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Abstract—The Workforce Scheduling and Routing Problem
refers to the assignment of personnel to visits across various
geographical locations. Solving this problem demands tackling
numerous scheduling and routing constraints while aiming to
minimise total operational cost. One of the main obstacles
in designing a genetic algorithm for this highly-constrained
combinatorial optimisation problem is the amount of empirical
tests required for parameter tuning. This paper presents a
genetic algorithm that uses a diversity-based adaptive parameter
control method. Experimental results show the effectiveness of
this parameter control method to enhance the performance of the
genetic algorithm. This study makes a contribution to research on
adaptive evolutionary algorithms applied to real-world problems.

Keywords—Genetic Algorithms, Adaptive Evolutionary Al-
gorithm, Workforce Scheduling and Routing

I. INTRODUCTION

The Workforce Scheduling and Routing Problem (WSRP)
is described as the assignment of personnel to visits, requested
by customers, across different geographical locations. This
problem combines scheduling and routing problems, both of
which are known to be NP-Hard [1]. The scheduling aspect of
the problem assigns personnel to visits in order to fulfil work
demands and other requirements. The routing aspect of the
problem consists of generating routes for the workers to service
customers across various locations within given time-windows.
The objective is to minimise operational costs while attending
the additional requirements expressed by customers, workers
and the business. A type of WSRP arises in home health care
where nurses and care workers should be assigned to visit
patients in their homes in order to carry out some tasks, e.g.
administering medication, monitoring serious illness and un-
stable health status and injections. Genetic Algorithms (GAs)
have been shown to be effective approaches to find solutions
for problems combining scheduling and routing where exact
methods are less effective, e.g. [2]–[4]. A base-line GA was
proposed by [5] that identified the best set of operators and
parameters for each instance of WSRP. Despite its success
in obtaining good solutions, the base-line GA performance
was limited by the tuning of parameters being computationally
expensive. Although parameter values can be tuned before
the algorithm execution, different values might provide better
results at different stages of the evolutionary process [6].

An adaptive parameter control approach that seeks to
maintain diversity in the population of solutions is proposed
here to enhance the performance of a genetic algorithm. The
aim is to be able to tackle a wider variety of WSRP scenarios.
A total of 42 instances from six different real-world home

health care (HHC) scenarios are used in the experiments here.
The specific objectives of this paper are:

• To identify the features that contribute to the early
convergence of the genetic algorithm.

• To propose six different variations of the adaptive
parameter control method, with respect to the identi-
fied features, that aim to enhance algorithm efficiency.

• To analyses the impact of adaptive parameters on the
feasibility of solutions and the algorithm speed.

In what follows, Section II reviews related work. Section III
describes the WSRP, its formulation and the instances used in
this paper. Section IV outlines the proposed algorithm. Section
V presents the experimental study and discusses the obtained
results. The paper is then concluded in Section VI.

II. RELATED WORK

Recent research on the WSRP considered here is reviewed
next. A mixed integer programming (MIP) with decomposition
method [7] required considerable computation time (up to
several hours) to solve larger problem instances with hundreds
of tasks, indicating the need for faster solution methods.
A Variable Neighbourhood Search (VNS) algorithm using
problem-specific neighbourhood heuristics was presented in
[8]. The VNS obtained high-quality solutions and in less
computation time for the same set of problem instances used
in [7]. An investigation was presented in [4], [9] comparing
various genetic operators within two simple GAs to tackle the
subject problem. A more efficient genetic algorithm with tuned
parameters and using a customised solution representation to
maintain feasibility of solutions was proposed in [5].

A number of studies have applied GAs to real-world
problems where scheduling and routing are combined. Ex-
amples include [2], [3]. In those works, the focus has been
on algorithm design to obtain good solutions. However, less
attention has been given to developing an adaptive algorithm
for this type of problems. There has been a number of works
describing adaptive parameter control within evolutionary al-
gorithms (EAs) in real-world applications [6], [10]. The study
proposed by [11] used a method that incorporated global and
local selections to maintain a balance of healthy individuals
in the population. The effects of changing population size was
investigated in [12]. Other works have used an adaptive process
for managing dynamic populations in the algorithm. The study
by [13] proposed to adaptively resize the GA population. This
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paper investigates the process of dynamic population resizing
tailored especially for WSRP.

The intended contribution of this work is to present an
efficient diversity-based adaptive GA for tackling real-world
WSRP instances. The proposed method is capable of pro-
ducing competitive feasible solutions for a set of real-world
instances of highly-constrained WSRP scenarios. The proposed
GA harnesses the power of the adaptive parameter control
method with problem-specific genetic operators to solve the
WSRP instances considered.

III. PROBLEM DESCRIPTION

A WSRP solution is a daily plan of visits, i.e. a set of workers
W = {w1, w2, . . . , w|W |} assigned to perform a set of tasks
T = {t1, t2, . . . , t|T |} for customers at different locations. The
assignment of a worker to travel to a customer location in
order to perform a task is called a visit. Thus, xwi,j is a binary
decision variable that indicates if a path connects two nodes
(visit i and visit j) or not. The assignment xwi,j = 1 means
that worker w travels from visit i to visit j, thus w makes
both visits. For visit j, if xwi,j = 1 then yj ≤ rj − 1 where
rj is the number of workers required for visit j and yj is an
integer decision variable indicating the number of unsatisfied
assignments, hence

∑
w∈W

∑
i∈T

∑
j∈T x

w
i,j + yj = rj .

This paper tackles a home health care (HHC) planning
problem, in which workers are nurses, doctors, health carers,
etc., and customers are patients receiving health care at their
home. Several features have been identified as important in
solutions to HHC scenarios, such as distance travelled and
customers’ and workers’ requirements and preferences [14].
A good quality solution for an HHC planning problem should
have low operational cost as well as all tasks being assigned
in such a way as to satisfy the existing requirements. Table I
lists the objectives and constraints in the WSRP considered
here. See [7] for details of the MIP model of this WSRP. Note
that in [7], unassigned visits is considered a soft constraint.
However, here this is a hard constraint, hence all visits must be
assigned. Additionally, time-conflict constraint is considered
in this paper, while the study by [7] avoided time-conflicts.
A time-conflict occurs when a worker is assigned to visits
overlapping in time.

Table I. OBJECTIVES AND CONSTRAINTS IN THE WSRP.

Objectives Hard Constraints Soft Constraints
Travelling Cost Skills Requirements Unassigned Visits
Payment Cost Time-Conflicts Area Availability

Maximum Hours Time Availability
Preferences
(skills,worker,area)

A solution S is a set of assignments of workers to make
visits. The objective function includes the operational cost
and the penalty cost. The operational cost includes wages plus
journey costs for all workers and is given by the accumulated
cost di,j + pwj , where di,j is the distance travelled between
visit i to visit j and pwj is the cost of assigning worker w
to visit j. These costs are set by the service provider in the
HHC scenarios used here. The penalty cost is the accumulated
penalty for the violations of soft-constraints. An assignment
can be written as a tuple (xwi,j , yj , a

w
j , ψ

w
j , θ

w
j , τ

w
j ), where

awj is the arrival time of a worker w to the location of
visit j. The assignment is also composed of binary decision

variables indicating an assignment of worker w to visit j
with violations on area availability (ψw

j ), time availability
(θwj ) and conflicting assignments (τwj ). The non-satisfaction
of preferences is also included in the penalty cost. There are
three types of preferences including preferred worker-customer
pairing, worker’s preferred region and customer’s preferred
skills. There is a degree of satisfaction for these preferences
when assigning a worker w to a task j and is given by
ρwj which has a value that ranges between

[
0, 3
]
. For each

assignment, the satisfaction value for each preference ranges
between

[
0, 1
]
, from not satisfied to satisfied. The satisfaction

level is reverted to a penalty by subtracting it from the full
satisfaction score, which is 3rj for a visit j.

The best solution should have: the least operational cost
and the least penalty cost. A weighted sum is proposed to
combine the objectives into a single scalar value [5], [8]. The
objective function is written as in equation (1), where weights
λ1, . . . , λ5 are defined to establish priority between objectives
(more about the weights used here later in the paper).

f(S) = λ1
∑
w∈W

∑
i∈T

∑
j∈T

(di,j + pwj )x
w
i,j

+ λ2
∑
w∈W

∑
i∈T

∑
j∈T

(3rj − ρwj )xwi,j

+ λ3
∑
w∈W

∑
j∈T

(ψw
j + θwj )

+ λ4
∑
j∈T

yj + λ5
∑
w∈W

∑
j∈T

τwj (1)

IV. DIVERSITY-BASED ADAPTIVE GA (DAGA)

This section describes the proposed adaptive aspects of
the GA as an extension to the approach proposed in [5].
The proposal here is an adaptive control mechanism for
parameters values, particularly genetic operator rates Pc and
Pm in addition to the population size M . The work presented
in [5] showed that each WSRP instance has features that
affected the selection of parameter values in the GA. The
parameter values and genetic operators performance were
dependent on the problem size reflected in the chromosome
length. It was observed that an increase in the chromosome
length required a smaller population size in the algorithm and
vice versa. There was also an inverse relationship between the
population size and the number of generations required for
the GA to perform well. Therefore, in order to enhance the
GA efficiency, an adaptive parameter control mechanism is
proposed here. Adaptiveness of parameter values and genetic
operator rates has been approached in the literature through
rules [15] and randomness [16]. Hence, two elements are
investigated in the adaptive parameter control proposed here.
One element is feedback through adaptive rates and population
resizing. The other element is randomly changing the crossover
when no further improvements are observed. This method is
used to delay the premature convergence by having diverse
performances provided by different crossovers [17].

The proposed DAGA method works as follows. First,
an initial population P of M individuals (one-day plans)
is created based on the indirect chromosome encoding that



constructs feasible solutions. The representation is designed
to include all assigned visits |V |, thus chromosome length
vary according to the problem-size. For example, if instances
are relatively small, a large M is required as a result of
the large degree of similarity between individuals in P . For
a large instance on the other hand there is less chance to
have similar solutions, thus, a small M is sufficient. The
population diversity has an effect on the setting of parameter
values. Hence, a diversity-based scale is used to calculate
the required change in the adaptive features. At the start
of each generation, 9M/20 pairs of parent individuals are
selected using binary tournaments. Then, a new population
is created through crossover and mutation. The suggested
crossover is applied with probability Pc to each pair of
parents to generate two offspring. Each offspring goes through
a flat-cost flip (FCF) mutation, with some probability Pm.
The operator performance influences the information feedback
process where the adjustment of a parameter value is done. At
the end of each generation t, the population is updated using an
elitism strategy. The M/10 best individuals from the current
population are kept and along with the 9M/20 offspring
individuals generated, the new population of M solutions is
formed. After the new population is created, if there are no cost
value improvements on the best so far solutions for a number of
generations, the GA is considered to have stagnated. Thus, the
updates to parameter values occur in response to the feedback
process that seeks to maintain a diverse population to improve
the effectiveness of the search. Such feedback from the search
is used to generate the next population. Details of the diversity-
based adaptive control approach to update parameter values
during the GA’s execution are described next.

A. Diversity Measurements

To measure the population diversity, a metric to measure
the level of variation in a population was adopted from [18].
This method has also been useful for similar representation
schemes used in the office space allocation problem [19]. The
percentage of non-similarity within a set of chromosomes is
given by equation (2), where d(j) is the number of different
genes in the jth position and |V | is the chromosome size for
an individual in P . The diversity value for a population is then
D(P ) = V ariation(M)/100.

V ariation(M) =

V∑
j=1

d(j)−1
(M−1)

V
× 100 (2)

B. Search Operators Rates Updates

Initial parameter values were selected after an offline tuning
method [5]. If the GA stagnates for a number of generations,
crossover and mutation rates are adjusted according to the
calculations presented by [11]. That adjusting approach is used
due to its capability of adapting quickly on highly multi-modal
fitness landscapes. A resetting process is also used for the
adaptive rates Pc and Pm which forgets the rates history if
the rates values are out of range. This forgetting step means
ignoring all the previous feedback process that led up to the
inflation of the adapted values. Details for the calculation of
parameter rates are described next.

1) Adaptive Crossover Rate Pc: In general, crossover en-
courages the population to converge by reducing diversity. This
is because after a number of generations, similarity between
individuals increases as a result of only recombining existing
genetic material. When similar individuals are recombined,
inbreeding occurs and no additional diversity is added through
crossover. Thus, a diversity-based adaptive parameter control
is used to maintain a diverse population and avoid early
convergence. Upper and lower values are identified for the
control mechanism to generate values in that range. The
adaptive crossover rate here ranges between Q1 ≤ Pc ≤ Q2,
with Q1 = 45% and Q2 = 100%.

Pc =
[ Diversity

Diversitymax
∗ (Q2 −Q1)

]
+Q1 (3)

The crossover rate Pc is then updated according to equation
(3). The Pc value is updated with a value within the range,
based on the population diversity, where 0 < Diversity ≤
Diversitymax. The population diversity influence is the ratio
between the current diversity Diversity and Diversitymax

provided this value does not exceed Diversitymax, which
is the value of the population variance, i.e. how far each
individual in the population is from the mean.

2) Adaptive Mutation Rate Pm: To introduce diversific-
ation into the population, mutation is usually applied. The
selected range for the mutation rate Pm is Q1 ≤ Pm ≤ Q2,
where Q1 = 10% and Q2 = 60%. The overall mutation
rate Pm is calculated with respect to the fitness improvements
given by a mutation and the current diversity of the population.
Thus, the new Pm is the average value of the calculations in
equations (5) and (6) as stated in equation (4).

Pm =
PFitness
m + PDiversity

m

2
(4)

Equation (5) calculates the mutation rate with respect to the
diversity. A diverse population avoids early convergence, hence
more individuals are explored. However, a highly converged
population is subject to higher mutation rates. The value of
Pm is equal to Q1 when the population has the highest
diversity given by Diversitymax, i.e. the population is almost
in complete disruption.

PDiversity
m =

Diversitymax −Diversity
Diversitymax

×Q1 (5)

To encourage further exploration, mutation is applied on
individuals with low fitness. Equation (6) generates a value
that uses the parent fitness f(S), where f(S)max and f(S)min

correspond to the best and worst fitness values of the individu-
als in the population respectively. The population is maximally
diverged when the selected parents are the worst individual in
the population.

PFitness
m =

f(S)max − f(S)
f(S)max − f(S)min

×Q1 (6)



C. Dynamic Population Resizing

Preserving the population diversity is a key element for
increasing the search coverage by performing an in-depth
exploration of the fitness landscape [20]. The population
diversity is affected by the population size. If the popula-
tion size is too small the algorithm gets trapped in a sub-
optimal region of the search space [21]. This is because the
algorithm is unable to find better quality solutions as a result
of inbreeding. Certain population size might be good at some
point of the search but requires a change at different stages
of the evolutionary process. Therefore, an adaptive population
resizing is implemented here which works as follows. For
population P , its size M is changed dynamically during the run
when no improvement is observed. The deterministic change
occurs with respect to the step size δ, only if M ranges
between 100 ≤ M ≤ 550. To preserve the best found
solutions, the best M/10 individuals of the population are
always kept. The value δ is the step-size which is relative to
the current diversity DCurrent and the population size, that
is, δ = D(Current) ×M .

Two methods of population resizing are used as stated in
Equation (7). The first is to increase M by δ individuals in
the next population. The addition occurs by constructing new
individuals. The second case is to shrink M by removing the
δ worst individuals from P .

M =


M + δ if DCurrent−1 < DCurrent−4,

M − δ if DCurrent−1 > DCurrent−4,

M if DCurrent−1 = DCurrent−4,

(7)

This method maintains the best individuals while main-
taining the diversity level, to obtain better results and/or faster
convergence. For example, when M is small, the diversity is
lost between iterations. As a result, adding more individuals,
regardless of their fitness value, promotes diversity and encour-
ages exploration in the search. On the other hand, when M
is large, the diversity is increasing throughout the generations.
Thus, decreasing M allows the crossover to focus on better
regions of the fitness landscape and henceforth computing
results faster. All these changes are triggered by an increase
or a decrease in the population diversity. If there is no change
in the diversity, M remains the same. Equations (8) ensures
keeping the population size within range.

M =

{
M + δ if M < 100,

M − δ if M > 550,
(8)

D. Random Crossover Selection

This method allows exploration of the solution space by
using different operators when a particular operator fails to
improve the search. The idea is to choose an arbitrarily
crossover, if there has been no improvements for the last four
generations. Different operators require different rates at each
stage of the search. Therefore, further improvements are made
on the global performance of the whole population by the
adaptive crossover rates. The crossovers used in this study
are: flat-cost (FCX) and partially-matched flat-cost crossovers

Algorithm 1 Diversity-Based Adaptive Control for the GA
Require: Pc, Pm, CrossoverOperator and M = 〈 User Predefined 〉

1: Pick-random := CrossoverOperator
2: if Pc > 0.45 AND Pc < 1.0 then
3: Update Pc according to equation (3)
4: else
5: Reset Pc

6: end if
7: if Pm > 0.1 AND Pm < 0.60 then
8: Update Pm according to equation (4)
9: else

10: Reset Pm

11: end if
12: if M > 100 AND M < 550 then
13: Update M according to equation (7)
14: else
15: Update M according to equation (8)
16: end if

(PMFCX) [5], single point (1PX), two point (2PX), uniform
(UX) and Half Uniform (HUX) crossovers [22].

Algorithm 1 presents the diversity-based adaptive control
for the GA. After the new population is created, if there is
no improvement on the best so far solution for a number of
generations, the GA is considered to have stagnated. Thus,
the updates to the parameter values occur in response to
the feedback process (according to the current population
diversity) to maintain a diverse population when generating the
next population. Initially, the crossover operator is changed by
selecting a random crossover (step 1). Then, the crossover rate
Pc and a mutation rate Pm are adjusted (steps 2-11) followed
by the population resizing (step 12-16).

V. EXPERIMENTAL STUDY AND RESULTS

This section describes and compares several variations of
the adaptive aspects against the previously established base-
line GA presented in [5]. The algorithm variations invest-
igated are: adaptive rates only (AGA), adaptive rates with
dynamic population re-sizing (AGADP), dynamic population
re-sizing only (GADP), adaptive rates with random crossover
(RCAGA), random crossover with dynamic population re-
sizing (RCGADP), adaptive rates and dynamic population size
with random crossover (RCAGADP).

The parameter values are set for each groups of problem
instances before the run as suggested by [5]. For A, B: Pm

= 50%, Pc= 50%, M= 500. For C: Pm = 30%, Pc= 50%,
M= 500. For D, E: Pm = 10%, Pc= 0.1, M= 100. In
AGA, AGADP and GADP, a set of crossover operators were
chosen for each problem set as follows. For A, B cost-based
greedy crossover (CGX) is used. For C partially-matched
greedy crossover (PMGreedyX) is used. For D, E, F flat-
costs crossover (FCX) is used. During the run, parameters
values were updated with respect to the population diversity
as explained in Section IV. Based on preliminary tests, the
parameter ranges are empirically set as follows: mutation rate
Pm ∈

[
0.10, 0.55

]
, crossover rate Pc ∈

[
0.45, 0.100

]
and the

dynamic population size M ∈
[
100, 550

]
. A random crossover

is selected and applied over time when the algorithm is stuck
at a local optima. To assess the statistical significance of the
obtained results, each run was executed 8 times, seeded with
the same initial population and all methods had the same



Table II. MAIN FEATURES OF THE 42 HOME HEALTH CARE PROBLEM INSTANCES.

A B
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 31 31 38 28 13 28 13 26 36 12 69 30 61 57 61 46
Number of Workers 23 22 22 19 19 21 21 21 25 25 34 34 32 32 32 30

Number of Areas 6 4 5 4 4 8 4 5 6 5 7 5 8 8 7 7

C D
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 177 7 150 32 29 158 6 80 483 454 585 520 538 610 611 543
Number of Workers 1037 618 1077 979 821 816 349 813 164 166 174 174 173 174 173 171

Number of Areas 8 4 7 8 6 11 6 7 13 12 15 15 15 15 15 14

E F
01 02 03 04 05 06 07 mean 01 02 03 04 05 06 07 mean

Number of Visits 418 425 462 351 461 301 498 416 1211 1243 1479 1448 1599 1582 1726 1470
Number of Workers 243 244 267 266 278 278 302 268 805 769 898 789 889 783 1011 901

Number of Areas 13 14 15 13 15 13 16 14 45 46 54 47 59 44 64 51

amount of computation time. The implementation was in Java
running on a PC with I7 four-core processor with hyper-
threading enabled and 16GB of RAM.

A. Problem Instances

Problem instances from three UK real-world HHC scen-
arios are used as instances of WSRP 1 in this study. There
are 7 problem instances in each scenario for a total of 21
instances. Table II shows the main features of each problem
instance. Scenario A instances are considered the smallest,
while instances in scenario F are the largest. Problem instances
in scenario C are very different to the instances in the other
6 scenarios by having a much larger number of workers than
the number of visits.

B. Effect of Adaptive Control on the Population Diversity

For every experiment, the diversity trace was recorded for
each algorithm. Figure 1 shows 6 sub-plots of the average
diversity change in the first 10 iterations for each problem
instance. These graphs reveal that in all algorithms the diversity
converges in the initial generations. In all instances of scenarios
A and B there was an apparent change in the diversity value
while using GADP, RCGADP and RCAGADP. This is a result
of the disturbance caused by the dynamic population resizing
which increases the number of dissimilar individuals. A closer
inspection of the diversity values in generations 100 to 400 is
displayed in Figure 2.

For instances in scenarios A, B and C, high initial value of
the mutation rate in all methods delayed convergence in GA as
it can be seen in the top plots of Figure 2. When GA, GADP
and RCGADP were used, higher diversity was maintained
in later generations. This indicates the merit of the dynamic
population re-sizing with the help of crossovers exchange. On
the other hand, algorithm variations with adaptive rates only,
i.e. AGA and RCAGA, exhibited loss of diversity in sets A,
B and C. This indicates that the adaptive rates require more
time to work. This was corroborated for the larger instances
in sets D, E and F, in which adaptive rates variations excelled
in comparison to dynamic population re-sizing variations.
The adaptive rates also enhanced the search by increasing
population diversity even though a low mutation rate was set
initially.

1The instances data and weights used here (blue setting) are available at
https://drive.google.com/open?id=0B2OtHr1VocuSNGVOT2VSYmp6a2M.

The bottom plots in Figure 2 show that there is a high
level of intensification in the later generations. However,
when random exchanges of crossover were used (RCAGA
and RCAGADP), they promoted diversity values at all stages
of the search. Henceforth, adaptive rates variations were able
to enforce a change in the diversity when given more com-
putational time. Thus, dynamic population re-sizing methods
were capable of adapting quickly to environmental change only
in smaller instances. On the other hand, dynamic re-sizing
succeeded in increasing diversity in RCAGADP, but GADP
and RCGADP had a loss in the diversity as a result of the low
mutation rate used. Thus, it can be argued that the maintenance
of mutation rates encourages the diversity further in larger
problem sets along with the random crossover exchange.

C. Statistical Analysis of Adaptive Control Methods

To establish statistical significant in EAs, [23] recom-
mended the use of Friedman analysis as a non-parametric
statistical test to compare and rank methods. Here, an IBM
SPSS 22 two-way analysis was used to compare the variances
of seven related-samples, with a significant level of α = 0.05
and 95% as a confidence interval. Table III provides the
results generated by the Friedman analysis on the 42 problem
instances including: the mean value, the standard deviation, the
minimum cost-value, the maximum cost-value and the mean
rank. The results presented in the mean rank row show the
methods order based on the statistical analysis, where a low
rank value indicates a better method and a high rank indicates
a worse method. Four additional values were calculated and
used to measure the performance of each algorithms Gap% is
the average gap percentage to the best-known value, Dev. is the
average percentage deviation from the best-known value (best
solution of all the algorithms applied), Best is the fraction of
instances in a set for which an algorithm matches the best-
known value (best solution of all the algorithms applied).
Additionally, the Score is the fraction of the instances for
which a competing algorithm ‘wins’, i.e. produces better
solutions than the configuration being scored. This score is
calculated as ((q × (p − 1)) − r)/(q × (p − 1)), where p is
the number of methods compared, q is the number of problem
instances, and r is the number of instances in which the p− 1
competing configurations find a better result. Hence, the best
score value is 1, when r = 0, and the worst score value is 0,
when r = q × (p− 1).

The results in Table III, have a significance level = 0.0,
degrees of freedom = 6 and χ2 = 55.507. This indicates
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Table III. NON-PARAMETRIC FRIEDMAN’S TEST COMBINED WITH
PERFORMANCES METRICS RESULTS

Method IGA AGA GADP AGADP RCAGA RCGADP RCAGADP

Mean 332.49 289.00 292.40 289.95 288.23 307.59 287.97
STD Deviation 785.87 696.68 705.05 699.05 692.57 750.52 691.86
min 1.42 1.18 1.18 1.18 1.18 1.19 1.21
max 3980.44 3495.99 3497.99 3496.18 3500.00 3649.19 3496.18
Mean Rank 5.71 3.25 3.57 3.26 3.87 4.37 3.96
Gap% 0.16 0.00 0.00 0.00 0.01 0.02 0.01
Dev % 39.97% 0.36% 0.50% 0.39% 0.72% 1.71% 0.66%
# Best 0.19 0.52 0.36 0.38 0.33 0.36 0.33
Score 0.25 0.75 0.65 0.73 0.60 0.54 0.62

that there is clear evidence of statistically significance dif-
ferences between all methods. All algorithms applied have
obtained similar lower bounds except for IGA, RCGADP and
RCAGADP. This outcome further shows that there is loss of
performance in the uniform crossover exchange. The results
for AGA was promising by obtaining the lowest mean rank

and the highest score. While RCAGADP obtained the lowest
mean value and standard deviation. These results indicate that
the dynamic population re-sizing and the random crossover
exchange are more effective for WSRP scenarios only when
adaptive rates are applied. The AGA is the best method statist-
ically because of its fast response to any environmental change,
therefore it finds better solutions more frequently than other
adaptive methods. To examine where the differences actually
occurs, an additional analysis was implemented. The Wilcoxon
signed test is used to rank the different methods based on their
differences independently. Therefore, this test was influenced
by the number of instances. The Bonferroni adjustment was
applied on the results of the previous table to be able to
preform multiple comparisons. The new significance level was



0.05/7 = 0.007, where 7 is the number of the methods
compared. This means that if the p < 0.007; the distribution
of a method i is different across the values of a method j,
henceforth rejecting the null hypothesise by being statistically
significant. If p > 0.007; the distribution of a method i is the
same across values of a method j, therefore retaining the null
hypothesise by having no statistical significance.

Table IV. NON-PARAMETRIC WILCOXON SIGN RANK TEST RESULTS

METHOD Z Sig. (2 tailed) Sign METHOD Z Sig. (2 tailed) Sign

AGA - IGA -4.64 0.00 S+ AGADP - GADP -2.35 0.02 S-
GADP - IGA -4.66 0.00 S+ RCAGA - GADP -1.72 0.08 S+

AGADP - IGA -4.60 0.00 S+ RCGADP - GADP -3.48 0.00 S-
RCAGA - IGA -3.90 0.00 S+ RCAGADP - GADP -0.28 0.78 S+

RCGADP - IGA -2.86 0.00 S+ RCAGA - AGADP -1.46 0.14 S+
RCAGADP - IGA -3.37 0.00 S+ RCGADP - AGADP -3.47 0.00 S-

GADP - AGA -2.68 0.01 S- RCAGADP - AGADP -1.44 0.15 S+
AGADP - AGA -0.60 0.55 S- RCGADP - RCAGA -2.12 0.03 S-
RCAGA - AGA -2.28 0.02 S+ RCAGADP - RCAGA -0.19 0.85 S+

RCGADP - AGA -3.35 0.00 S- RCAGADP - RCGADP -1.15 0.25 S+
RCAGADP - AGA -2.26 0.02 S+

Table IV shows the Wilcoxon signed-rank test. Column Z
indicates the z-ratio as the unit for the normal distribution.
Column Sig. (2-tailed) indicates the p value. Column sign
indicates the statistical comparison of the null hypothesise (h0)
that denotes the significant difference between two methods.
The S+ (S-) signs means that a method i was significantly
better (worse) than a method j, within a confidence interval
of 95%. In comparing the two related methods, the GA was
worse than all other methods. This outcome further proves
the superiority of adaptive methods over the non-adaptive GA
for WSRP. The Wilcoxon signed-rank test showed that AGA,
GADP and AGADP have a statistically significant advantage
over RCGADP with (Z = -3.353, p = 0.0008), (Z = -3.476,
p = 0.0005) and (Z = -3.473, p = 0.0005) respectively and
no statistically significance difference across other methods.
On the other hand, AGA, GADP and AGADP are worse
than RCAGA and RCAGADP while RCAGA was worse
than RCAGADP with no significant difference. These results
statically prove that adaptive rates preforms the best when
combined with a full adaptive method for WSRP scenarios.

D. Performance Comparison of Adaptive Control Methods

Table V presents a comparison between the results of
the best adaptive algorithm variations (AGA and RCAGADP)
against results obtained by the MIP method with decompos-
ition in [7], the VNS in [8] and the GA in [5]. For each
problem instance, the table shows the cost-value f(S) and the
computation-time in seconds Cpt in which a solution by a
method was found. The best results are highlighted in bold.

In respect of the total number of best solutions obtained
by each method, VNS and AGA performed the best pro-
ducing best results on 45.24% and 35.71% of all instances
respectively. In the set A, a full adaptive method obtained
better results than AGA. In the set B, better results that those
produced by GA were achieved by adaptive methods, but still
not better than the VNS results. A similar observation can
be made for set C. The adaptive mechanisms seem to have a
positive effect on tackling instances in sets D, E and F where
a number of best-known values were found by the adaptove
GAs. In terms of computation time, RCAGADP produced
good results with fast convergence on the E instances. AGA
performed the best on sets D and F, arguably by enhancing the
search through the adaptive mechanism. Overall, VNS found
more best-known results but the GAs outperform the MIP
decomposition method in terms of solution cost. It should be

acknowledged that for several of the small instances the GAs
spend considerably more time than the other methods, although
still below 15 minutes which can be considered acceptable in
practice. In general, the MIP decomposition method obtains
good solutions in short computation-times across all sets of
instances.

VI. CONCLUSIONS

Tuning parameter values for each problem instance can
work well particularly in the initial stages of the evolutionary
search. However, adjusting parameter values is known to be
required for shifting the focus of the search on different
areas [6]. In general, the goal of an adaptive parameter
control method is to change the parameter settings during the
search and only when necessary. In this paper, the aim was
to investigate the effect of using a diversity-based adaptive
parameter control technique for enhancing the performance of
a genetic algorithm (GA) tailored for tackling the workforce
scheduling and routing problem (WSRP). Three elements were
included in the adaptive parameter control method: adaptive
mutation/crossover rates, dynamic population size and random
crossover exchange. As a result, six GA variations were com-
pared in this paper in which the adaptive control is triggered
by stagnation of the search. The (not-adaptive) GA produced
poor results in comparison to the GA variants incorporating
some adaptive mechanism.

Experimental results from solving a set of WSRP in-
stances with the adaptive GA variants indicate that having
such adaptive mechanisms is beneficial. Adapting the genetic
operator rates produced better results especially for the larger
WSRP scenarios. It is argued that the reason for this is that
adaptive rates are adjusted faster according to any change in the
environment, and therefore avoiding premature convergence of
the search. More research is needed on the crossover selection
in order to improve the algorithm efficiency by achieving an
effective balance between solutions diversity and crossover
selection.
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