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Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimation
of relevant parameters. We consider a probe undergoing a phase shift ϕ whose generator is randomly sampled
according to a distribution with unknown concentration κ , which introduces a physical source of noise. We then
investigate strategies for the joint estimation of the two parameters ϕ and κ given a finite number N of interactions
with the phase imprinting channel. We consider both single qubit and multipartite entangled probes, and identify
regions of the parameters where simultaneous estimation is advantageous, resulting in up to a twofold reduction
in resources. Quantum enhanced precision is achievable at moderate N , while for sufficiently large N classical
strategies take over and the precision follows the standard quantum limit. We show that full-scale entanglement
is not needed to reach such an enhancement, as efficient strategies using significantly fewer qubits in a scheme
interpolating between the conventional sequential and parallel metrological schemes yield the same effective
performance. These results may have relevant applications in optimization of sensing technologies.
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I. INTRODUCTION

Quantum metrology aims to realize measurements with a
precision beyond any threshold achievable by using classical
methods alone [1]. To reach this goal, quantum phenomena
need to be suitably exploited as resources [2,3]. This field
of research is of pivotal importance for the improvement
of fundamental metrological standards, enabling widespread
applications such as in timing, healthcare, defense, navigation,
and astronomy [4–7].

Measurements of physical quantities, such as the strength
of a field, a force, displacements, changes in concentration or
time, can very often be recast in terms of a phase estimation
scheme [4,8]. This scheme is paradigmatic in displaying
the quantum enhancement possible in metrology. Such an
advantage is normally defined by the reduced scaling of the
error on the estimated parameter as a function of the number
of interactions, N , between the adopted probe and the channel
imprinting an unknown phase ϕ on it. It is customary to refer to
an inverse linear scaling of the variance δ2ϕ ∼ N−1 as to the
standard quantum limit (SQL), which is just a consequence
of classical statistics in the regime of a large number N of
repetitions. Conversely, exploiting quantum resources such as
coherence (manifested as asymmetry with respect to the phase
generator) [2,9] or multipartite entanglement [3], it is ideally
possible to reduce the error on the estimate of ϕ by a quadratic
factor, reaching the so-called Heisenberg limit δ2ϕ ∼ N−2.

However, a central aspect of phase sensing in a real-world
scenario is the interaction between the probing system and the
environment. Unfortunately, when this is taken into account,
the promised quantum advantage is severely affected, with
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the enhancement becoming, at best, a constant factor in
the asymptotic limit of large N , under most commonly
encountered noise models [10–13]. This motivates one to
examine more carefully the practical regime of finite N , where
some form of advantage may remain [2,11,14].

In many of the past studies on noisy quantum metrology,
the analyzed task was purely that of phase (or frequency)
estimation, under the assumption of knowing the details
of the noise sources, e.g., by means of prior information.
However, one may also want to directly estimate the noise
on the system, which may in turn allow for an improved
estimation of the phase parameter, as well as being of interest
in its own right. Rather than estimating the noise and phase
parameters individually, some advantage may be attained
by simultaneous estimation, bringing us into the field of
multiparameter quantum metrology [15–17].

From an experimental point of view, estimating param-
eters simultaneously in a single metrology protocol can be
more challenging than estimating each of them individually.
However, in the best-case scenario, considering an estimation
of, say, p parameters at once, the measurement precision of
one parameter will be totally unaffected by the simultaneous
measurement of the others, reducing the resources required
by a factor of p. This is known as the parameters being
compatible [17]. In general, exploring problems and devel-
oping solutions for multiparameter quantum metrology may
not only result in an advantage in high-level applications
such as microscopy, spectroscopy, optical or magnetic field
sensing, or gravitational wave detection [7,18], but also
provide deeper insights on multipartite quantum correlated
states and quantum measurements. Partly motivated by these
perspectives, a number of recent works have investigated
compatibility and simultaneous estimation of two or more
parameters [16,17,19,20], be they associated to noise char-
acteristics [21], or multiple phases [22], or some instances of
phase and noise [23].
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In this work we look at multiparameter estimation in the
context of a noise model where the phase imprinting operation
on qubit probes is realized by a unitary with a randomly
sampled generator. This provides insight into multiparameter
quantum metrology more broadly, as an example of estimation
under a nontrivial noise model, and a scheme where an
enhancement is attainable even when it is lost in the asymptotic
limit and when the parameters are not always fully compatible.
The model proves particularly instructive as the noise can be
completely defined by a single parameter κ , corresponding
to the inverse width of the distribution of the phase genera-
tor [14], so that our analysis can more easily outline definitive
metrological strategies for the joint estimation of phase (ϕ) and
noise (κ), and single out an efficient use of quantum resources
to fulfill these strategies.

The paper is organized as follows. In Sec. II we recall the
basics of multiparameter quantum estimation theory, while
the noise model under consideration is described in Sec. III. In
Secs. IV and V we first investigate in detail the estimation of
ϕ and κ using single qubit and two qubit probes, respectively,
studying the optimal initial probe states and the compatibility.
We find that, although the parameters are not always fully
compatible, the simultaneous estimation scheme is always
superior, with the degree of this superiority being dependent
on the values of the parameters to be estimated. In Sec. VI
we then move to the case of using N -qubit parallel entangled
probes at the input. Here, we define the metrological strategies
that arise and the areas of the parameter space where each
strategy is relevant. We find that there is always a quantum
enhancement at finite N before the quantum schemes are
overtaken by their classical counterparts at high N . However,
whether individual or simultaneous estimation is optimal relies
both on the parameter values and the size of the probe available.
Finally, in Sec. VII we explore a more general scheme for
quantum metrology (see Fig. 1), a hybrid of the parallel and
sequential metrological schemes usually considered [1], in
which each qubit of an M-qubit entangled probe is passed
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FIG. 1. General scheme for quantum metrology. Each qubit of
an M-partite entangled state is subjected to a sequence of N/M

applications of a channel �, which imprints the parameters to be
estimated onto the probe. For M = 1 this reduces to a sequential
scheme relying on single qubit coherence and N iterations of the
channel, while for M = N this reduces to a fully parallel scheme
relying on N -qubit entanglement and a single application of the
channel on each qubit. All the plotted quantities are dimensionless.

through the phase imprinting channel N/M times such that the
total number of applications, N , remains constant. It is known
that parallel, M = N , schemes are typically more robust under
noise than sequential, M = 1, schemes [13], but are far more
difficult to implement experimentally. It is therefore striking
that we find the error saturates very quickly with M , that is,
an entangled probe state of only a few particles may achieve
an error arbitrarily close to that of a large-scale multipartite
entangled probe. This observation is independent of the
parameter values or the total number of channel applications
and may aid the transition to experimentally feasible quantum
sensing and metrology.

II. QUANTUM PARAMETER ESTIMATION

A typical estimation protocol consists of the following
steps. First, a quantum probe state, ρ0, is prepared. Next,
the probe state is modified by some physical mechanism,
encoding the set of parameters to be estimated, {μ}, onto
the state. Formally, this encoding can be described by a
parametrized completely positive trace preserving (CPTP)
map, �{μ}. Finally, the evolved probe state, ρ{μ} = �{μ}[ρ0], is
measured and estimates of the parameters are obtained through
classical post-processing of the measurement results. The per-
formance of an estimator can be quantified by the covariance
matrix, Cov(ρ{μ}), which captures both the variance of—and
therefore the error on—each of the individual parameters,
as well as the covariance—and therefore some indication of
the correlation—between them. For unbiased estimators, the
quantum Cramér-Rao bound establishes a lower bound to the
covariance matrix in terms of the quantum Fisher information
matrix (QFIM) [15]

Cov(ρ{μ}) � F−1. (1)

The QFIM F contains information on the parameters of a
system that is acquired by performing an optimal measurement
on it. The entries of the QFIM are defined as

Fμν = Re[Tr (ρ{μ}LμLν)], (2)

where the Hermitian operator Lμ is the symmetric logarithmic
derivative (SLD) with respect to the parameter μ, defined
implicitly by ∂ρ{μ}/∂μ = 1

2 (ρ{μ}Lμ + Lμρ{μ}). Equation (1)
is in general a matrix inequality, but in the special case of
single-parameter estimation it reduces to the scalar Cramér-
Rao inequality δ2μ � F−1

μμ , where δ2μ is the variance of the
estimator of the parameter μ and Fμμ is the corresponding
quantum Fisher information (QFI). The variance δ2μ can
be minimized by selecting the probe state with maximal
sensitivity to changes in the parameter μ and by performing the
optimal measurement which is given by the projectors onto the
eigenvectors of Lμ. This leads asymptotically to the saturation
of the scalar Cramér-Rao bound for any single-parameter
estimation.

In multiparameter estimation protocols there are more
challenges. Here, in principle one would like to estimate each
parameter as precisely as when using the optimal scheme
for estimating that parameter alone, assuming that the other
parameters are perfectly known. This is possible when the
parameters are compatible, that is, they satisfy the following
conditions [17] (i) There is a single probe state yielding the
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optimal QFI for each of the parameters. (ii) There is a single
measurement which is optimal for extracting information on
all parameters from the evolved state, ensuring the saturability
of the quantum Cramér-Rao bound; this holds iff

Im[Tr (ρ{μ}LμLν)] = 0 ∀ μ,ν. (3)

Finally, (iii) the parameters should be statistically independent,
meaning that the indeterminacy of one of them does not affect
the precision of estimating the others, which holds only in the
case when Fμν = 0 for all μ �= ν. A simultaneous estimation
scheme requires fewer resources than the corresponding
individual estimation scheme by a factor of the number of
parameters to be estimated. If the parameters are compatible
then no precision is lost for any of the parameters, but
the resources required are reduced in this manner so the
enhancement attained is maximal.

To get an explicit comparison of performance, we consider
the ratio between the minimal total variance of estimating the
parameters in the individual and simultaneous schemes as

R = 	ind

	sim
, (4)

where 	ind = ∑
μ δ2μind = ∑

μ F−1
μμ and 	sim = 1

p
Tr (F−1),

where p is the number of parameters to be estimated, a factor
required to account for the reduction in resources mentioned
above. Hence R � p in general, and R > 1 indicates that esti-
mating the parameters simultaneously provides an advantage
over the individual estimation scheme.

In order to assess the performance of a metrological
strategy, it is necessary to define the resources utilized [17].
To this end, we consider the number of channel applications,
N , as a common and fixed resource for each strategy.
This choice allows us to interpolate between sequential and
parallel strategies to determine the configuration of the optimal
protocol, as shown in Fig. 1. This also allows one to obtain
a clear outlook on the role of entanglement in parameter
estimation by comparing the sensitivity of entangled states
of various size. We will also compare the quantum strategies
to the corresponding classical (SQL) strategy by investigating
the use of a pure product state as the probe state.

III. NOISE MODEL

For the noiseless transformation on our system, let a
parameter ϕ be unitarily encoded on a qubit probe by a phase
shift Un = e−iϕHn (here using natural units, h̄ = 1) around the
axis n = (cos φ sin θ, sin φ sin θ, cos θ ) with θ and φ referring
to the polar and azimuthal angles on the Bloch sphere. The
generator for this shift is given by Hn = n · σ , with σ as
the vector of the three Pauli matrices. For two-dimensional
evolved state ρϕ = Unρ0U

†
n, the QFI can be expressed by

Fϕ = |r0|2[1 − (re · n)], where r0 and re are the Bloch vectors
of the initial state and any eigenstate of it, respectively [19]. It
can be found that the maximum value of this QFI is Fmax

ϕ = 1,
which can be saturated when |r0| = 1 and r0 ⊥ n.

In our model, the interaction of the system with its
environment results in fluctuations of the transformation such
that the direction of the generator n is randomly sampled from
some normalized probability distribution p(θ,φ). Given that no
information is available to the experimenter about the specific

FIG. 2. Bloch ball representation of a qubit noisy evolution,
modeled by a phase-covariant unital channel, whose action consists
of a rotation around the z axis by an angle g(ϕ) and a contraction in
the horizontal plane by factor λ⊥(ϕ), as well as a contraction in the z

direction by factor λ‖(ϕ). All the plotted quantities are dimensionless.

setting of n in each run (in contrast to the studies in [24]), the
output state after the shift needs to be evaluated by averaging
over the prior distribution p(θ,φ), which induces an effective
noise. Thus the phase imprinting operation alters the probe
state ρ0 as [14]

ρ0 −→ �[ρ0] ≡
∫ π

0
dθ

∫ 2π

0
dφ Un ρ0 U †

n p(θ,φ) sin θ. (5)

The resulting qubit channel �, which encodes both the unitary
effect of the phase shift and the noise due to the randomness
of its generator, is CPTP and unital (i.e., �[I] = I). By
considering 〈n〉 = ∫ 2π

0 dϕ
∫ π

0 dθ n p(θ,ϕ) sin θ proportional
to (0,0,1), that is, fluctuations of the generator direction around
the Bloch z axis, one naturally restricts to probability distribu-
tions with axial symmetry on the Bloch sphere. This restriction
results in this noise model belonging to the physically relevant
class of unital phase-covariant qubit channels [25]. The overall
effect of such noise is to shrink the Bloch ball by factors λ‖(ϕ)
and λ⊥(ϕ) in the vertical direction and the horizontal plane,
respectively (see Fig. 2). It also rotates the ball by an angle
g(ϕ), which is not necessarily equal to ϕ as it would be in
the noiseless case. It is important to note that these channels
encode information about the phase not only in the rotation by
g(ϕ), but also in its deformation, such that the information is
a function of the noise parameters λ‖(ϕ) and λ⊥(ϕ).

In particular, following [14] we choose the von Mises–
Fisher (vMF) distribution [26] with concentration parameter
κ as the probability distribution for the generator. This has
properties analogous to a Gaussian over a sphere and arises
naturally for data distributed over such a space. The vMF
distribution is defined as

pκ (θ ) = κ eκ cos(θ)

4π sinh(κ)
. (6)
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Its concentration parameter κ gives an idea of how clustered the
distribution of n is around the mean direction (here, the z axis).
For κ → 0 the probability distribution becomes uniform on the
Bloch sphere. Therefore, low κ corresponds to a very broad
distribution for the random generator direction and, hence,
strong noise. By increasing κ , the probability distribution
becomes more concentrated around the z axis which decreases
the strength of the noise such that, for κ → ∞, the noise
vanishes (λ‖ = λ⊥ = 1).

The model when using the vMF distribution may be
stated in Liouville form, that is, a matrix representation
of the map � that acts on the four-component vector
|ρ0) = (〈0|ρ0|0〉,〈0|ρ0|1〉,〈1|ρ0|0〉,〈1|ρ0|1〉)T as

�̃ =

⎛
⎜⎜⎜⎜⎝

1+λ‖(ϕ)
2 0 0 1−λ‖(ϕ)

2

0 λ⊥(ϕ)e−ig(ϕ) 0 0

0 0 λ⊥(ϕ)eig(ϕ) 0
1−λ‖(ϕ)

2 0 0 1+λ‖(ϕ)
2

⎞
⎟⎟⎟⎟⎠,

(7)

where

λ‖(ϕ) = 1 − 2b, λ⊥(ϕ) = |c|,

cos g(ϕ) = c + c∗

2|c|
and

b = 2 sin2 ϕ

κ2
(κ coth κ − 1),

c = cos 2ϕ + b(1 − iκ cot ϕ). (8)

In [14], estimation of the single parameter ϕ under
this noise model was analyzed, assuming the specifics of
the probability distribution, and in particular the concen-
tration κ , known a priori. In this work, we consider in-
stead the more realistic situation in which the concentration
(which determines the strength of the noise as discussed
above) is itself a parameter to be estimated, and investigate
whether an enhancement may be attained by simultane-
ously measuring ϕ and κ in a multiparameter estimation
scheme.

IV. MULTIPARAMETER ESTIMATION
WITH SINGLE QUBIT PROBES

Studying the precision attainable with single qubit probe
states is not only instructive in revealing the physics behind
metrology at this scale, but is also necessary to analyze the
precision in classical estimation schemes. This is because the
QFI of M identical uncorrelated subsystems is just M times
the QFI of each single one of such subsystems, which follows
from the convexity of the QFI on density matrices [27], and
leads to the scaling of the precision in a classical strategy being
governed by the SQL.

Taking a single qubit probe system in the initial state ρ0,
with r0 = (〈σx〉ρ0 ,〈σy〉ρ0 ,〈σz〉ρ0 )T as its corresponding Bloch
vector, one can obtain the final state ρϕ,κ = �[ρ0] with a

mapped Bloch vector r = (r1,r2,r3)T given by

r1 = [cos(2ϕ) + b]〈σx〉ρ0 − bκ cot(ϕ)〈σy〉ρ0 ,

r2 = [cos(2ϕ) + b]〈σy〉ρ0 + bκ cot(ϕ)〈σx〉ρ0 ,

r3 = (1 − 2b)〈σz〉ρ0 ,

where b is given in Eq. (8). Since |r| < 1, an exponential form
can be obtained for this state, ρϕ,κ = eG, with

G = 1

2
ln

(
1 − |r|2

4

)
I + tan−1(|r|)

|r| r · σ . (9)

Following the working of [28], the SLD may be written as

Lμ = r · (∂μr)

1 − |r|2 (−I + r · σ ) + (∂μr) · σ , (10)

which gives the entries of the QFIM as

Fμν = (∂μr) · (∂ν r) + (r · ∂μr)(r · ∂ν r)

1 − |r|2 (11)

for μ,ν ∈ {ϕ,κ}.
To determine whether the parameters ϕ and κ are compati-

ble in a multiparameter estimation scheme, the conditions (i),
(ii), and (iii), as outlined in Sec. II, need to be addressed.
The first requires that both parameters may be optimally
estimated using the same initial probe state. When estimating
ϕ individually, the QFI obeys

Fϕϕ � |∂ϕc|2 + (∂ϕ|c|)2

1 − |c|2 ≡ Fmax
ϕϕ , (12)

where the inequality can be saturated for any state on the equa-
tor of the Bloch sphere, i.e., θ = π/2. An analogous condition
cannot be obtained for the maximum QFI when individually
estimating the noise parameter κ . The corresponding quantity,
Fmax

κκ , has two possible forms, depending on the values of

the parameters. For low ϕ and κ it is given by |∂κc|2 + (∂κ |c|)2

1−|c|2 ,
which may be obtained by using any equatorial state. At high ϕ

and κ , this becomes (∂κb)2

b(1−b) , which is obtained when θ = 0, i.e.,
for a state at the north pole. Therefore, the first compatibility
condition is only satisfied in the low parameter regime. This
transition is shown in Fig. 3.

For sufficiently low values of the parameters ϕ and κ , the
optimal probe state for the simultaneous scheme is still any
equatorial state. Curiously, this region in parameter space is not
precisely the same as that where these states are also optimal
for estimating κ individually, but lies inside the latter. Beyond
this, the optimal state rises above the equator, approaching the
north pole as the parameters increase (see Fig. 3).

The equality

Tr (ρϕ,κ [Lϕ,Lκ ]) = 2ir · (∂ϕ r × ∂κ r) = 0 (13)

may only be satisfied with the equatorial or polar state, but
not with any superposition of the two. Therefore, condition
(ii) is also only satisfied in the low parameter regime. We
must therefore be wary that, over the transition, the quantum
Cramér-Rao bound may not be saturated in the simultaneous
scheme.

Compatibility condition (iii) requires instead the vanishing
of the off-diagonal elements of the QFIM, which is not
achieved in this scheme.
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FIG. 3. Multiparameter estimation with single qubit probes. Top:
the variation of the optimal state for simultaneous estimation with
the parameters ϕ and κ . The purple dashed line separates the two
possible optimal initial states to estimate κ individually: below the
line, any equatorial state, characterized by θ = π/2, is optimal,
while above the optimal state becomes the one with θ = 0. The
equatorial state is always optimal when estimating ϕ individually
instead. Note, moreover, that the regions where the equatorial state is
optimal for the individual estimation of κ and for the joint estimation
of both parameters simultaneously are not the same. Bottom: ratio
R = 	ind/	sim against the parameters to be estimated. This shows
R > 1, and thus the superiority of the simultaneous scheme, over all
parameter space. All the plotted quantities are dimensionless.

This clearly shows that the multiparameter scheme with one
qubit cannot fully meet the compatibility conditions. Nonethe-
less, an advantage may still be attained by simultaneously
estimating the parameters. To compare the two strategies we
must first define the resources precisely. For these schemes,
we are in fact comparing the performance of two uncorrelated
qubit probes. In the independent scheme one of these is
used to estimate κ and the other is used to estimate ϕ, thus

giving the minimal total variance on both the parameters as
	ind(2) = ∑

μ δ2μind(1) = Fϕϕ(1)−1 + Fκκ (1)−1. In simulta-
neous estimation each single qubit is used to estimate both
parameters, so the results from the two qubits may be combined
classically to give 	sim(2) = 1

2	sim(1) = 1
2 Tr [F−1(1)]. When

the parameters are compatible, the off-diagonal elements of
the QFIM are zero, giving 	sim(2) = 1

2	ind(2). The ratio
R = 	ind/	sim introduced in Eq. (4) therefore has a maximum
of 2, and R > 1 indicates superiority of the simultaneous
scheme. In Fig. 3 we see that the simultaneous strategy is
always advantageous and is very close to the ideal, compatible,
case (R = 2) in the low parameter region.

V. MULTIPARAMETER ESTIMATION
WITH BIPARTITE PROBES

In the context of phase estimation, the role of entanglement
in the preparation stage has attracted remarkable attention in
recent years [2–4]. To begin with the exploration of its role
in our multiparameter estimation problem, let us first treat the
simplest case of two qubit entangled probes.

Due to the axial symmetry of the model described in Sec. III,
the probe states that allow optimal parameter estimation can
be sought in the class of states exhibiting both permutational
symmetry of the qubits and parity symmetry under bit
flips. We thus consider the following class of two-qubit
states:

|ψ〉 = α(|00〉 + |11〉) + β(|01〉 + |10〉), (14)

with α,β ∈ R and α2 + β2 = 1
2 . When using the two qubits

in parallel, the channel � acts independently on each qubit,
yielding

ρϕ,κ = � ⊗ �[|ψ〉〈ψ |]

=

⎛
⎜⎜⎜⎜⎝

α2 − ξ αβc∗ αβc∗ α2c∗2

αβc β2 − ξ β2|c|2 αβc∗

αβc β2|c|2 β2 − ξ αβc∗

α2c2 αβc αβc α2 − ξ

⎞
⎟⎟⎟⎟⎠, (15)

where ξ = 2b(1 − b)(α2 − β2).
After a tedious but straightforward calculation, we find

that when estimating either parameter individually, or when
estimating them both simultaneously, the optimal probe state
is given by the maximally entangled state 1√

2
(|00〉 + |11〉) for

most of the relevant parameter space. However, for the strong
noise regime of high ϕ and low κ , the optimal state becomes
the product state |+〉⊗2 with |+〉 = 1√

2
(|0〉 + |1〉). This is

the case when the quantum estimation protocol, relying on
entanglement, is no longer advantageous but is outperformed
by the classical strategy relying on local coherence. This
quantum-classical boundary is slightly different for each
scheme (independent versus simultaneous) and in both cases
is slightly blurred, such that, for some parameter values, the
optimal α lies between 1/2 and 1/

√
2. This is shown in Fig. 4.

Note that any probe state described by Eq. (14) satisfies
condition (ii) of the compatibility requirements, given by
Eq. (3), implying that the quantum Cramér-Rao bound can
always be saturated in this scheme.
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FIG. 4. Optimal bipartite probe states to individually estimate
(left) ϕ and (right) κ , as specified by the parameter α in the two qubit

state |ψ〉 of Eq. (14), with β =
√

1
2 − α2. The thick boundaries delimit

the region where the maximally entangled state (α = 1/
√

2) ceases to
be optimal and is eventually superseded by a product state (α = 1/2).
The corresponding plot in the case of simultaneously estimating both
parameters is almost indistinguishable from the one of estimating κ

alone (right), and is not shown here. All the plotted quantities are
dimensionless.

We also examine the performance ratio, R, when using
bipartite probes. Here, the off-diagonal elements of the QFIM
do not vanish and so the compatibility condition (iii) is not
met, but still the simultaneous scheme may provide some
advantage. As before, this advantage is shown when R > 1.

As shown in Fig. 5, the simultaneous scheme is advanta-
geous for all values of the parameters investigated and is often
close to the ideal case, R = 2, where the advantage stems from
the twofold reduction in resources required.
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FIG. 5. Performance ratio R = 	ind/	sim vs the parameters to
be estimated, using optimal bipartite probe states. Here R is always
above 1 and usually close to its maximum, 2, showing the superiority
of estimating both parameters simultaneously. The boundaries are the
same as in Fig. 4. All the plotted quantities are dimensionless.

VI. METROLOGICAL STRATEGIES
FOR MULTIPARAMETER ESTIMATION

WITH FULLY ENTANGLED PROBES

We now discuss the metrological strategies available with
multipartite entangled probe states. Referring to the scheme
of Fig. 1, here we begin by considering the fully parallel
setting, which corresponds to M = N . For N qubits, we
choose the maximally entangled Greenberger-Horne-Zeilinger
(GHZ) state 1√

2
(|0 . . . 0〉 + |1 . . . 1〉) [29] as our probe state.

This state is permutationally symmetric and is known to be
optimal in noiseless phase estimation [1], as well as in the low
parameter regime in the two qubit case above for our model,
but it may not be so in the presence of noise in general.

Each qubit in the probe undergoes evolution under the
action of the channel � as follows:

ρ = �⊗N [ρ0] = �1 + �2, (16)

where we make use of the structure of the GHZ state to
decompose the evolved state into its corner and diagonal parts,

�1 = 1

2
([bN + (1 − b)N ](|0〉〈0|⊗N + |1〉〈1|⊗N )

+ cN |0〉〈1|⊗N + c∗N |1〉〈0|⊗N ), (17)

�2 = 1

2

N−1∑
m=1

[bm(1 − b)N−m + bN−m(1 − b)m]

× |0〉〈0|⊗N−m |1〉〈1|⊗m. (18)

In our analysis, as usual, one may choose to estimate κ and
ϕ individually or simultaneously. Hence we discuss the follow-
ing possible strategies using 2N qubit probes: the individual
estimation, where two N -partite GHZ states are used, one to
estimate κ and one to estimate ϕ; the simultaneous estimation,
where two N -partite GHZ states are used, each estimating
the two parameters simultaneously; and the classical (SQL)
strategy, where estimates of the parameters are obtained from
measurements on 2N single qubit states, according to the
optimal prescription of Sec. IV. The estimation errors in the
individual and simultaneous strategies may be found from
the entries in the QFIM as follows:

	ind(2N ) = δ2ϕ(N ) + δ2κ(N )

= Fϕϕ(N )−1 + Fκκ (N )−1, (19)

	sim(2N ) = 1

2
	sim(N )

= 1

2

[(
Fϕϕ(N ) − Fϕκ (N )2

Fκκ (N )

)−1

+
(

Fκκ (N ) − Fϕκ (N )2

Fϕϕ(N )

)−1
]
. (20)

For the classical strategy, one must decide whether to
use each probe to estimate the parameters simultaneously or
whether to estimate the parameters individually, using half the
probes for each parameter. In either case, the 1/N behavior of
the SQL is followed, with the prefactor determined by the error
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FIG. 6. Error associated to each estimation strategy plotted as a function of the number of probe qubits, N , showing examples of different
metrological regimes. Left: case A, produced with ϕ = 0.150, κ = 3.00. Middle: case B, produced with ϕ = 0.312, κ = 4.31. Right: case C,
produced with ϕ = 0.500, κ = 5.50. All the plotted quantities are dimensionless.

on the single qubit probe estimation strategy. Therefore, as the
simultaneous strategy is always superior at the single qubit
level, it will also be optimal for any number of independent
qubits, and the error for the classical strategy will be given by

	SQL(2N ) = 1

2N
	sim(1). (21)

Let us now compare the performance of these strategies
over a range of the phase parameter, ϕ, and noise parameter, κ ,
focusing on the low parameter regime (under the dashed line
in Fig. 3). Here, for each given ϕ and κ , there are three possible
behavior regimes as the errors vary with N , with examples of
each of these given in Fig. 6. In all three cases there are some
common features shown in the estimation strategies. For both
quantum estimation strategies, the error initially decreases
faster than the SQL, before hitting a minimum and starting to
increase once again. The individual estimation strategy reaches
a maximum before decaying again, but not faster than the
SQL. The simultaneous strategy, however, does not reach a
maximum but continues to increase. As expected, the classical
strategy maintains its 1/N behavior in all regimes and will
always beat the quantum estimation strategies at sufficiently
high N � 1.

We remark that the compatibility condition (ii) given by
Eq. (3) is always fulfilled by the GHZ state for any N , which
ensures that the estimation error arising from the quantum
Cramér-Rao bound is in principle achievable. As in previous
sections, we use R defined in Eq. (4) as an indicator of the
best strategy to use, R below 1 indicating the superiority of
the individual estimation strategy and R above 1 indicating
the superiority of the simultaneous strategy, with a maximum
possible value of R = 2 when all parameter compatibility re-
quirements are fulfilled. In all regimes, R begins close to 2 (see
Figs. 3 and 5) before decreasing to a minimum, increasing to
2 and finally decaying to zero at high N , due to the asymptotic
growth of 	sim and the decay of 	ind. Whether the initial
minimum drops or not below 1 determines which of the three
behavior cases the regime falls under, as distinguished below.

In cases A and B, R may fall below 1, indicating the quan-
tum strategy should be chosen depending on the N available.
The region at very low N where simultaneous estimation is
superior may be dismissed as this is a very short range of N

where the error is high. However, there are then significant
regions where the individual, and then the simultaneous,
strategies are preferred, before the classical strategy takes over
at high N . In case C, the first minimum of R is above 1, so
the simultaneous estimation scheme always outperforms the
individual, until it is overtaken by the classical scheme.

We analyze the optimal attainable error 	min and the
optimal size Nopt of the initial GHZ state that produces this
error. Of course, with high N one would always use the
classical strategy with as many probe qubits as possible.
We therefore look at the more interesting regime where N

is limited and the quantum strategies display an advantage.
Incidentally, this regime is also useful at large N as a quantum
enhanced technique may be used at low N and then repeated
“classically” to improve the precision. Hence the initial
minima of the errors of the two quantum regimes are compared.
In case A, the minimum is provided by the individual strategy
[i.e., 	min = 	ind(2Nopt)] and in cases B and C it is provided by
the simultaneous strategy [i.e., 	min = 	sim(2Nopt)]. Figure 7
(left) shows the optimal value Nopt of N that gives the variation
of this minimum error with ϕ and κ as well as the boundaries
that separate the behavioral regimes, whilst Fig. 7 (right)
depicts the variation of the minimum error itself 	min with
the parameters. One can see that case A manifests at low ϕ

and high κ (i.e., low noise); this is followed by case B, and then
C as the noise increases with decreasing κ and increasing ϕ.

VII. TRADE-OFF BETWEEN SEQUENTIAL AND
PARALLEL ENTANGLED SCHEMES: THE ROLE OF M

In the previous section, we have shown that the optimal
size of an entangled probe state, M = Nopt, varies with the
values of the parameters and may be in principle very large.
Experimentally, creating entangled states with a large number
of particles is a costly process, limited by technological
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FIG. 7. Left: the optimal number Nopt of entangled probes as a function of the phase parameter ϕ and noise parameter κ . The solid boundary
	sim

min = 	ind
min separates case A, where the Nopt = N ind

opt , and case B, where Nopt = N sim
opt . The dashed boundary Rmin = 1 separates case B, where

simultaneous and individual measurements can each give better performance for some N , and case C, where the simultaneous strategy is always
preferred, until the classical strategy takes over with large N . Right: contour plot of the corresponding optimal error 	min on the estimation of
ϕ and κ at N = Nopt for the strategies described above. Once more, the solid boundary separates case A, where the plotted 	min corresponds
to the error in the individual strategy, from cases B and C, where the plotted 	min corresponds to the error in the simultaneous strategy. All the
plotted quantities are dimensionless.

constraints. Here, we demonstrate that the limit of using large
entangled states may be overcome in principle by utilizing a
framework which is a hybrid of the sequential and parallel
schemes traditionally studied [1], as illustrated in Fig. 1, and
choosing a suitable M � Nopt. In this case, the noisy phase
imprinting operation alters the probe state as

ρ = (�Nopt/M )⊗M [ρ0], (22)

where ρ0 is now an M-qubit GHZ state and �Nopt/M can be ob-
tained by replacing b and c by B = 1

2 [1 − (1 − 2b)Nopt/M ] and
cNopt/M in Eq. (7), respectively. As in Eq. (16) before, the output
state can be divided into diagonal and nondiagonal parts as

�1 = 1

2
([BM + (1 − B)M ](|0〉〈0|⊗M + |1〉〈1|⊗M )

+ cNopt |0〉〈1|⊗M + c∗Nopt |1〉〈0|⊗M ),

�2 = 1

2

M−1∑
m=1

[Bm(1 − B)M−m + BM−m(1 − B)m]

× |0〉〈0|⊗M−m |1〉〈1|⊗m. (23)

By inspecting the estimation precision over a range of M ,
we can see that Nopt/M sequential channel applications on
each qubit of a GHZ state of only a few qubits may achieve
metrological performances very close to that of a full GHZ
state of Nopt qubits. By scanning the parameter range, we
can verify that this behavior is independent of the parameter
values and the strategy implemented, so that this result is
generally valid across our investigation. This is demonstrated
in Fig. 8 where the estimation precision versus M/Nopt is
plotted. We find that the error shrinks exponentially with
increasing M/Nopt and only a very small percentage of Nopt

is required to saturate the precision. As quantum states with
an increasing number of qubits are routinely engineered [30],

the experimental realization of our multiparameter sensing
may become feasible in the near future.
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FIG. 8. Estimation error against M/Nopt for the metrological
scheme of Fig. 1. Top: an example of the behavior of the precision
in the case of the individual estimation scheme being optimal. Here,
ϕ = 0.11 and κ = 1.7, which gives Nopt = 120. The precision falls
within 5% of that of a GHZ state of Nopt qubits after using a GHZ
state of only six qubits (5% of Nopt). Bottom: here the simultaneous
scheme is optimal and ϕ = 0.27 and κ = 4.6 are used, again giving
Nopt = 120. The precision reaches 5% of that of the Nopt-qubit GHZ
state after a GHZ state of only 12 qubits (10% of Nopt) is used. All
the plotted quantities are dimensionless.
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VIII. CONCLUSIONS

We investigated resources and strategies in multiparameter
quantum metrology, focusing on a physical model of phase
estimation where the generator of the phase shift is randomly
sampled according to a distribution with concentration pa-
rameter κ [14]. We explored how to estimate precisely and
efficiently both κ and the phase ϕ, having the availability of
a finite number N of interactions with the phase imprinting
channel. We adopted a performance ratio R as figure of merit
to account for the advantage, in terms of reduction of resources
up to a factor two, of estimating the parameters simultaneously
as opposed to individually, and examined compatibility of such
multiparameter estimation depending on the chosen probe
states following the analysis in [17]. While for single qubit
and two qubit probes compatibility is not always fully met, we
find that simultaneous estimation is always advantageous. We
assessed the role of multipartite entanglement by developing
strategies for the considered problem using GHZ probe
states of up to N qubits, and providing concrete recipes
to achieve quantum enhanced estimation at finite N using
either individual or simultaneous strategies, depending on the
parameter range. Crucially, we showed that large N -partite
entangled resources are not needed for this enhancement, as
a very small portion M � N of entangled qubits suffices to
match such performance by suitably distributing the N channel
applications in a probing geometry which interpolates between
the conventional sequential and parallel metrological schemes
(see Fig. 1). Finally, at large N , no quantum enhancement
survives and a classical strategy based on N independent
repetitions of single qubit estimation always attains optimality.

Our analysis highlights several interesting features with
potential relevance for practical applications to sensing tech-
nologies. Schemes such as the hybrid one in Fig. 1 can be seen
as a compression of the fully parallel strategy which drastically
reduces the resources without any noticeable degradation in

precision. Such a compression could be applied to many
existing implementations of sensing and metrology [4] using,
e.g., cold atoms, photonic qubits, or nitrogen vacancy centers
in diamond. It would be worthwhile to develop general
methods to optimize the circuit architecture given any specific
noisy quantum metrology setting arising in applications,
possibly exploiting semidefinite programming techniques as
in [31].

Our model realizes an instance of a unital phase-covariant
channel, as illustrated in Fig. 2. In the future, it would
be interesting to extend our analysis to general nonunital
phase-covariant channels, and investigate joint estimation of a
phase ϕ and of all the parameters specifying the noise (the
deformations λ‖ and λ⊥ as well as a Bloch displacement
vector).

Finally, while we considered more general states for single
and two qubit settings, we have specified GHZ states as
initial probe states to analyze strategies relying on N -partite
entanglement, partly due to their structural simplicity and the
fact that they satisfy the compatibility condition formalized in
Eq. (3). However, these states may not be optimal in general
instances of noisy quantum metrology [10,17]. A notable
extension could be to develop efficient algorithms to identify
optimal probe states in multiparameter quantum estimation,
possibly extending the methods of [32].
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