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Type-2 fuzzy logic systems make use of type-2 fuzzy sets.
To be able to deliver useful type-2 fuzzy logic applications we
need to be able to perform meaningful operations on these sets.
These operations should also be practically tractable. However,
type-2 fuzzy sets suffer the shortcoming of being complex by
definition. Indeed, the third dimension, which is the source of
extra parameters, is in itself the origin of extra computational
cost. The quest for a representation that allow practical systems
to be implemented is the motivation for our work. In this
paper we define the alpha-cut decomposition theorem for type-
2 fuzzy sets which is a new representation analogous to the
alpha-cut representation of type-1 fuzzy sets and the extension
principle. We show that this new decomposition theorem forms
a methodology for extending mathematical concepts from crisp
sets to type-2 fuzzy sets directly. In the process of developing
this theory we also define a generalisation that allows us to
extend operations from interval type-2 fuzzy sets or interval
valued fuzzy sets to type-2 fuzzy sets. These results will allow
for the more applications of type-2 fuzzy sets by expiating the
parallelism that the research here affords.

I. I NTRODUCTION

Zadeh [33]–[35] defined the type-2 fuzzy set (T2FS)
along with a plethora of concepts and mathematical func-
tions including the extension principle (EP) and resolution
identity more commonly known as theα-cut decomposition
theorem. The EP extends point-valued operations from the
crisp mathematical setting to a corresponding fuzzy mathe-
matical setting, essentially fuzzifying classical mathematical
concepts. Theα-cut decomposition theorem also allows the
same extension to be performed in a set-valued manner. The
idea is to decompose fuzzy sets into a collection of crisp sets
related together via theα levels. This decomposition theorem
has been extended to fuzzy sets with interval membership
grades known either by interval valued fuzzy sets (IVFSs)
or interval T2FSs (IT2FSs) [20]. Type-2 fuzzy sets, (both
general and interval), have attracted much attention amongst
researchers both in theory and applications (e.g. [3], [5],
[8], [13], [14], [24], [25], [28], [29]) mainly for the extra
dimension they exhibit, which gives these sets the potential
to model extra uncertainty based information. To be able to
make use of T2FSs, we should be able to perform meaningful
operations on these sets and these operations should also be
practically tractable. T2FSs suffer the shortcoming of being
complex by definition. Indeed, the third dimension, which

is the source of extra parameters, is in itself the origin of
extra computational cost. The quest for a representation that
allow practical systems to be implemented is a fertile field
of research. There are four main representation theorems for
T2FSs, in which practical applications and theoretical defi-
nition have been investigated. The vertical slice, wavy slice
[22], alpha-plane (or zSlices) [17], [27] and geometric [5]
representations. Zadeh [33] was the first to define operations
for T2FSs, utilisingα-cuts of each fuzzy membership grade.
Recently, Chen and Kawase [4], Tahayoriet al. [26], Liu et
al. [17], [19], and Wagner and Hagras [27], [28] focused their
attention towards decomposing T2FSs into several IVFSs.
In particular, Liu [17] definedα-planes and Wagner and
Hagras [27] defined zSlices as part of their effort to calculate
the Centroid of T2FSs. In his work, Liu concluded that the
union, intersection and centroid of T2FSs is equal to their
respective operations of its constituentα-planes. Wagner
and Hagras independently concluded the same. Hamrawi
and Coupland [9], [10] derived arithmetic operations and
defined non-specificity for T2FSs using the same concept
and stated a generalised formula in [11], [12]. In this paper
we investigate the use of the concept ofα-cuts and its
extension principle for T2FSs. We explain, step by step,
the development phases of the theory and definitions. We
believe it is a significant step forward in the theory and
application of T2FSs. The novel ideas provided in this paper,
are themselves built upon existing theories and definitions
well accepted in the literature and is an extension to available
and definitions. We show how operations on general type-2
fuzzy sets can be broken down into a collection of interval
type-2 or crisp interval operations. The paper is organised
as follows: Section 2 provides the notations and necessary
back ground for the following work; Section 3 revisits theα-
plane representation and defines theα-plane extension prin-
ciple; Section 4 discusses theα-cut representation of IVFSs;
Section 5 defines theα-cut representation for T2FSs and
the extension principle associated with this representation;
Section 6 provides a conclusion.

II. D EFINITIONS

A. Basic Definitions

In this section we present the notation and definitions used
throughout the paper. LetA be acrisp subset of the universe



2

X, it is a functionA : X → {0, 1} that assigns1 to elements
of the domain that belong toA and 0 otherwise. LetC(X)
be the set of all crisp subsets ofX 1. Let A be anInterval
over X. It is defined byA = [x, x] wherex, x ∈ X and
x ≤ x. Also let I(X) be the set of all interval subsets ofX.
Note that an interval is a special crisp set withA(x) = 1,
x ≤ x ≤ x and0 otherwise. Let a type-1 fuzzy set (T1FS) A
be a subset ofX, and defined to be a functionA : X → [0, 1].
It is a generalisation of both crisp sets and intervals. We call
a T1FS, a fuzzy set (FS) for short. LetF(X) be the set of
all fuzzy subsets ofX, and all FSs defined in this paper
be convex. In this paper we are particularly interested in
the α-cut representation of FSs. Theα-cut of FS,A on the
domainX, is a crisp set defined to beAα = {x|A(x) ≥ α},
α ∈ [0, 1], x ∈ X. Eachα-cut is associated with a special
FS, αAα ∈ F(X), and calledα-FS. It is defined such that
αAα(x) = α ∧ Aα(x), ∀x [16], [23], [32]. Then theα-cut
representation theorem (α-RT) [16] is defined to be the union
of all suchα-FSs, i.e.,A =

⋃

∀α αAα. It is evident that the
membership grade of each domain value,x, can be calculated
by A(x) = sup∀α αAα(x). If the FS,A, is continuous then
its α-cut is an interval,Aα ∈ I(X), which can be written
Aα = [xα, xα]. The strongα-cut is another useful crisp set
defined to beAα+ = {x|A(x) > α} [16]. In order to define
operations for FSs, Zadeh defined the extension principle
(EP), in which a function is extended from crisp sets to FSs
in a compositional relation between point-values. This EP
is sometimes referred to as thesup−min composition. Let,
X = X1 × ... ×Xn, be the Cartesian product of universes,
and A1, ..., An be FSs in each universe respectively. Also
let Y be another universe andB ∈ Y be a FS such that
B = f(A1, ..., An), where f : X → Y . Then the EP is
defined as follows [33]:

B ⇔ B(y) = sup
(x1,...,xn)∈f−1(y)

min (A1(x1), ..., An(xn))

(1)
wheref−1(y) is the inverse function ofy = f(x1, ..., xn).
Zadeh also defined theα-cut version of the EP (α-EP) to
extend operations from crisp sets to FSs directly in a set-
valued method. It is defined as follows [33]2:

B = f(A1, ..., An) =
⋃

∀α

αf(A1α , ..., Anα
) (2)

Some researchers have asserted that equations (1) and (2) are
equal [1], [23], [33]. An interval valued fuzzy set (IVFS),
Â, over X is defined by a functionÂ : X → I([0,1]),
then Â(x) = [ux, ux] and we let,F̂ (X), be the set of all
IVFSs on X. The upper membership function (UMF ) of
an IVFS, Â, is a fuzzy set,A, where A(x) = ux, ∀x.
The lower membership function (LMF ) of an IVFS, Â, is
a fuzzy set,A, whereA(x) = ux, ∀x. We can see that an
IVFS is completely determined by the LMF and UMF, i.e.,

1This is the powerset in classical set theory. We use a different notation to
allow us to easily distinguish between the powerset of crispvalue, intervals
and fuzzy sets.

2Throughout this paper we use
⋃

to denote both crisp and fuzzy union.
When used in a fuzzy union we are referring to the maximum t-conorm.

Â =
(

A,A
)

which meansÂ(x) =
[

A(x), A(x)
]

, ∀x. Let,
X = X1 × ... ×Xn, be the Cartesian product of universes,
andÂ1, ..., Ân be IVFSs in each universe respectively. Also
let Y be another universe and̂B ∈ Y be an IVFS such
that B̂ = f(Â1, ..., Ân), wheref : X → Y is a monotonic
mapping. Then to use the Extension Principle with IVFSs,
the (IVEP ) can be defined as follows:

B̂ ≡
(

B,B
)

=
(

f(A1, ..., An), f(A1, ..., An)
)

(3)

This means, to derive operations for IVFSs we only need
to derive operations for their upper and lower membership
functions3.

B. Type-2 Fuzzy Set Definitions

In this section we review the main definitions of T2FSs.
Let Ã be a T2FS in the universeX. It is a function
Ã : X → F([0,1]), so the membership grade of each domain
value of the T2FS is a FS defined on the unit interval,
i.e., Ã(x) ∈ F([0,1]). The vertical slice (VS) [18], [22],
i.e., Ãx ≡ Ã(x) is a FS with domain valuesux ∈ [0, 1]
called theprimary grades(PGs) and membership grades
Ãx(ux) ∈ [0, 1] called thesecondary grades(SGs). Each
PG is associated with one SG and the union of all the
primary gradesux of domain valuex is called theprimary
membership(PM), i.e., Jx =

{

u1x, u2x, ..., uqx

}

if the
domain of membership grades of the T2FS is discrete, and
Jx = [ux, ux] if it is continuous. Normally, it is assumed that
the PMs are intervals, and in the discrete case the PM can
be calculated by considering the lower and upper bounds,
i.e., Jx =

[

infi=1,...,q uix, supi=1,...,q uix

]

, and henceJx ∈
I([0,1]). The union of all primary memberships is called the
footprint of uncertainty(FOU), FOU(Ã) =

⋃

∀x (x, Jx). A
T2FS can be represented by the union of all its VSs which
is called the vertical slice representation, i.e.,

Ã =
⋃

∀x

(

x, Ãx

)

(4)

An interval type-2 fuzzy set(IT2FS) is a T2FS where all
the secondary grades are at unity, i.e.,Ãx(ux) = 1, ∀ux ∈
Jx, ∀x ∈ X. It is well known that an IT2FS can be
completely determined using itsFOU and it is the same
as an IVFS [2], [21]. Recently, Liu [17] proposed theα-
plane representation of T2FSs, and Wagner and Hagras [27]
proposed zSlices. Liu defined anα-plane,Ãα̃

4, of a T2FS,
Ã, to be the union of the PGs of̃A, whose SGs are greater
than or equal to level̃α, i.e.,

Ãα̃ =
{

(x, ux)|Ãx(ux) ≥ α̃, ∀x, ∀ux ∈ Jx

}

(5)

Then Liu defines an indicator function,IÃα̃
, acting onx ∈ X

such that,

IÃα̃
(x, ux) =

{

1, (x, ux) ∈ Ãα̃

0, (x, ux) /∈ Ãα̃

(6)

3We have provided a proof for the IVEP, see [12] for more details.
4We usedα̃ to indicate that it is anα-plane in the third dimension.
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Then a T2FS associated with eachα-plane,α̃Ãα̃, is defined
as follows:

α̃Ãα̃ =
{(

(x, ux), α̃ · IÃα̃
(x, ux)

)

|∀x ∈ X
}

(7)

Using this definition the T2FS,̃A, is represented by the union
of all its associated T2FSs, i.e.,

Ã =
⋃

∀α̃

α̃Ãα̃ (8)

Note that we do not use an indicator function to defineα-cuts
for FSs, and hence we will provide a different interpretation
to that of Liu in Section III of this paper. We define the
α-plane RT in an analogous way to that of theα-cut RT
for FSs. The EP for T2FSs (T2EP) is defined in a similar
way to the FS EP [18]. Let,X = X1 × ... × Xn, be the
Cartesian product of universes, and̃A1, ..., Ãn be T2FSs in
each universe respectively. Also letY be another universe
and B̃ ∈ Y be a T2FS such that̃B = f(Ã1, ..., Ãn), where
f : X → Y is a monotone mapping. Then applying the EP
to T2FSs (T2EP) lead to the following:

B̃ ⇔ B̃(y) = sup
(x1,...,xn)∈f−1(y)

min
(

Ã1(x1), ..., Ãn(xn)
)

(9)
where y = f(x1, ..., xn), and Ã1(x1), ..., Ãn(xn) are the
VSs which can be written as̃A1x1

, ..., Ãnxn
. These defini-

tions are used to formulate theα-cut representation theorem
for T2FSs.

1
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Ã0̃
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Fig. 1. 2D representation of the T2FS with triangular vertical slices.

III. T2FS ALPHA-PLANE EXTENSION PRINCIPLE

In this section we introduce a generalisation that allows
us to extend operations from IVFSs to T2FSs directly using
α-planes. This theory lays the foundation for theα-cut
decomposition theorem for T2FSs. This method has been
stated without a proof by Hamrawi and Coupland [10], with
a proof being provided in Hamrawiet al. [11], [12]. Here
we start with a discussion onα-planes, and theα-plane

1

u

x
0 1 2 3 4

α3

α2

α1

A
A

Lxα
Lxα

Rxα
Rxα

Fig. 2. Continuous IVFSÂ and itsα-cuts

representation theorem (RT). We investigate some of the
properties of theseα-planes and then define theα-plane
extension principle (α-PEP).

A. α-planes Revisited

First, the steps Zadeh [33] took in order to define the
intersection of two T2FSs are summarised in two stages:

1) Extend the FS definition to fuzzy sets with interval-
valued membership functions.

2) Generalise from intervals to fuzzy sets by the use of
theα-cut form of the EP (α-EP).

In the sequel, we follow these steps in order to decompose
T2FSs into its elementary components, i.e. crisp sets. In
general, since each VS is a FS, then it can be decomposed
using theα-cut decomposition theorem. Let̃A ∈ F̃ (X) be a
T2FS onX, whereÃx is its VS atx. Theα-cuts of each VS
are Ãx,α̃ =

{

ux|Ãx(ux) ≥ α̃
}

, ∀ux ∈ Jx. If the domain of
the T2FS membership function is assumed to be continuous
thenÃx,α̃ =

[

ux,α̃, ux,α̃

]

. Since these VSs are FSs then they
can be represented by theα-cut decomposition theorem, i.e.,

Ãx =
⋃

∀α̃

α̃Ãx,α̃ (10)

whereα̃Ãx,α̃ is the special FS (α-FS) associated with each
α-cut. It is defined asα̃Ãx,α̃(ux) = α̃∧ Ãx,α̃(ux) and
Ãx,α̃(ux) = 1 if ux ∈ Ãx,α̃ and zero otherwise. Then, T2FS
Ã is the union of all its VSs, therefore,

Ã =
⋃

∀x

(

x,
⋃

∀α̃

α̃Ãx,α̃

)

(11)

This is a very important result as a T2FS is represented using
a collection of crisp sets (or intervals) defined vertically. Now
let us take the union of all theα-cuts across all domain values
for only one level, i.e.,

⋃

∀x

(

x, Ãx,α̃

)

. It is the union of all

the pairs(x, ux) such thatÃx(ux) ≥ α̃. This is exactly the



4

same as theα-plane definition of equation (5).

Ãα̃ =
⋃

∀x

(

x, Ãx,α̃

)

=
{

(x, ux)|Ãx(ux) ≥ α̃, ∀x, ∀ux ∈ Jx

}

(12)

Here it is clear that

Ãα̃(x, ux) = Ãx,α̃(ux)

We turn our attention to theα-FSs of each VS. Let us
take the union of all theα-FSs across all domain values
for only one level, i.e.,

⋃

∀x

(

x, α̃Ãx,α̃

)

. It is a T2FS with

membership grades̃αÃx,α̃, which are FSs themselves, i.e.,

α̃Ãx,α̃ =
⋃

∀ux

(

ux, α̃Ãx,α̃(ux)
)

. This is exactly the same
as the T2FS associated with eachα-plane defined in equation
(7).

α̃Ãα̃ =
⋃

∀x

(

x, α̃Ãx,α̃

)

= α̃
⋃

∀x

(

x, Ãx,α̃

)

=
{(

(x, ux), α̃Ãα̃(x, ux)
)

|∀x ∈ X
}

(13)

We call this special T2FS associated with eachα-plane, (α-
T2FS), following the same convention we used for FSs. we
note that this same definition is called,α-FOU in [19], and
zSlice in [27]. We can see that a T2FS is decomposed of
theseα-T2FSs.

Theorem 3.1 (α-Plane RT):A type-2 fuzzy set,Ã, can be
represented (decomposed) of the union of all itsα-T2FSs,
i.e.,

Ã =
⋃

∀α̃

α̃Ãα̃ (14)

Proof. Straight forward from equations (11).(12) and (13).
In most cases theα-plane,Ãα̃, is considered to be an IVFS
or an IT2FS [17], [19], [27], [28]. This is only the case when
the VSs are continuous functions and henceJx ∈ I([0,1]) is
an interval. If the VSs are in discrete domains then as men-
tioned earlier, the PMs must be bounded through a bounding
operation. The following worked example demonstrates how
to construct IVFSα-planes for discrete T2FSs.

Example 3.1: Let X = {xi|i = 1, 2, ..., 10}, and
very small(V S), small(S), medium(M ), large(L), and
very large(V L) ∈ F([0,1]) are the FSs that represent
the vertical slices,Ãx, defined in Table I. Each vertical
slice, Ãxi

, consist of PGs,uxi
, forming its domain and

the SGs,Ãxi
(uxi

), forming its membership grade. Let also,
Ã ∈ F̃ (X), be defined as in Table II, with domain values,
xi, corresponding to vertical slices from Table I. Table III
shows how to extract theα-cuts (̃α) of the VS Ãxi

of each
domain value to form the crisp sets̃Axi,α̃. Table IV shows
how to construct the interval membership grades of theα-
planes,Ãα̃(xi) =

[

min
(

Ãxi,α̃

)

,max
(

Ãxi,α̃

)]

in order to
formulate the IVFSα-planes.

This example demonstrates the case when there are no gaps
in the PM, i.e., all VSs are convex. If there is a contrary case,
then these sets are approximated to an IVFS using a bounding
operation such as taking the minimum and maximum (or
infimum and supremum) of the PGs. Note that if these sets
are approximated they risk the loss of information. On the
other hand, some might argue, what kind of information do
such sets hold? In fact most of the reported applications use
a structured model of T2FSs that does not involve such sets.

B. T2FSα-plane EP

In this subsection we formulate a theorem that acts as the
α-based EP for T2FSs. It extends operations from IVFSs
to T2FSs, directly. We extend these operations using theα-
plane RT investigated in the last subsection. Here we state
the theorem from Hamrawiet al. [9]–[12].

Theorem 3.2 (α-EP): Let, X = X1 × ... × Xn, be the
Cartesian product of universes, and̃A1, ..., Ãn be T2FSs in
each universe respectively. Also letY be another universe
and B̃ ∈ Y be a T2FS such that̃B = f(Ã1, ..., Ãn), where
f : X → Y is a monotone mapping. Assume that all the
decomposedα-planes of all the T2FSs (i.e.̃A1, ..., Ãn) are
or allowed to be IVFSs. TheñB is equal to the union of
applying the same function to all the decomposedα-planes
of Ã1, ..., Ãn, i.e.,

B̃ = f(Ã1, ..., Ãn)

=
⋃

∀α̃

α̃f(Ã1α̃ , ..., Ãnα̃
) (15)

Proof. We start our proof from equation (11)

Ãi(x) =
⋃

∀α̃

α̃Ãix,α̃

wherei = 1, ..., n. Then,

B̃(y) = f(Ã1, ..., Ãn)(y)

= sup
(x1,...,xn)=f−1(y)

min
(

Ã1(x1), ..., Ãn(xn)
)

= sup
(x1,...,xn)=f−1(y)

min
(

Ã1x1
, ..., Ãnxn

)

sinceÃ1x1
, ..., Ãnxn

∈ F(X) then

B̃(y) = sup
(x1,...,xn)=f−1(y)

min

(

⋃

∀α̃

α̃Ã1x1,α̃
, ...,

⋃

∀α̃

α̃Ãnxn,α̃

)

= sup
(x1,...,xn)=f−1(y)

⋃

∀α̃

α̃min
(

Ã1x1,α̃
, ..., Ãnxn,α̃

)

=
⋃

∀α̃

α̃ sup
(x1,...,xn)=f−1(y)

min
(

Ã1x1,α̃
, ..., Ãnxn,α̃

)

(16)
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TABLE I
FSS THAT REPRESENT THE VERTICAL SLICES,Ãx , IN EXAMPLE (3.1). THE HORIZENTAL HEADING REPRESENTS THESGS, Ãx(ux), THE VERTICAL

HEADING REPRESENTS THEVSS, Ãx , AND THE NUMBERS IN BETWEEN ARE THEPGS, ux .

Ãx 0.0 0.5 1.0 0.5 0.0
VS 0.0 0.08 0.15 0.18 0.2
S 0.15 0.17 0.35 0.42 0.45
M 0.4 0.43 0.5 0.6 0.65
L 0.55 0.62 0.65 0.75 0.8
VL 0.7 0.78 0.85 0.9 1.0

TABLE II
T2FS,Ã, IN EXAMPLE (3.1). EACH DOMAIN VALUE , xi , ALONG WITH ITS CORRESPONDING VERTICAL SLICE FROM TABLE(I).

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Ãxi
VS VS S S M L L L VL VL

TABLE III
THE CRISP SETα-CUTS, Ãxi,α̃ , OF THE VERTICAL SLICES,Ãxi

, FOR EACH DOMAIN VALUE, xi , IN EXAMPLE (3.1)

i α̃ = 0.0 α̃ = 0.5 α̃ = 1.0
1 0, 0.08, 0.15, 0.18, 0.2 0.08, 0.15, 0.18 0.15
2 0, 0.08, 0.15, 0.18, 0.2 0.08, 0.15, 0.18 0.15
3 0.15, 0.17, 0.35, 0.42, 0.45 0.17, 0.35, 0.42 0.35
4 0.15, 0.17, 0.35, 0.42, 0.45 0.17, 0.35, 0.42 0.35
5 0.4, 0.43, 0.5, 0.6, 0.65 0.43, 0.5, 0.6 0.5
6 0.55, 0.62, 0.65, 0.75, 0.8 0.62, 0.65, 0.75 0.65
7 0.55, 0.62, 0.65, 0.75, 0.8 0.62, 0.65, 0.75 0.65
8 0.55, 0.62, 0.65, 0.75, 0.8 0.62, 0.65, 0.75 0.65
9 0.7, 0.78, 0.85, 0.9, 1 0.78, 0.85, 0.9 0.85
10 0.7, 0.78, 0.85, 0.9, 1 0.78, 0.85, 0.9 0.85

TABLE IV
THE INTERVAL MEMBERSHIP GRADES OF THEα-PLANES, Ãα̃(xi) IN EXAMPLE (3.1)

i α̃ = 0.0 α̃ = 0.5 α̃ = 1.0
1 [0, 0.2] [0.08, 0.18] [0.15, 0.15]
2 [0, 0.2] [0.08, 0.18] [0.15, 0.15]
3 [0.15, 0.45] [0.17, 0.42] [0.35, 0.35]
4 [0.15, 0.45] [0.17, 0.42] [0.35, 0.35]
5 [0.4, 0.65] [0.43, 0.6] [0.5, 0.5]
6 [0.55, 0.8] [0.62, 0.75] [0.65, 0.65]
7 [0.55, 0.8] [0.62, 0.75] [0.65, 0.65]
8 [0.55, 0.8] [0.62, 0.75] [0.65, 0.65]
9 [0.7, 1] [0.78, 0.9] [0.85, 085]
10 [0.7, 1] [0.78, 0.9] [0.85, 0.85]

now we haveÃ1α̃ , ..., Ãnα̃
∈ F̂ (X), then we substitute each

T2FS with itsα-plane representation

f(Ã1α̃ , ..., Ãnα̃
)

= sup
(x1,...,xn)=f−1(y)

min
(

Ã1α̃(x1), ..., Ãnα̃(xn)

)

then, take the union of all̃α, i.e.,

f(Ã1α̃ , ..., Ãnα̃
)

=
⋃

∀α̃

α̃ sup
(x1,...,xn)=f−1(y)

min
(

Ã1α̃(x1), ..., Ãnα̃(xn)

)

(17)

observe thatÃiα̃(xi) = Ãixi,α̃
, ∀i, it follows that equations

(16) and (17) are equal, and that completes the proof.
The union, the intersection, and the centroid calculation

of T2FSs defined by Liu, and Wagner and Hagras can
be derived using this theorem. Hamrawi and Coupland [9]
defined the non-specificity function in such a way that can
be considered a direct implementation of this formula. In all
these applications theα-planes are considered to be IVFSs.
This assumption allows the use of methods already defined
for IVFSs (or IT2FSs) with eachα-plane and thus extended
to T2FSs. One of the main advantages of this method is the
ability to define operations independently for eachα-plane.
This suggests the use of parallel or distributed techniquesto
process operations. Thisα-PEP is used to defineα-cuts for
T2FSs. The idea is to make use of theα-cut RT for IVFSs
and decompose eachα-plane intoα-cuts. In the next section
we discussα-cuts for IVFSs, in order to be used later to
define theα-cuts for T2FSs.
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IV. A LPHA-CUTS OFINTERVAL VALUED FUZZY SETS

In this section we investigate theα-cuts of IVFSs. We
already introduced a method for definingα-cuts of IVFSs
in [11], [12] based on earlier work done by Kaufmann and
Gupta [15] on fuzzy arithmetic. It is also related to the aggre-
gation method defined by Wu and Mendel [30], [31]. Zeng
et al. [36], [37] defined a variety ofα-cut RTs for IVFSs and
defined theα-EP that makes possible to extend operations
from crisp sets to IVFSs directly. Recently, Yager [32] also
definedα-cuts and theα-EP for discrete IVFSs. Figueroa
Garcia [6], [7] independently introduced alpha-cuts for type-
2 interval fuzzy sets, providing an alternative approach to
the Karnik-Mendel iterative method for defuzzicafion and for
the purposes of formulating and solving linear programming
problems. In this section we investigate these methods. We
defineα-cuts for IVFSs by taking theα-cut of its LMF and
UMF which are themselves FSs, i.e.,

Definition 4.1 (IVFSα-cuts): Theα-cut of an IVFS,Â, is
defined as follows:

Âα =
(

Aα, Aα

)

whereÂα(x) =
[

Aα(x), Aα(x)
]

.
Note that, the membership of each domain value,x, in the
set,Âα, is an interval, i.e.,

Âα(x) =







[0, 0] , x /∈ Aα and x /∈ Aα

[0, 1] , x /∈ Aα and x ∈ Aα

[1, 1] , x ∈ Aα and x ∈ Aα

(18)

These situations are depicted in Figure 3. Notice that we

1

u

x

α1

A

A Aα1

Aα1

x1 x2

α2

Aα2

Aα2
(x1) = 1

Aα1
(x1) = Aα1

(x1) = 1

Aα1
(x2) = 1

Fig. 3. IVFS Â, its LMF A, its UMF A and theirα-cuts.

did not include a particular impossible situation, that of
Âα(x) = [1, 0]. This situation is impossible because, by
definition, the LMF is always a subset of the UMF,A ⊆ A,
i.e., A(x) ≤ A(x), ∀x. Which allow us to conclude that
Aα ⊆ Aα, ∀α. The IVFSα-cuts are pairs that contain two

crisp sets. These sets are treated independently throughout
any computation process. This makes it very appealing and
holds the semantics of the IVFS definition. The IVFS is
actually a FS with an uncertain membership grade which
is represented through an interval. The LMF and UMF
represents this uncertainty with the interpretation that we
do not know exactly the FS, we only know the FS bounds.
Again, we follow the same convention of the FSα-cuts and
define a special IVFS called (α-IVFS) by defining the special
FSsα-FSs for the LMF and the UMF, i.e.,

Definition 4.2 (α-IVFS):A special IVFS (α-IVFS),αÂα ∈
F̂ (X), can be defined as follows:

αÂα =
(

αAα, αAα

)

= α
(

Aα, Aα

) (19)

where αÂα(x) =
[

α ∧Aα(x), α ∧Aα(x)
]

= α ∧
[

Aα(x), Aα(x)
]

.

HereαÂα is an IVFS, and each domain value,x, is associ-
ated with an interval membership grade,αÂα(x) ∈ I([0,1]).
Also αAα and αAα are FSs. Theα-cut RT for IVFSs
constitutes the union of all theseα-IVFSs.

Theorem 4.1 (IVFSα-cut RT): An interval valued fuzzy
set, Â, can be represented by the followingα-cut represen-
tation theorem:

Â =
⋃

∀α

αÂα (20)

Proof. By definition any IVFS is represented using the LMF
and UMF, i.e.,Â =

(

A,A
)

. SinceA =
⋃

∀α αAα andA =
⋃

∀α αAα by the decomposition theorem of FSs, then,

Â =

(

⋃

∀α

αAα,
⋃

∀α

αAα

)

=
⋃

∀α

(

αAα, αAα

)

(21)

Straight forward from definition (4.2)αÂα =
(

αAα, αAα

)

,
and that completes the proof. The following worked
example demonstrates how to calculate theα-cuts of discrete
IVFSs.

Example 4.1:Let X = {xi|i = 1, 2, ..., 10}, and Â ∈
F̂ (X) is an IVFS defined in Table V. Table VI shows the
α-cuts of IVFSÂ calculated from its LMF and UMF. Table
VII shows how to reconstruct IVFŜA knowing itsα-cuts.

Also using equation (20), ifÂ is a continuous and convex
IVFS i.e. A and A are continuous and convex as seen in
Figure (2). Its α-cut is Âα =

(

Aα, Aα

)

where Aα =
[

Lxα,
Rxα

]

andAα =
[

Lxα,
Rxα

]

. Then,Âα, is calculated
using the following formula:

Âα =

{ ([

Lxα,
Rxα

]

,
[

Lxα,
Rxα

])

, α ≤ h(A)
(

∅,
[

Lxα,
Rxα

])

, α > h(A)
(22)
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TABLE V
IVFS, Â, IN EXAMPLE (4.1). EACH DOMAIN VALUE , xi , ALONG WITH ITS CORRESPONDING INTERVAL MEMBERSHIP GRADE, LMF MEMBERSHIP

GRADE AND UMF MEMBERSHIP GRADE.

xi Â(xi) A(xi) A(xi)
x1 [0, 0.6] 0 0.6
x2 [0, 0.8] 0 0.8
x3 [0, 0.9] 0 0.9
x4 [0.5, 1] 0.5 1
x5 [0.7, 1] 0.7 1
x6 [0.6, 1] 0.6 1
x7 [0.3, 0.8] 0.3 0.8
x8 [0, 0.6] 0 0.6
x9 [0, 0.3] 0 0.3
x10 [0, 0.1] 0 0.1

TABLE VI
THE α-CUTS OFIVFS, Â, OF TABLE (V) IN EXAMPLE (4.1).

α Aα Aα

0.0 {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
0.1 {x4, x5, x6, x7} {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}
0.2 {x4, x5, x6, x7} {x1, x2, x3, x4, x5, x6, x7, x8, x9}
0.3 {x4, x5, x6, x7} {x1, x2, x3, x4, x5, x6, x7, x8, x9}
0.4 {x4, x5, x6} {x1, x2, x3, x4, x5, x6, x7, x8}
0.5 {x4, x5, x6} {x1, x2, x3, x4, x5, x6, x7, x8}
0.6 {x5, x6} {x1, x2, x3, x4, x5, x6, x7, x8}
0.7 {x5} {x2, x3, x4, x5, x6, x7}
0.8 ∅ {x2, x3, x4, x5, x6, x7}
0.9 ∅ {x3, x4, x5, x6}
1.0 ∅ {x4, x5, x6}

TABLE VII
REGENERATING IVFS, Â, IN EXAMPLE (4.1) FROM ITSα-CUTS IN TABLE (VI)

i αAα(xi) αAα(xi) Â(xi)
1 0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 [0, 0.6]
2 0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 [0, 0.8]
3 0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 [0, 0.9]
4 0, 0.1, 0.2, 0.3, 0.4, 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [0.5, 1]
5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [0.7, 1]
6 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [0.6, 1]
7 0, 0.1, 0.2, 0.3 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 [0.3, 0.8]
8 0 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 [0, 0.6]
9 0 0, 0.1, 0.2, 0.3 [0, 0.3]
10 0 0, 0.1 [0, 0.1]

where∀α : Lxα ≤ Lxα ≤ Rxα ≤ Rxα, h(A) = sup∀x A(x)
is the height of LMF, and∅ is an Empty Set. Another way
of defining α-cuts for IVFSs is the method provided by
Kaufmann and Gupta [15]. For example consider the same
set provided in equation (22), theα-cuts are described in the
following way, i.e.,

ÂKG
α =

{ [[

Lxα,
Lxα

]

,
[

Rxα,
Rxα

]]

, α < h(A)
[

Lxα,
Rxα

]

, α ≥ h(A)
(23)

There are two drawbacks to this method. Firstly, it does
not reduce to theα-cut of FSs directly, instead some ma-
nipulation and rearrangement must be done and secondly,
it does not hold the semantics ofα-cuts through out the
representation. In equation (23), what doesx ∈

[

Lxα,
Lxα

]

represent? It has a rather complicated relationship to LMF
and UMF. It is the valuesx of the domain that belongs to
Aα and does not belong to non boundary elements ofAα,
i.e.,

Âα =

{

x|x ∈ Aα andx /∈

{

Aα −

{

inf
∀x

Aα, sup
∀x

Aα

}}}

=
{

x ∈
[

Lxα,
Rxα

]

andx /∈
(

Lxα,
Rxα

)}

= Aα ∩A
′

α+

(24)

where the minus sign− represents the set difference,
(

Lxα,
Rxα

)

is an open interval, andA
′

α+ is the complement
of the strongα-cut (α+) of the LMF A. Zeng et al. [36],
[37] defined a variety ofα-cuts. We are interested in one
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particular case, i.e.,

Âα =
{

x|A(x) ≥ α,A(x) ≥ α
}

(25)

Equation 25 is a generalisation of theα-cuts for FSs. There
is no distinction between the domain values that belong to
the α-cuts of the LMF and the UMF. Hence, theα-cut is a
crisp set rather than a pair. Yager [32] also defined a closely
related definition for the discrete cases, which can easily be
generalised for continuous cases. Although there are different
ways to defineα-cuts for IVFSs, the representation theorem
is the same. The ability to extend operations using theα-cut
RT is what makes it useful.

Theorem 4.2 (IVFSα-EP): Let, X = X1 × ... × Xn, be
the Cartesian product of universes, andÂ1, ..., Ân be IVFSs
in each universe respectively. Also letY be another universe
andB̂ ∈ Y be an IVFS such that̂B = f(Â1, ..., Ân), where
f : X → Y is a monotonic mapping. Then,̂B, is equal to the
union of applying the same function to all the decomposed
α-cuts of the IVFSs [12], i.e.,

B̂ = f(Â1, ..., Ân)

=
⋃

∀α

α
(

f(A1α
, ..., Anα

), f(A1α , ..., Anα
)
) (26)

Proof. SinceA1, ..., An, A1, ..., An ∈ F(X), then from equa-
tion (2)

f(A1, ..., An) =
⋃

∀α

αf(A1α
, ..., Anα

)

f(A1, ..., An) =
⋃

∀α

αf(A1α , ..., Anα
)

Therefore, we have

f(Â1, ..., Ân) =
(

f(A1, ..., An), f(A1, ..., An)
)

=

(

⋃

∀α

αf(A1α
, ..., Anα

),
⋃

∀α

αf(A1α , ..., Anα
)

)

=
⋃

∀α

α
(

f(A1α
, ..., Anα

), f(A1α , ..., Anα
)
)

which completes the proof. The following example shows
how to perform the union and intersection of IVFSs using
α-cuts.

Example 4.2:Let 4̂ and 8̂ be two IVFS defined in Table
VIII and Table IX, respectively. Theα-cuts of both their
LMF and UMF is shown in Table X. The union of theα-
cuts are shown in Table XI. This will eventually lead to an
IVFS 4̂ ∪ 8̂. The method used to generate the membership
grades of̂4 ∪ 8̂ from its α-cuts is shown in Table XII. The
intersection of theα-cuts are shown in Table XIII. This will
eventually lead to an IVFŜ4∩8̂. The method used to generate
the membership grades of4̂ ∩ 8̂ from its α-cuts is shown in
Table XIV.

To summarise the overall picture, we view the process of
deriving operations for IVFSs to involve the definition of
these operations for two distinct FSs, i.e., the UMF and
LMF. The same operations can be defined for crisp sets (or
intervals) and then extend them to FSs using theα-EP. The
obvious conclusion is to define these operations for IVFSs
by taking both FSs and using theα-EP. To derive operations
for IVFSs in such a simple and elegant process is in itself,
we believe, a significant result.

V. A LPHA-CUTS OFTYPE-2 FUZZY SETS

A. α-cut Representation Theorem

In the previous section we discussedα-cuts for IVFSs.
Theseα-cuts can be defined in different ways. What is
important, is that these are crisp sets and the IVFSα-
EP extends operations directly from crisp sets to IVFSs.
This fact is crucial since in Section III we showed thatα-
planes are IVFSs, and developed theα-PEP to allow us to
extend operations from IVFSs to T2FSs. Combining these
two theorems lead us to defineα-cuts for T2FSs, directly.
First, we define the UMF and LMF ofα-planes.

Definition 5.1: Let, Ã ∈ F̃ (X), be a T2FS and,Ãα̃ ∈
F̂ (X), be a IVFS representing itsα-plane at levelα̃, such
that Ãα̃ =

[

ux,α̃, ux,α̃

]

. Let, Aα̃ ∈ F(X), be the LMF ofÃα̃

and ,Aα̃ ∈ F(X), be the UMF ofÃα̃. Then eachα-plane is
completely determined by its LMF and UMF, i.e.,

Ãα̃ =
(

Aα̃, Aα̃

)

(27)

where Ãα̃(x) =
[

Aα̃(x), Aα̃(x)
]

, Aα̃(x) = ux,α̃ and
Aα̃(x) = ux,α̃.
It is clear that both the LMF and UMF are FSs. Now, let us
take theα-cuts of eachα-plane.

Definition 5.2 (T2α-cuts):Let, Ã ∈ F̃ (X), be a T2FS and,
Ãα̃ =

(

Aα̃, Aα̃

)

, be itsα-plane at level̃α represented by its
LMF and UMF. Then,Ãα̃,α, is theα-cut of thatα-plane at
level α, i.e.,

Ãα̃,α =
(

Aα̃,α, Aα̃,α

)

(28)

whereAα̃,α andAα̃,α are theα-cuts of the LMF and UMF
of α-plane,Ãα̃, respectively.
The LMF and UMFα-cuts are crisp sets since the LMF and
UMF are FSs. Hence,Aα̃,α(x) ∈ {0, 1}, and Aα̃,α(x) ∈
{0, 1}. Following definition (4.2) we defineα-IVFS of each
α-cut, i.e.,

Definition 5.3: For eachα-cut, Ãα̃,α, of the T2FS,Ã, a
special IVFS (α-IVFS), αÃα̃,α ∈ F̂ (X), can be defined as
follows:

αÃα̃,α = α
(

Aα̃,α, Aα̃,α

)

=
(

αAα̃,α, αAα̃,α

) (29)
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TABLE VIII
IVFS, 4̂, IN EXAMPLE 4.2.

x 2 3 4 5 6

4̂(x) [0, 0.2] [0.4, 0.6] [0.8, 1] [0.5, 0.6] [0, 0.4]

TABLE IX
IVFS, 8̂, IN EXAMPLE 4.2.

x 5 6 7 8 9 10 11

8̂(x) [0, 0.1] [0.2, 0.5] [0.6, 0.8] [1, 1] [0.5, 0.8] [0.2, 0.4] [0, 0.1]

TABLE X
THE α-CUTS OFIVFS, 4̂ AND 8̂, IN EXAMPLE 4.2.

α 4α 8α 4α 8α
0.0 {2, 3, 4, 5, 6} {5, 6, 7, 8, 9, 10, 11} {2, 3, 4, 5, 6} {5, 6, 7, 8, 9, 10, 11}
0.1 {3, 4, 5} {6, 7, 8, 9, 10} {2, 3, 4, 5, 6} {5, 6, 7, 8, 9, 10, 11}
0.2 {3, 4, 5} {6, 7, 8, 9, 10} {2, 3, 4, 5, 6} {6, 7, 8, 9, 10}
0.3 {3, 4, 5} {7, 8, 9} {3, 4, 5, 6} {6, 7, 8, 9, 10}
0.4 {3, 4, 5} {7, 8, 9} {3, 4, 5, 6} {6, 7, 8, 9, 10}
0.5 {4, 5} {7, 8, 9} {3, 4, 5} {6, 7, 8, 9}
0.6 {4} {7, 8} {3, 4, 5} {7, 8, 9}
0.7 {4} {8} {4} {7, 8, 9}
0.8 {4} {8} {4} {7, 8, 9}
0.9 ∅ {8} {4} {8}
1.0 ∅ {8} {4} {8}

TABLE XI
THE α-CUTS OFIVFS, 4̂ ∪ 8̂, IN EXAMPLE 4.2.

α 4α ∪ 8α 4α ∪ 8α
0.0 {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
0.1 {3, 4, 5, 6, 7, 8, 9, 10} {2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
0.2 {3, 4, 5, 6, 7, 8, 9, 10} {2, 3, 4, 5, 6, 7, 8, 9, 10}
0.3 {3, 4, 5, 7, 8, 9} {3, 4, 5, 6, 7, 8, 9, 10}
0.4 {3, 4, 5, 7, 8, 9} {3, 4, 5, 6, 7, 8, 9, 10}
0.5 {4, 5, 7, 8, 9} {3, 4, 5, 6, 7, 8, 9}
0.6 {4, 7, 8} {3, 4, 5, 7, 8, 9}
0.7 {4, 8} {4, 7, 8, 9}
0.8 {4, 8} {4, 7, 8, 9}
0.9 {8} {4, 8}
1.0 {8} {4, 8}

whereαÃα̃,α(x) = α ∧
[

Aα̃,α(x), Aα̃,α(x)
]

.

It is noticeable thatαAα̃,α andαAα̃,α are special FSs (α-
FS). The union of allα-IVFSs constitute anα-plane.

Ãα̃ =
⋃

∀α

αÃα̃,α

=
⋃

∀α

α
(

Aα̃,α, Aα̃,α

)

(30)

Earlier in Equation 13 we defined a special T2FS (α-T2FS)
associated with eachα-plane, α̃Ãα̃. We make use of this
definition again.

α̃Ãα̃ = α̃
⋃

∀α

αÃα̃,α

= α̃
⋃

∀α

α
(

Aα̃,α, Aα̃,α

)

(31)

where
(

α̃
⋃

∀α αÃα̃,α(x)
)

(ux,α̃) = α̃ ∧
(

⋃

∀α αÃα̃,α(x)
)

(ux,α̃) and
⋃

∀α αÃα̃,α(x)(ux,α̃) = 1 if

ux,α̃ ∈
⋃

∀α αÃα̃,α(x) and zero otherwise. It is already
known from theα-plane representation theorem that a T2FS
can be represented by the union of all suchα-T2FSs.

Theorem 5.1 (T2FSα-cut RT):A T2FS, Ã, can be repre-
sented by the union of all itsα-T2FSs, i.e.,

Ã =
⋃

∀α̃

α̃
⋃

∀α

αÃα̃,α (32)

Proof. Straight forward substitute equation (31) in equation
(14) of theorem (4.1). The α-cut representation allow
T2FSs to be decomposed into its smallest interpretable
components, i.e., crisp sets while maintaining the relationship
between domain values by their degree of membership.
T2FSs can be looked upon as weighted crisp sets with the
PGs and SGs as weighting factors. The VS,α-plane andα-
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TABLE XII
IVFS, 4̂ ∪ 8̂, IN EXAMPLE 4.2 FROM ITSα-CUTS IN TABLE XI.

x α(4 ∪ 8)α(x) α(4 ∪ 8)α(x)
(

4̂ ∪ 8̂
)

(x)
2 0 0, 0.1, 0.2 [0, 0.2]
3 0, 0.1, 0.2, 0.3, 0.4 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 [0.4, 0.6]
4 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [0.8, 1]
5 0, 0.1, 0.2, 0.3, 0.4, 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 [0.5, 0.6]
6 0, 0.1, 0.2 0, 0.1, 0.2, 0.3, 0.4, 0.5 [0.2, 0.5]
7 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 [0.6, 0.8]
8 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [1, 1]
9 0, 0.1, 0.2, 0.3, 0.4, 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 [0.5, 0.8]
10 0, 0.1, 0.2 0, 0.1, 0.2, 0.3, 0.4 [0.2, 0.4]
11 0 0, 0.1 [0, 0.1]

TABLE XIII
THE α-CUTS OFIVFS, 4̂ ∩ 8̂, IN EXAMPLE 4.2.

α 4α ∩ 8α 4α ∩ 8α
0.0 {5, 6} {5, 6}
0.1 ∅ {5, 6}
0.2 ∅ {6}
0.3 ∅ {6}
0.4 ∅ {6}
0.5 ∅ ∅
0.6 ∅ ∅
0.7 ∅ ∅
0.8 ∅ ∅
0.9 ∅ ∅
1.0 ∅ ∅

TABLE XIV
IVFS, 4̂ ∩ 8̂, IN EXAMPLE 4.2 FROM ITSα-CUTS IN TABLE XIII

x α(4 ∩ 8)α(x) α(4 ∩ 8)α(x)
(

4̂ ∩ 8̂
)

(x)
5 0 0, 0.1 [0, 0.1]
6 0 0, 0.1, 0.2, 0.3, 0.4 [0, 0.4]

cut representations are by definition related. The relationship
between these representations is depicted in Figure 4. The

Ã

⋃

∀x

(

x, Ãx

)

Ã
x
=

⋃

∀
α̃ α̃Ã

x
,α̃

⋃

∀α̃ α̃Ãα̃
Ã α̃

=
⋃

∀
α
αÃ

α̃,
α

⋃

∀α̃ α̃
⋃

∀α αÃα̃,α

Ve
rtic
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e

α
-plane

α-cutCrisp setsFuz
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F

S
s

Fig. 4. The vertical slice,α-plane andα-cut representations of T2FSs and
their relationship.

relation between domain values in the classical set theoretic
way is behind the idea ofα-cuts for FSs. This relation is
maintained across IVFSs and T2FSs as they are extension of
classical FSs. What makes such decomposition interesting is
the ability to perform operations in the classical set theoretic
sense. This is made possible by extending theα-EP of FSs

to IVFSs, and by theα-PEP ofα-planes.
Theorem 5.2 (T2FSα-cut EP):Let,X = X1×...×Xn, be

the Cartesian product of universes, andÃ1, ..., Ãn be T2FSs
in each universe respectively. Also letY be another universe
and B̃ ∈ Y be a T2FS such that̃B = f(Ã1, ..., Ãn), where
f : X → Y is a monotone mapping. TheñB is equal to the
union of applying the same function to all its decomposed
α-cuts, i.e.,

B̃ = f(Ã1, ..., Ãn)

=
⋃

∀α̃

α̃
⋃

∀α

αf(Ã1α̃,α
, ..., Ãnα̃,α

)

Proof. From theorem (3.2) operations are extended to T2FSs
by the α-PEP from operations on itsα-planes which are
IVFSs. For eachα-plane theorem (4.2) allows the operations
to be extended from crisp sets. Hence, straight forward
substitute equation (26) in equation (15) and that completes
the proof. This theorem first appeared in [10]. The
following example demonstrates how to use Theorem 5.2
for defining operations for T2FSs by calculating the join and
meet of a T2FS using theα-cut extension principle.

Example 5.1:Consider the T2FSs,̃3, in Table XV and,
6̃, in Table XVI. To perform the join, a decomposition of
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each T2FS into itsα-planes and eachα-plane to itsα-cuts
must be performed. Then, for example the union ofα-planes
3̃0̃.2 ∪ 6̃0̃.2, is computed. The interval membership grades of
eachα-plane are constructed using the bounds of the PMs
Jx,α̃, i.e. Table XVII and Table XVIII. The steps to perform
the union is shown in Table XIX, Table XX and Table XXI.
These are the same steps used to perform the union of IVFSs.
To perform the union of the T2FSs the same task is repeated
for all theα-planes.

In this section we definedα-cuts for T2FSs and its associated
T2FSα-EP which allows us to extend operations to FSs and
its extensions.

VI. CONCLUSION

In this paper we defined theα-cut decomposition theorem
for T2FSs, through the use of the basic ideas ofα-cuts in FSs
and the EP. We also showed that this novel decomposition
theorem can extend mathematical concepts from crisp sets
to T2FSs, directly. In this paper also we investigated a
generalisation that allow us to extend operations from IVFSs
to T2FSs, through theα-plane RT. In order to clarify these
concepts we used several worked examples. It is the authors
belief that the novel theories provided in this paper will stim-
ulate more investigation and applications of T2FSs. Future
work includes taking advantage of the independent nature
of theseα-cuts to perform operations on parallel processors,
such as graphical processing units (GPUs).
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TABLE XV
T2FS3̃, IN EXAMPLE 5.1. THE NUMBERS IN BETWEEN ARE THESGS, 3̃x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 1.0 0.6 0.3
2 0.1 0.6 1.0 0.7 0.2
3 1.0
4 0.1 0.6 1.0 0.7 0.2
5 1.0 0.6 0.3

TABLE XVI
T2FS6̃, IN EXAMPLE 5.1. THE NUMBERS IN BETWEEN ARE THESGS, 6̃x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
4 1.0 0.8 0.4 0.2 0.1
5 0.2 1.0 0.4
6 1.0
7 0.2 1.0 0.4
8 1.0 0.8 0.4 0.2 0.1

TABLE XVII
α-PLANE, 3̂

0̃.2
, IN EXAMPLE 5.1.

x 1 2 3 4 5

3̃
0̃.2(x) [0, 0.2] [0.4, 0.7] [1, 1] [0.4, 0.7] [0, 0.2]

TABLE XVIII
α-PLANE, 6̃

0̃.2
, IN EXAMPLE 5.1.

x 4 5 6 7 8

6̃
0̃.2(x) [0, 0.3] [0.5, 0.7] [1, 1] [0.5, 0.7] [0, 0.3]
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TABLE XIX
THE α-CUTS OFα-PLANES, 3̃

0̃.2
AND 6̃

0̃.2
, IN EXAMPLE 5.1.

α 3
0̃.2,α 6

0̃.2,α 3
0̃.2,α 6

0̃.2,α

0.0 {1, 2, 3, 4, 5} {4, 5, 6, 7, 8} {1, 2, 3, 4, 5} {4, 5, 6, 7, 8}
0.1 {2, 3, 4} {5, 6, 7} {1, 2, 3, 4, 5} {4, 5, 6, 7, 8}
0.2 {2, 3, 4} {5, 6, 7} {1, 2, 3, 4, 5} {4, 5, 6, 7, 8}
0.3 {2, 3, 4} {5, 6, 7} {2, 3, 4} {4, 5, 6, 7, 8}
0.4 {2, 3, 4} {5, 6, 7} {2, 3, 4} {5, 6, 7}
0.5 {3} {5, 6, 7} {2, 3, 4} {5, 6, 7}
0.6 {3} {6} {2, 3, 4} {5, 6, 7}
0.7 {3} {6} {2, 3, 4} {5, 6, 7}
0.8 {3} {6} {3} {6}
0.9 {3} {6} {3} {6}
1.0 {3} {6} {3} {6}

TABLE XX
THE α-CUTS OFα-PLANES, 3̃

0̃.2
∪ 6̃

0̃.2
, IN EXAMPLE 5.1.

α 3
0̃.2,α ∪ 6

0̃.2,α 3
0̃.2,α ∪ 6

0̃.2,α

0.0 {1, 2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8}
0.1 {2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8}
0.2 {2, 3, 4, 5, 6, 7} {1, 2, 3, 4, 5, 6, 7, 8}
0.3 {2, 3, 4, 5, 6, 7} {2, 3, 4, 5, 6, 7, 8}
0.4 {2, 3, 4, 5, 6, 7} {2, 3, 4, 5, 6, 7}
0.5 {3, 5, 6, 7} {2, 3, 4, 5, 6, 7}
0.6 {3, 6} {2, 3, 4, 5, 6, 7}
0.7 {3, 6} {2, 3, 4, 5, 6, 7}
0.8 {3, 6} {3, 6}
0.9 {3, 6} {3, 6}
1.0 {3, 6} {3, 6}

TABLE XXI
α-PLANE, 3̃

0̃.2,α
∪ 6̃

0̃.2,α
, IN EXAMPLE 5.1 FROM ITSα-CUTS IN TABLE XX.

x α(3
0̃.2,α ∪ 6

0̃.2,α)(x) α(3
0̃.2,α ∪ 6

0̃.2,α)(x)
(

3̃
0̃.2,α ∪ 6̃

0̃.2,α

)

(x)
1 0 0, 0.1, 0.2 [0, 0.2]
2 0, 0.1, 0.2, 0.3, 0.4 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 [0.4, 0.7]
3 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [1, 1]
4 0, 0.1, 0.2, 0.3, 0.4 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 [0.4, 0.7]
5 0, 0.1, 0.2, 0.3, 0.4, 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 [0.5, 0.7]
6 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 [1, 1]
7 0, 0.1, 0.2, 0.3, 0.4, 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 [0.5, 0.7]
8 0 0, 0.1, 0.2, 0.3 [0, 0.3]


