with varying modulation index.

Fig. 9. Single phase 12 kW prototype.
The output voltage and the load current is shown in Fig. 11, where the converter was operating at 2.5 kW . The main and
floating DC link voltages are shown in Fig. 12. It is evident from the figures that the converter topology can control the floating capacitor voltages and can achieve multilevel output voltage waveform successfully. The loss curve of the experimental prototype under different load conditions is presented in Fig. 10, with two operating conditions where the converter was supplied with 800 V and 1 kV DC link voltages respectively. It can be seen from the efficiency results that the converter is less efficient with lower DC link voltage.

Fig. 10. Efficiency of the experimental prototype.

TABLE I. SWITCHING States

State	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	$\mathbf{S}_{\mathbf{6}}$	$\mathbf{S}_{\mathbf{7}}$	$\mathbf{S}_{\mathbf{8}}$	$\mathbf{S}_{\mathbf{9}}$	$\mathbf{S}_{\mathbf{1 0}}$
$+\mathbf{+ 2} \mathbf{E}$	1	0	0	0	1	0	0	0	0	0
$+\mathbf{E}_{\mathbf{C}}$	1	0	1	0	0	0	0	0	1	0
$+\mathbf{E}_{\mathbf{D}}$	0	0	0	0	1	0	1	0	0	0
$\mathbf{0}_{\mathbf{P}}$	0	0	1	0	0	0	1	0	1	0
$\mathbf{0}_{\mathbf{N}}$	0	0	0	1	0	0	0	1	0	1
$\mathbf{0}_{\mathbf{X}}$	0	0	1	1	0	0	1	1	1	1
$\mathbf{-} \mathbf{E}_{\mathbf{D}}$	0	0	0	0	0	1	0	1	0	0
$\mathbf{-} \mathbf{E}_{\mathbf{C}}$	0	1	0	1	0	0	0	0	0	1
$\mathbf{- 2 E}$	0	1	0	0	0	1	0	0	0	0

Fig. 11. Output voltage and current of the experimental converter at 2.5 kW output power.

Fig. 12. Main and floating DC link voltages of the experimental converter at 2.5 kW output power.

Fig. 13. Output voltage and current of the experimental converter at 12 kW output power.

Fig. 14. Main and floating DC link voltages of the experimental converter at 12 kW output power.

The lower efficiency with lower DC link voltage suggest that the converter losses are governed by the increased conduction losses of the devices for varying output power rating. Output voltage and current of the converter along with the DC link voltages are shown in Fig. 13 and in Fig. 14 respectively at 12 kW output power. From Fig .14, It can be seen that at higher load, the floating DC link voltage fluctuations increase due to higher load demand. The SiC based

EDA5 converter shown in this paper has much higher efficiency than the Si IGBT based converter shown in [15]. In the paper the maximum efficiency of 96% was attained using Si IGBTs in contrast with 97.5% with SiC MOSFETs at 6 kW output power. It is evident from the experimental results that the SiC based EDA5 converter can achieve much higher efficiency than Si IGBT based converter due to superior properties of SiC MOSFETs.

TABLE II. EXPERIMENTAL PARAMETERS

Parameter	Symbol	Value
DC link voltage	$V_{D C}$	1 kV
Output power	$P_{O U T}$	10 kW
Switching frequency	$f_{s w}$	10 kHz
Interlocking dead time	$t_{D T}$	500 ns
Floating DC link	$C_{f l-f 2}$	$200 \mu \mathrm{~F}$
capacitance	S_{l-10}	$1.2 \mathrm{kV}, 40 \mathrm{~A} \mathrm{MOSFETs}$
Switching device	$R_{D S_{-} o N}$	$40 \mathrm{~m} \Omega\left(25^{\circ} \mathrm{C}\right)$
Device on state resistance	L_{f}	$62 \mathrm{~m} \Omega\left(100^{\circ} \mathrm{C}\right)$
Load inductance		1.5 mH

V. CONCLUSION

In this paper, a novel five-level hybrid inverter topology has been presented. The proposed topology is compared with state-of-the-art hybrid multilevel topologies in simulation. Simulation results show that EDA5 converter is able to control the floating capacitor and can achieve five level output voltage waveform. Moreover, the proposed converter shows higher efficiency in comparison to 5L-ANPC, especially at lighter load conditions under same operating conditions. A 12 kW prototype has been built using SiC devices for experimental validation. The experimental results suggests that the converter can control floating capacitor voltage and also achieves multilevel output voltage waveform with high efficiency.

VI. REFERENCES

[1] J. Rodriguez, L. Jih-Sheng, and P. Fang Zheng, "Multilevel inverters: a survey of topologies, controls, and applications," Industrial Electronics, IEEE Transactions on, vol. 49, pp. 724-738, 2002.
[2] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, W. Bin, et al., "Recent Advances and Industrial Applications of Multilevel Converters," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 2553-2580, 2010.
[3] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, and M. A. M. Prats, "The age of multilevel converters arrives," Industrial Electronics Magazine, IEEE, vol. 2, pp. 28-39, 2008.
[4] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, "A Survey on Neutral-Point-Clamped Inverters," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 2219-2230, 2010.
[5] M. D. Manjrekar, P. K. Steimer, and T. A. Lipo, "Hybrid multilevel power conversion system: a competitive solution for high-power
applications," IEEE Transactions on Industry Applications, vol. 36, pp. 834-841, 2000.
[6] T. Bruckner, S. Bernet, and H. Guldner, "The active NPC converter and its loss-balancing control," IEEE Transactions on Industrial Electronics, vol. 52, pp. 855-868, 2005.
[7] F. Kieferndorf, M. Basler, L. A. Serpa, J. H. Fabian, A. Coccia, and G. A. Scheuer, "A new medium voltage drive system based on ANPC-5L technology," in 2010 IEEE International Conference on Industrial Technology, 2010, pp. 643-649.
[8] P. Barbosa, J. Steinke, P. Steimer, L. Meysenc, and T. Meynard, "Converter circuit for switching a large number of switching voltage levels," ed: Google Patents, 2007.
[9] P. Barbosa, P. Steimer, J. Steinke, M. Winkelnkemper, and N. Celanovic, "Active-neutral-point-clamped (ANPC) multilevel converter technology," in 2005 European Conference on Power Electronics and Applications, 2005, pp. 10 pp.-P. 10.
[10] M. Yatsu and K. Yoda, "Five-level converter," ed: Google Patents, 2014.
[11] G. Gateau, T. A. Meynard, and H. Foch, "Stacked multicell converter (SMC): properties and design," in 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), 2001, pp. 1583-1588 vol. 3.
[12] S. Dargahi, E. Babaei, S. Eskandari, V. Dargahi, and M. Sabahi, "Flying-capacitor stacked multicell multilevel voltage source inverters: analysis and modelling," IET Power Electronics, vol. 7, pp. 2969-2987, 2014.
[13] E. Gurpinar, D. De, and A. Castellazzi, "Power converter," GB 1520 961.2, 11 27, 2015.
[14] CREE, "C2M0040120D Silicon Carbide Power MOSFET," I. CREE, Ed., 2014 ed. Durham, NC, 2014.
[15] E. Gurpinar and A. Castellazzi, "Novel Multilevel Hybrid Inverter Topology with Power Scalability," presented at the The 42nd Annual Conference of IEEE Industrial Electronics Society, Florence, Italy, 2016.

