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Type-2 fuzzy logic systems make use of type-2 fuzzy sets.is the source of extra parameters, is in itself the origin of
To be able to deliver useful type-2 fuzzy logic applications we extra computational cost. The quest for a representatiain th
need to be able to perform meaningful operations on these sets. allow practical systems to be implemented is a fertile field
These operations should also be practically tractable. However, f h. Th f . ) h f
type-2 fuzzy sets suffer the shortcoming of being complex by o resea,rc " ere are. our ma!n rgpresentatlont e_orems .0
definition. Indeed, the third dimension, which is the source of T2FSs, in which practical applications and theoretical-defi
extra parameters, is in itself the origin of extra computational  nition have been investigated. The vertical slice, wavgesli
cost. The quest for a representation that allow practical systes  [22], alpha-plane (or zSlices) [17], [27] and geometric [5]
to be implemented is the motivation for our work. In this  yonrasentations. Zadeh [33] was the first to define opesation

paper we define the alpha-cut decomposition theorem for type- e .
2 fuzzy sets which is a new representation analogous to the for T2FSs, utilisinga-cuts of each fuzzy membership grade.

alpha-cut representation of type-1 fuzzy sets and the extensio Recently, Chen and Kawase [4], Tahayetial. [26], Liu et
principle. We show that this new decomposition theorem forms al. [17], [19], and Wagner and Hagras [27], [28] focused their
a methodology for extending mathematical concepts from crisp attention towards decomposing T2FSs into several IVFSs.
sets o type-2 fuzzy sets directly. In the process of developing | particular, Liu [17] defineda-planes and Wagner and
this theory we also deflne a generalisation that aIIovx_/s us to . . .
extend operations from interval type-2 fuzzy sets or interval Hagras [27_] defined zSlices QS part of _the'r effort to caleula
valued fuzzy sets to type-2 fuzzy sets. These results will allow the Centroid of T2FSs. In his work, Liu concluded that the
for the more applications of type-2 fuzzy sets by expiating the union, intersection and centroid of T2FSs is equal to their
parallelism that the research here affords. respective operations of its constituentplanes. Wagner
and Hagras independently concluded the same. Hamrawi
and Coupland [9], [10] derived arithmetic operations and
defined non-specificity for T2FSs using the same concept
Zadeh [33]-[35] defined the type-2 fuzzy set (T2FShnd stated a generalised formula in [11], [12]. In this paper
along with a plethora of concepts and mathematical funave investigate the use of the concept @fcuts and its
tions including the extension principle (EP) and resolutio extension principle for T2FSs. We explain, step by step,
identity more commonly known as the-cut decomposition the development phases of the theory and definitions. We
theorem. The EP extends point-valued operations from thelieve it is a significant step forward in the theory and
crisp mathematical setting to a corresponding fuzzy mathepplication of T2FSs. The novel ideas provided in this paper
matical setting, essentially fuzzifying classical matlatical are themselves built upon existing theories and definitions
concepts. Thev-cut decomposition theorem also allows thewell accepted in the literature and is an extension to avigla
same extension to be performed in a set-valued manner. Téied definitions. We show how operations on general type-2
idea is to decompose fuzzy sets into a collection of crisp sefizzy sets can be broken down into a collection of interval
related together via the levels. This decomposition theoremtype-2 or crisp interval operations. The paper is organised
has been extended to fuzzy sets with interval membershis follows: Section 2 provides the notations and necessary
grades known either by interval valued fuzzy sets (IVFSd)ack ground for the following work; Section 3 revisits the
or interval T2FSs (IT2FSs) [20]. Type-2 fuzzy sets, (bottplane representation and defines thplane extension prin-
general and interval), have attracted much attention astongiple; Section 4 discusses thecut representation of IVFSs;
researchers both in theory and applications (e.g. [3], [5Fection 5 defines the-cut representation for T2FSs and
[8], [13], [14], [24], [25], [28], [29]) mainly for the extra the extension principle associated with this representati
dimension they exhibit, which gives these sets the potenti&ection 6 provides a conclusion.
to model extra uncertainty based information. To be able to
make use of T2FSs, we should be able to perform meaningful
operations on these sets and these operations should also Be Basic Definitions
practically tractable. T2FSs suffer the shortcoming ohbei  In this section we present the notation and definitions used
complex by definition. Indeed, the third dimension, whichthroughout the paper. Let be acrisp subset of the universe

I. INTRODUCTION

Il. DEFINITIONS



X, itis a function4 : X — {0,1} that assignd to elements A = (A, A) which meansA(z) = [A(z), A(z)], Va. Let,

of the domain that belong tal and 0 otherwise. LetC(X) X = X; x ... x X,,, be the Cartesian product of universes,
be the set of all crisp subsets &f . Let A be aninterval and A, ..., A, be IVFSs in each universe respectively. Also
over X. It is defined byA = [z,Z] wherez,Z € X and let Y be another universe anB € Y be an IVFS such
z < T. Also letI(X) be the set of all interval subsets &f. that B = f(A;,..., A,), wheref : X — Y is a monotonic
Note that an interval is a special crisp set witliz) = 1, mapping. Then to use the Extension Principle with IVFSs,
z < z <7 and0 otherwise. Let a type-1 fuzzy sef{FS) A the (VEP) can be defined as follows:

be a subset ok, and defined to be a functioh: X — [0, 1]. . _ _ _

It is a generalisation of both crisp sets and intervals. We ca B= (E, B) = (f(Al’ Ay, f (A, ---vAn)) ®3)

a TIFS, a fuzzy setS) for short. LetF(X) be the set of 1y means, to derive operations for IVFSs we only need

all fuzzy subsets' ofX, and all FSs defined in.this PAPET 44 derive operations for their upper and lower membership
be convex. In this paper we are particularly interested iBnctions

the a-cut representation of FSs. Thecut of FS, A on the

domainX, is a crisp set defined to h&, = {z|A(z) > a},

o € [0,1], z € X. Eacha-cut is associated with a special B. Type-2 Fuzzy Set Definitions

FS, aA, € F(X), and calleda-FS. It is defined such that |n this section we review the main definitions of T2FSs.
@Ay () = a A Aa(z), Vo [16], [23], [32]. Then thea-cut et A be a T2FS in the universé. It is a function
representation theorem+RT) [16] is defined to be the union A : X — F([0,1]), so the membership grade of each domain
of all sucha-FSs, i.e.,.A = Jy, aA,. Itis evident that the value of the T2FS is a FS defined on the unit interval,
membership grade of each domain valuecan be calculated je., A(z) € F([0,1]). The vertical slice (VS) [18], [22],

by A(z) = supy, aAs(z). If the FS, 4, is continuous then je., A, = A(z) is a FS with domain values, € [0, 1]

its a-cut is an interval,A, € I(X), which can be written called theprimary grades(PGs) and membership grades
A = [z,,,T]. The stronga-cut is another useful crisp set A, (u,) € [0,1] called thesecondary grade¢SGs). Each
defined to beA,+ = {z|A(x) > o} [16]. In order to define PG is associated with one SG and the union of all the
operations for FSs, Zadeh defined the extension principfgimary grades:, of domain valuer is called theprimary
(EP), in which a function is extended from crisp sets to FSgembership(PM), i.e., J, = {un,uzm _,_7%} if the

in a compositional relation between point-values. This EBomain of membership grades of the T2FS is discrete, and
is sometimes referred to as thep — min composition. Let, j = [u,,7,] if it is continuous. Normally, it is assumed that
X = Xi x .. x X,, be the Cartesian product of universesthe PMs are intervals, and in the discrete case the PM can
and A4y,..., A, be FSs in each universe respectively. Alsge calculated by considering the lower and upper bounds,
let Y be another universe anB € Y be a FS such that je, J, = [inf;1,..q Uiy, SUD;_y 4 ui,], and henceJ, €

B = f(Ay,...,A,), where f : X — Y. Then the EP is |([0,1]). The union of all primary memberships is called the

defined as follows [33]: footprint of uncertaintfFOU), FOU (A) = |y, (z,J;). A
B Bly) = sup min (A1 (21), oy An(20)) _T2FS can be rep_reser!ted by the union of_ all its VSs which
(21,0en)EL 1 (1) is called the vertical slice representation, i.e.,
1) . .
where f~1(y) is the inverse function of = f(z1,...,x,). A= U (%Ax) (4)
Va

Zadeh also defined the-cut version of the EP«-EP) to
extend operations from crisp sets to FSs directly in a sefn interval type-2 fuzzy sefiT2FS) is a T2FS where all
valued method. It is defined as follows [33] the secondary grades are at unity, i&,(u,) =1, Yu, €
Jz, Y € X. It is well known that an IT2FS can be
B = f(A1,....4n) = Uo‘f(Ala""’A"a) (2) completely determined using itEOU and it is the same
Ve as an IVFS [2], [21]. Recently, Liu [17] proposed the
Some researchers have asserted that equations (1) ane (2)pkine representation of T2FSs, and Wagner and Hagras [27]
equal [1], [23], [33]. An interval valued fuzzy sefMFS), proposed zSlices. Liu defined anplane, A5 4, of a T2FS,

A, over X is defined by a functiond : X — 1([01]), 4, to be the union of the PGs of, whose SGs are greater
then A(z) = [u,,u,] and we let,F'(X), be the set of all than or equal to levef, i.e.,

IVFSs on X. The upper membership functiodJiMF) of ~ ~
an IVFS, 4, is a fuzzy set,A, where A(z) = a,, V. As = {(xyuz)\Az(ux) > a, Vr, Yu, € J:n} ()
The lower membership functiorLfMF ) of an IVFS, 4, is

a fuzzy set,A, where A(x) = u,,, Vz. We can see that an
IVES is completely determined by the LMF and UMF, i.e.,

Then Liu defines an indicator functioh; _, acting onz € X
such that,

1, (z,uy) € Aa
1This is the powerset in classical set theory. We use a differetation to IA& (z,uy) = 0, (z,u) ¢ A (6)
allow us to easily distinguish between the powerset of cvape, intervals [ «
and fuzzy sets.
2Throughout this paper we ugg to denote both crisp and fuzzy union. 3We have provided a proof for the IVEP, see [12] for more details
When used in a fuzzy union we are referring to the maximum t-aanor “We useda to indicate that it is ar-plane in the third dimension.



Then a T2FS associated with ea@kplane,d/id, is defined u
as follows:

dAs = {((z,us), 6 I3 (w,uz)) V2 € X} (7) 1
Using this definition the T2FS4, is represented by the union
of all its associated T2FSs, i.e., az=F - ==
A=\ ]ads 8
g (8) el /

Note that we do not use an indicator function to defineuts
for FSs, and hence we will provide a different interpretatio Qp - -
to that of Liu in Section Il of this paper. We define the
a-plane RT in an analogous way to that of thecut RT
for FSs. The EP for T2FSs (T2EP) is defined in a similar 0 |1 | 2 |3 | 4
way to the FS EP [18]. LetX = X; x ... x X,,, be the
Cartesian product of universes, add, ..., 4,, be T2FSs in
each universe respectively. Also I®t be another universe
andB € Y be a T2FS such tha® = f(A;, ..., A,), where Fig. 2. Continuous IVFSA and itsa-cuts
f: X — Y is a monotone mapping. Then applying the EP

to T2FSs T2EP) lead to the following:

_ R _
Lz, b, z Rz,

representation theorem (RT). We investigate some of the
B < B(y) = sup min (A1($1)7,,,7An(1'n) properties of thesev-planes and then define the-plane
(T1,z0)EF () ©) extension principle ¢-PEP).
wherey = f(x1,...,x,), and A (zy), ..., A,(z,) are the .
VSs which can be written as;, , ..., A, . These defini- A. a-planes Revisited
tions are used to formulate thecut representation theorem  First, the steps Zadeh [33] took in order to define the

for T2FSs. intersection of two T2FSs are summarised in two stages:

1) Extend the FS definition to fuzzy sets with interval-
valued membership functions.

2) Generalise from intervals to fuzzy sets by the use of
the a-cut form of the EP &-EP).

In the sequel, we follow these steps in order to decompose
T2FSs into its elementary components, i.e. crisp sets. In
general, since each VS is a FS, then it can be decomposed
using thea-cut decomposition theorem. Let € F(X) be a
T2ES onX, whereA, is its VS atz. Thea-cuts of each VS
are A, 5 = ug| Ay (ug) > d}, Vu, € J,. If the domain of

the T2FS membership function is assumed to be continuous
thenA, ; = [ty 4+ Tz,a)- Since these VSs are FSs then they
can be represented by thecut decomposition theorem, i.e.,

A, =|Jad. s (10)
Va

Wheredflgm is the special FS«-FS) associated with each

Fig. 1. 2D representation of the T2FS with triangular veidtislices. a-cut. It is defined anAz@(uw) = an Aw&(ux) and
Aya(ug) = 1if u, € A, 5 and zero otherwise. Then, T2FS
A is the union of all its VSs, therefore,

IIl. T2FS ALPHA-PLANE EXTENSION PRINCIPLE

In this section we introduce a generalisation that allows A= U ('T’QQA”“’&> (11)

us to extend operations from IVFSs to T2FSs directly usin%; o ) v ] )
a-planes. This theory lays the foundation for thecut his is a very important result as a T2FS is represented using

decomposition theorem for T2FSs. This method has bedrfollection of crisp sets (or intervals) defined verticapw
stated without a proof by Hamrawi and Coupland [10] witHet us take the union of all the-cuts across all domain values
a proof being provided in Hamraveit al. [11], [12]. Here for only one level, i.e.ly, ~(l"vAnxd)- It is the union of all
we start with a discussion on-planes, and thex-plane the pairs(z,u,) such that4, (u,) > &. This is exactly the



same as thex-plane definition of equation (5).

As= y (v Ans)
: (12)

_ {(I,ux)lz‘iw(uw) > G, Vo, Yu, € J(z:} This example demonstrates the case when there are no gaps

in the PM, i.e., all VSs are convex. If there is a contrary case

Here it is clear that then these sets are approximated to an IVFS using a bounding
- - operation such as taking the minimum and maximum (or
Aa(@,uz) = Ag,a(ug) infimum and supremum) of the PGs. Note that if these sets

We turn our attention to thew-FSs of each VS. Let us are approximated they risk the loss of information. On the
for only one level, i.e.l ), (z, a4, d) It is a T2FS with such sets hold? In fact most of the reported applications use

. ~ . . r red model of T2FSs th not involv h .
membership grade&A, 5, which are FSs themselves, |.e.,a structured model o Ss that does not involve such sets

&Aza = Uy, (Ue, @Aza(ug)). This is exactly the same
as the T2FS associated with eaciplane defined in equation

(7). B. T2FSa-plane EP
A5 = (93’ 5“21967&) In this subsection we formulate a theorem that acts as the
vo a-based EP for T2FSs. It extends operations from IVFSs
=a U (ac,fix@) (13) to T2FSs, directly. We extend these operations usingathe
Va plane RT investigated in the last subsection. Here we state
_ {((x,uw),dfla(x,ux)) Yz € X} the theorem from Hamrawat al. [9]-[12].

Theorem 3.2 -EP): Let, X = X; x ... x X,,, be the
We call this special T2FS associated with eacplane, -  Cartesian product of universes, add, ..., A, be T2FSs in
T2FS), following the same convention we used for FSs. weach universe respectively. Also &t be another universe
note that this same definition is callessFOU in [19], and and B € Y be a T2FS such thaB = f(z‘L, .“714"), where
zSlicein [27]. We can see that a T2FS is decomposed q : X — Y is a monotone mapping. Assume that all the
thesea-T2FSs. ) decomposedr-planes of all the T2FSs (i.eds, ..., 4,) are
Theorem 3.1¢-Plane RT):A type-2 fuzzy setA, can be or allowed to be IVFSs. Thet is equal to the union of
represented (decomposed) of the union of allat¥2FSs, applying the same function to all the decomposgseglanes
ie. ) ) of Ay,..., A,, ie.,
A g‘“‘“ (14) B=f(A,.., A,
. . = Udf<*’211&ﬂ"'7;1n&) (15)
Proof. Straight forward from equations (11).(12) and (1&). va
In most cases tha—plane,/i&, is considered to be an IVFS .
or an IT2FS [17], [19], [27], [28]. This is only the case WhenPrOOf' We start our proof from equation (11)
the VSs are continuous functions and hedge= 1([0,1]) is Ai(z) = UMLT N
an interval. If the VSs are in discrete domains then as men- va
tioned earlier, the PMs must be bounded through a boundi%

. . erei =1,...,n. Then,
operation. The following worked example demonstrates how ! et

to construct IVFSa-planes for discrete T2FSs. B(y) = f(Ai, ..., Ay)(y)
Example 3.1:Let X = {z]i=1,2,...,10}, and _ sup min <A1(x1),---,fin(wn))
very small(V'S), small(S), medium(M), large(L), and (@1seeszn)=f 1 (y)

very large(VL) € F([0,1]) are the FSs that represent _ su mnin (A i )
the vertical slices,A,, defined in Table 1. Each vertical N (mwmn)if,l(y) Loy oo ey
slice, A,,, consist of PGsu,,, forming its domain and ~ B

the SGs,A,. (u,,), forming its membership grade. Let also,Since Ay, ..., A,, € F(X) then

A e F(X), be defined as in Table II, with domain values,
x;, corresponding to vertical slices from Table I. Table Ili3(y) = sup min Udfh “""’Ud‘i” i
shows how to extract the-cuts ) of the VS A, of each (@15ewn)=f "1 (y) Va " Va Y
domain value to form the crisp sets,, 5. Table IV shows - 7

. o = sup Uamln (Al, T F a)
how to construct the interval membership grades of dhe (@15eesm) =11 (1) e o
planes,As(x;) = |min (Ari,d) , max (Axaﬁ in order to . (i i
formulate the IVFSa-planes. - LVJO‘(%___ L mm( Lag.ar oo "mnwd)



TABLE |
FSs THAT REPRESENT THE VERTICAL SLICESAz, IN EXAMPLE (3.1). THE HORIZENTAL HEADING REPRESENTS THESGS, Az (uz), THE VERTICAL
HEADING REPRESENTS THEV/SS, A, AND THE NUMBERS IN BETWEEN ARE THEPGS, u,.

Az | 0.0 0.5 1.0 05 0.0
VS| 00 0.08 015 0.18 0.2
S 0.15 0.17 0.35 042 045
M 04 043 05 0.6 0.65
L 055 062 065 075 0.8
VL | 07 0.78 085 0.9 1.0

TABLE Il
T2FS, A, INEXAMPLE (3.1). EACH DOMAIN VALUE, x;, ALONG WITH ITS CORRESPONDING VERTICAL SLICE FROM TABLK]).

Zq X1 X2 T3 T4 Tp X6 X7 I8 X9 Z10
Awi VS VS S S M L L L VL VL

TABLE I
THE CRISP SETa-CUTS, A, 5, OF THE VERTICAL SLICES,A;,, FOR EACH DOMAIN VALUE, z;, IN EXAMPLE (3.1)

i |&=00 &a=05 &=10
1 [0,0.08,0.15,0.18,0.2 0.08,0.15,0.18 | 0.15
2 | 0,0.08,0.15,0.18,0.2 0.08,0.15,0.18 | 0.15
3 | 0.15,0.17,0.35,0.42,0.45 | 0.17,0.35,0.42 | 0.35
4 | 0.15,0.17,0.35,0.42,0.45 | 0.17,0.35,0.42 | 0.35
5 | 0.4,0.43,0.5,0.6,0.65 0.43,0.5,0.6 | 0.5
6 | 0.55,0.62,0.65,0.75,0.8 | 0.62,0.65,0.75 | 0.65
7 | 0.55,0.62,0.65,0.75,0.8 | 0.62,0.65,0.75 | 0.65
8 | 0.55,0.62,0.65,0.75,0.8 | 0.62,0.65,0.75 | 0.65
9 |0.7,0.78,0.85,0.9, 1 0.78,0.85,0.9 | 0.85
10 | 0.7,0.78,0.85,0.9,1 0.78,0.85,0.9 | 0.85
TABLE IV

THE INTERVAL MEMBERSHIP GRADES OF THEx-PLANES, A&(xi) IN EXAMPLE (3.1)

0.0 &=05 &=10
0.2] 0.08,0.18] | [0.15,0.15
0,0.2] 0.08,0.18] | [0.15,0.15
0.15,0.45] | [0.17,0.42] | [0.35,0.35
0.15,0.45] | [0.17,0.42] | [0.35,0.35
0.4,0.65] | [0.43,0.6] | [0.5,0.5]

S| &
ol Il

= © 00O Uk W N |

0.55,0.8] 0.62,0.75 0.65,0.65
0.55,0.8] 0.62,0.75 0.65,0.65
0.55,0.8] 0.62,0.75 0.65,0.65
0.7,1] 0.78,0.9] 0.85, 085]
0| [0.7,1] 0.78,0.9] 0.85,0.85]

now we have/ila,...,/in& € F(X), then we substitute each of T2FSs defined by Liu, and Wagner and Hagras can
T2FS with itsa-plane representation be derived using this theorem. Hamrawi and Coupland [9]
~ defined the non-specificity function in such a way that can

F(A1z, o Ang) be considered a direct implementation of this formula. In al

= sup min (/11&(3:1), - An&(w”)) these applications the-planes are considered to be IVFSs.
(15-5n)=F =1 (y) This assumption allows the use of methods already defined

then, take the union of alt, i.e., for IVFSs (or IT2FSs) with each-plane and thus extended

~ ~ to T2FSs. One of the main advantages of this method is the
FAss; o Ans) ability to define operations independently for eaeiplane.
= Ud sup min ([11&(3;1), ...,An&(LL)) A7 This suggests the use of parallel or distributed technigoies
va (@1mn)=f"1(y) process operations. This-PEP is used to define-cuts for
T2FSs. The idea is to make use of thecut RT for IVFSs
and decompose eachiplane intoa-cuts. In the next section
oe discussa-cuts for IVFSs, in order to be used later to
define thea-cuts for T2FSs.

observe thatd;, (z;) = A, ., Vi, it follows that equations
(16) and (17) are equal, and that completes the pramf.
The union, the intersection, and the centroid calculati



IV. ALPHA-CUTS OFINTERVAL VALUED FUzzY SETS crisp sets. These sets are treated independently throughou
any computation process. This makes it very appealing and
holds the semantics of the IVFS definition. The IVFS is

: : ctually a FS with an uncertain membership grade which
in [11], [12] based on earlier work done by Kaufmann anc& represented through an interval. The LMF and UMF

Gupta [15] on fuzzy arithmetic. It is also related to the
pta [15] y 99 epresents this uncertainty with the interpretation that w

gation method defined by Wu and Mendel [30], [31]. Zen
et al.[36], [37] defined a variety ofi-cut RTs for IVFSs and %0 not know exactly the FS, we only know the FS bounds.
Again, we follow the same convention of the kScuts and

defined thea-EP that makes possible to extend operatlor(lg
efine a special IVFS called{IVFS) by defining the special
from crisp sets to IVFSs directly. Recently, Yager [32] als Ssa-FSs for the LMF and the UMF, i.e.,

defined a-cuts and then-EP for discrete IVFSs. Figueroa )
Garcia [6], [7] independently introduced alpha-cuts fauety ~_ Definition 4.2 ¢-IVFS): A special IVFS &-IVFS), oA, €
2 interval fuzzy sets, providing an alternative approach t§'(X), can be defined as follows:

In this section we investigate the-cuts of IVFSs. We
already introduced a method for definimgcuts of IVFSs

the Karnik-Mendel iterative method for defuzzicafion and fo ad, = (0, aA,)

the purposes of formulating and solving linear programming . (19)
problems. In this section we investigate these methods. We -« (AG’A )

definea-cuts for IVFSs by taking the-cut of its LMF and  \where A, (z) = [anAy(2),a N Ay(z)] = a A
UMF which are themselves FSs, i.e., [Aa(x),Aa(iv)} _

Definition 4.1 (IVFSa-cuts): The a-cut of an IVFS,A, is

defined as follows: HereaA, is an IVFS, and each domain value,is associ-

ated with an interval membership graded,, (z) € 1([0,1]).
Ay = (AL, 4L) Also a4, and aA, are FSs. Thea-cut RT for IVFSs
constitutes the union of all thegelVFSs.

Theorem 4.1 (IVFS-cut RT): An interval valued fuzzy

set, A, can be represented by the followingcut represen-
tation theorem:

where A, (z) = [A, (), Aa(z)].
Note that, the membership of each domain valuein the
set, A,, is an interval, i.e.,

R [07 O] y X ¢ Aa and ¢ ga A = U OéAa (20)
Ag(z)=4¢ [0,1], z¢ A, and z € A, (18) Ve
[1,1], z€ A, and x € A,

Proof. By definition any IVFS is represented using the LMF
and UMF, i.e., A = (A, A). SinceAd = J,, @A, and A =
U\m aA, by the decomposition theorem of FSs, then,

A= <U A, U aAa>

U oA, aA
Yo

Straight forward from definition (4.20A,, = (@A, aA,),
and that completes the proofm The following worked
example demonstrates how to calculatedheuts of discrete
IVFSs.

Example 4.1:Let X = {a;/i=1,2,..,10}, and A €
F(X) is an IVFS defined in Table V. Table VI shows the
a-cuts of IVFS A calculated from its LMF and UMF. Table
VII shows how to reconstruct IVFSl knowing its a-cuts.

These situations are depicted in Figure 3. Notice that we

(21)

Also using equation (20), ifA is a continuous and convex
IVES i.e. A and A are continuous and convex as seen in

did not include a particular impossible situation, that mFlgure (). Its OﬁCUt is Ao = (44, 4a) where 4, =
Au(z) = [1,0]. This situation is impossible because, byl"Za: "z, and A = ["Za, Ta]. Then, Aq, is calculated
definition, the LMF is always a subset of the UME,C A, usmg the following formula:

i.e., A(x) < A(x), Yo. Which allow us to conclude that . { ([Fao, Pa,] s [FTa, BTa]) s < (A

Fig. 3. IVFSA, its LMF A, its UMF 4 and theira-cuts.

G o < h(A)
A, C A,, Va. The IVFSa-cuts are pairs that contain two ((g, L, K70 "> h(A) (22)



TABLE V
IVFS, A, IN EXAMPLE (4.1). EACH DOMAIN VALUE , z;, ALONG WITH ITS CORRESPONDING INTERVAL MEMBERSHIP GRADELMF MEMBERSHIP
GRADE AND UMF MEMBERSHIP GRADE

T; A(z;) Alzi)  A(x:)
1 0,0.6 0 0.6
T2 0,0.8 0 0.8
T3 0,0.9 0 0.9
T4 0.5,1 0.5 1
Ts 0.7,1 0.7 1
Te [0.6, 1] 0.6 1
x7 [0.3,0.8] 0.3 0.8
xs 0,0.6 0 0.6
T9 0,0.3 0 0.3
10 0,0.1 0 0.1
TABLE VI
THE a-cUTS OFIVFS, A, OF TABLE (V) IN EXAMPLE (4.1).
a A, Aq
0.0 | {x1, 22,23, 24,25, 6, T7, T8, T, T10} | {T1, %2, T3, T4, Ts, L6, L7, L8, L9, L10}
0.1 {r4,m5,:1067:c7} {.1‘1,$2,233,1‘4,$57I67CC77CL‘8,CL‘9,$10}
0.2 {.’L’4,CE5,.’I}6,IE7} {xl,xz,l’g,I4,ZL’5,.’L’6,.’E7,.’E3,IE9}
0.3 {1‘4,I5,I67$U7} {$175L‘275L‘3,ZL‘4,$57$6,1‘7,I87I9}
0.4 {x4, 25,76} {z1, T2, T3, T4, x5, T, T7, T8}
0.5 {1‘4,I57I6} {.CU17CL‘2,.Z‘3,$4,1'5,1'6,I7,I8}
0.6 {zs,26} {z1, 22,23, 24,5, T6, T7, T8}
0.7 {I5} {1‘2,1‘3,$4,$5,$6,I7}
0.8 0 {z2, 3, 24,25, 6,7}
0.9 (Z) {1‘3,1:4,1'5,1'6}
1.0 0 {z4, 5,76}
TABLE VII
REGENERATINGIVFS, A, IN EXAMPLE (4.1) FROM ITS a-CUTS IN TABLE (V1)
i aA, (x:) aAy(x; A(z;)
1 0 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.6
2 0 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0,0.8
3 0 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 0,0.9
4 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1 0.5,1
5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 | 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1 0.7,1
6 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1 0.6,1
7 0,0.1,0.2,0.3 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0.3,0.8]
8 0 0,01,0203040506 0,0.6
9 0 0,0.1,0.2,0.3 0,0.3
10 | 0 0,0.1 0,0.1

whereva : Lz, <Lz, <Pz < Fz,, h(A) =supy, A(z) represent? It has a rather complicated relationship to LMF
is the height of LMF, and) is an Empty Set. Another way and UMF. It is the values: of the domain that belongs to
of defining a-cuts for IVFSs is the method provided by A, and does not belong to non boundary elementsiof
Kaufmann and Gupta [15]. For example consider the same.,

set provided in equation (22), thecuts are described in the B
following way, i.e., A, = {x|x € A, andz ¢ {Aa - {iana,supAa}}}
YV
AKG — Lf 7L£a} ) [RgaﬂRfo&]] , & < h(A) = {x = I:Lga’R&a:I andx ¢ ( xa7 xa)}
o Lo, Bz, | ,a > h(A) - ,
(23) = Aa N Aa+

(24)
There are two drawbacks to this method. Firstly, it doesh h . . h diff
not reduce to thex-cut of FSs directly, instead some ma—W ere t e minus - sign— replresents t eh set |Ierence
nipulation and rearrangement must be done and secondq¥xm 7o) is an open interval, and,,.. is the complement

+
it does not hold the semantics of-cuts through out the O the stronga-cut (a™) of the LMF A. Zenget al. [36],
representation. In equation (23), what daes [L%’L%] [37] defined a variety ofx-cuts. We are interested in one



particular case, i.e.,
A, = {x|A(x) > a, A(x) > a} (25)

Equation 25 is a generalisation of thecuts for FSs. There

is no distinction between the domain values that belong to

the a-cuts of the LMF and the UMF. Hence, thecut is a

crisp set rather than a pair. Yager [32] also defined a closelp summarise the overall picture, we view the process of

related definition for the discrete cases, which can easily lsleriving operations for IVFSs to involve the definition of

generalised for continuous cases. Although there arerdiffe these operations for two distinct FSs, i.e., the UMF and

ways to definex-cuts for IVFSs, the representation theoremMF. The same operations can be defined for crisp sets (or

is the same. The ability to extend operations usingdhmut intervals) and then extend them to FSs usingdHEP. The

RT is what makes it useful. obvious conclusion is to define these operations for IVFSs
Theorem 4.2 (IVFSw-EP): Let, X = X; x ... x X,,, be by taking both FSs and using tlaeEP. To derive operations

the Cartesian product of universes, atd ..., A,, be IVFSs for IVFSs in such a simple and elegant process is in itself,

in each universe respectively. Also [Etbe another universe We believe, a significant result.

andB € Y be an IVFS such thaB = f(A, ..., A,,), where

f: X — Y is a monotonic mapping. TheR, is equal to the V. ALPHA-CUTS OFTYPE-2 Fuzzy SETS

union of applying the same function to all the decomposed

. A. a-cut Representation Theorem
a-cuts of the IVFSs [12], i.e., acl P I

. R . In the previous section we discusseecuts for IVFSs.
B=f(A1,..., Ay) These a-cuts can be defined in different ways. What is
=Ja(F(Ar o A )s f(ALs s An)) (26)  important, is that these are crisp sets and the VRS
EP extends operations directly from crisp sets to IVFSs.

This fact is crucial since in Section Il we showed that

Proof. Since4,, ..., 4, A1, ..., A, € F(X), then from equa- y1anes are IVFSs, and developed thé®EP to allow us to

tion (2) extend operations from IVFSs to T2FSs. Combining these
fAy, ., A)= Uaf(Al cn A ) two theorems lead us to defire-cuts for T2FSs, directly.
T e T First, we define the UMF and LMF of-planes.
— — — — Definition 5.1: Let, A € F(X), be a T2FS andA; €
Ay, AN = Ay . A - A *
(AL s An) yaf( tar et Ana) F(X), be a IVFS representing its-plane at leveld, such
“ that Az = [u, 5,7 Let, A5 € F(X), be the LMF of A4
Thereiore, we have and Az € F(X), be the UMF ofA;. Then eachy-plane is
FAL o An) = (F(Ay, o A, (AL, A)) completely determined by its LMF and UMF, i.e.,
— - As = (A, As 27
_ (LJaf(ALN.UNAWJ,LJaf(Ala,”,AnQ)> ) Eja ) (27)
Va Vo where As(z) = [Ad(x),Ad(ac)], Ay(z) = Uy & and

:Uag@%WL%)ﬂm e Anl)) As(z) = Uy g
It is clear that both the LMF and UMF are FSs. Now, let us

which completes the proofm The following example shows take thea-cuts of eachr-plane.
how to perform the union and intersection of IVFSs using_ Definition 5.2 (T2a-cuts):Let, A € F(X), be a T2FS and,
a-cuts. Az = (A, As), be itsa-plane at levely represented by its

Example 4.2:Let 4 and§ be two IVFS defined in Table LMF and UMF. Then,A; o, is thea-cut of thata-plane at
VIIl and Table IX, respectively. Thex-cuts of both their levela, i.e., .
LMF and UMF is shown in Table X. The union of the- Ao = (As,0 4s,a) (28)

cuts are shown in Table XI. This will eventually lead to ar\NhereA . and 4., are thea-cuts of the LMF and UMF
IVFS 4 U &. The method used to generate the membershig - plane i re:p(yxectlvely

%rti ?:(i’c?f(;lnuoi Ir:(;irjclt?saa(r:gt:hls th(')r\:v'?altr)]le-r?(tl)llle %(r:l'sThﬁ The LMF and UMFa-cuts are crisp sets since the LMF and
! . u wh i S W pmE are FSs. Henced, . (z) € {0,1}, and A5 (z) €

eventually Iead_ to an IVFans, The method use_d to generate{07 1}. Following definition (4.2) we define-IVFS of each

the membership grades @i 8 from its a-cuts is shown in n-cut. ie

Table XIV. Definition 5.3: For eacha-cut, A o, of the T2FS,4, a
special IVFS -IVFS), aAs,o € F(X), can be defined as
follows:

OéA&ya =

“ (29)
IS i



TABLE Vil
IVFS, 4, IN EXAMPLE 4.2.

x 2 3 4 5 6
Zl(x) [0, 0.2] [0.47 0.6} [0.87 1] [0.5, 0.6] [07 0.4]
_TABLE IX
IVFS, 8, IN EXAMPLE 4.2.
x 5 6 7 8 9 10 11

8(x) | [0,0.1] [0.2,05] [0.6,0.8] [L,1] [0.5,0.8] [0.2,0.4] [0,0.1]

TABLE X _
THE a-CUTS OFIVFS, 4 AND 8, IN EXAMPLE 4.2.

a 1, 8, 1. R
0.0 | {2,3,4,5,6} | {5,6,7,8,9,10,11} | {2,3,4,5,6} | {5,6,7,8,9,10,11}
0.1 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} | {5,6,7,8,9,10,11}
0.2 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} {6,7,8,9,10}
0.3 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.4 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.5 {4,5} {7,8,9} {3,4,5} {6,7,8,9}

0.6 {4} {7.8} {3,4,5} {7,8,9}
0.7 {4} {8} {4} {7,8,9}
0.8 {4} {8} {4} {7,8,9}
0.9 {8} {4} {8}
1.0 0 {8} {4} {8}
TABLE XI
THE a-CUTS OFIVFS,4 U 8, IN EXAMPLE 4.2.

a 4,08, 4o U84y

0.0 | {2,3,4,5,6,7,8,9,10,11} | {2,3,4,5,6,7,8,9,10,11}

0.1 {3,4,5,6,7,8,9,10} {2,3,4,5,6,7,8,9,10,11}

0.2 {3,4,5,6,7,8,9,10} {2,3,4,5,6,7,8,9,10}

0.3 {3,4,5,7,8,9} {3,4,5,6,7,8,9,10}

0.4 {3,4,5,7,8,9} {3,4,5,6,7,8,9,10}

0.5 {4,5,7,8,9} {3,4,5,6,7,8,9}

0.6 {4,7,8} {3,4,5,7,8,9}

0.7 {4,8} {4,7,8,9}

0.8 {4, 8} {4,7,8,9}

0.9 {8} {4, 8}

1.0 {8} {4,8}

whereads o(z) = a A [Ag (@), Aa.a(z)]. where (a Uy aA&ﬂ(x)) (Ups) = & A

It is noticeable thaiv4,

FS). The union of alkx- IVFSs constitute amv-plane.

(Ura 04s.a(®)) (taa) and Uy, adsa(@)(uaa) = 1 if
Uza € Uyg aﬁéya(x) and zero otherwise. It is already
known from thea-plane representation theorem that a T2FS
can be represented by the union of all suchii2FSs.

. and aA& « are special FSsof

Af = UO‘A&a Theorem 5.1 (T2F&-cut RT):A T2FS, A4, can be repre-
Vo (30) sented by the union of all its-T2FSs, i.e.,
= Ua A Ags ) P ~ P
a,a A= Ad a 32
o gaga , (32)

Earlier in Equation 13 we defined a special T2ESTRFS)
associated with each-plane,aA;. We make use of this

definition again.

Proof. Straight forward substitute equation (31) in equation
(14) of theorem (4.1). m The «-cut representation allow
T2FSs to be decomposed into its smallest interpretable

ads = a U adg o components, i.e., crisp sets while maintaining the refstap

=il

between domain values by their degree of membership.
. ) (31) T2FSs can be looked upon as weighted crisp sets with the
As.00 Ada PGs and SGs as weighting factors. The \WSlane andn-
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o TABLE XII
IVFS,4 U8, IN EXAMPLE 4.2FROM ITS a-CUTS IN TABLE XI.

z | a(4U8)q(x) a(4U8)q(x) (4U8) (x)
2 0 0,0.1,0.2 0, 0.2]
3 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6 0.4,0.6]
4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0,01,02030405060708091 0.8,1}
5 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6 0.5, 0.6]
6 0,0.1,0.2 0,0.1,0.2,0.3,0.4,0.5 0.2,0.5}
7 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0.6,0.8]
8 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 | 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1 11]
9 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0.5,0.8]
10 | 0,0.1,0 0,0.1,0.2,0.3,0.4 0.2, 04}
1110 0,0.1 0,0.1]
TABLE XlII
THE a-CcUTS OFIVFS, 4 N8, IN EXAMPLE 4.2.
a | 4,Nn8, | 4a N8a
0.0 {576} {5,6}
0.1 ] {5,6}
0.2 1] {6}
0.3 ] {6}
0.4 0 {6}
0.5 0 0
0.6 1] ]
0.7 0 ]
0.8 1] ]
0.9 0 ]
1.0 1] )
o TABLE XIV
IVFS,4 N 8, IN EXAMPLE 4.2FROM ITSa-CUTS IN TABLE XIII
z | a(4N8)a(z) | a(4nN8)ua(x) (4N8) (x)
510 0,0.1 0,0.1
6|0 0,0.1,0.2,0.3,0.4 0,04

cut representations are by definition related. The relatign to IVFSs, and by thex-PEP ofa-planes.

between these representations is depicted in Figure 4. TheTheorem 5.2 (T2F&-cut EP):Let, X = X7 x...x X,,, be
the Cartesian product of universes, afid ..., A, be T2FSs

in each universe respectively. Also [Btbe another universe
and B € Y be a T2FS such thaB = f(Ay, ..., A,), where
f:X — Y is a monotone mapping. The is equal to the
union of applying the same function to all its decomposed
a-cuts, i.e.,

B = f("é‘ilw'v"éI )

—U UOéf Alaa"" naa)
Va Vo

Proof. From theorem (3.2) operations are extended to T2FSs
by the a-PEP from operations on ita-planes which are
IVFSs. For eaclw-plane theorem (4.2) allows the operations
to be extended from crisp sets. Hence, straight forward
substitute equation (26) in equation (15) and that comglete
relation between domain values in the classical set thieorethe proof. m This theorem first appeared in [10]. The
way is behind the idea ofi-cuts for FSs. This relation is following example demonstrates how to use Theorem 5.2
maintained across IVFSs and T2FSs as they are extensionferf defining operations for T2FSs by calculating the join and
classical FSs. What makes such decomposition interestingnigeet of a T2FS using the-cut extension principle.
the ability to perform operations in the classical set tb&or Example 5.1:Consider the T2FSs3, in Table XV and,
sense. This is made possible by extendingdhEP of FSs 6, in Table XVI. To perform the join, a decomposition of

Fig. 4. The vertical sliceg-plane anda-cut representations of T2FSs and
their relationship.



each T2FS into itsx-planes and each-plane to itsa-cuts
must be performed. Then, for example the uniomvgilanes
392 U By, is computed. The interval membership grades ofyg,
eacha-plane are constructed using the bounds of the PMs
Jz.a, i.e. Table XVII and Table XVIII. The steps to perform [10]
the union is shown in Table XIX, Table XX and Table XXI.

These are the same steps used to perform the union of IVF84]
To perform the union of the T2FSs the same task is repeated
for all the a-planes. (12

(8]

(23]

[14]
[15]
[16]
[17]
[18]
In this section we defined-cuts for T2FSs and its associated[19]
T2FSa-EP which allows us to extend operations to FSs and

its extensions. [20]

VI. CONCLUSION [21]

In this paper we defined the-cut decomposition theorem 27
for T2FSs, through the use of the basic ideas-@uts in FSs
and the EP. We also showed that this novel decompositié%?’]
theorem can extend mathematical concepts from crisp sgig
to T2FSs, directly. In this paper also we investigated a
generalisation that allow us to extend operations from LVF%zs]
to T2FSs, through the-plane RT. In order to clarify these
concepts we used several worked examples. It is the auth¢2g]
belief that the novel theories provided in this paper wilinst
ulate more investigation and applications of T2FSs. Futuigy)
work includes taking advantage of the independent nature
of thesex-cuts to perform operations on parallel processors, .,
such as graphical processing units (GPUS).

REFERENCES [29]

[1] B. Araabi, N. Kehtarnavaz, and C. Lucas. Restrictionsasgul by the

fuzzy extension of relations and function¥ournal of Intelligent and

Fuzzy System41(1):9-22, 2001.

H. Bustince, E. Barrenechea, M. Pagola, and J. Fernanthéerval-

valued fuzzy sets constructed from matrices: Applicationetige

detection.Fuzzy Sets and Systemi$0(13):1819-1840, 2009.

[3] O. Castillo and P. Melin.Type-2 Fuzzy Logic: Theory and Applica- [32]
tions volume 223. Springer-Verlag, Heidelberg, Germany, 1si@dit
January 2008. Book (ISBN: 978-3-540-76283-6).

[4] Q. Chen and S. Kawase. On fuzzy-valued fuzzy reasorfiogzy Sets
and Systems113:237-251, 2000.

[5] S. Coupland and R. John. Geometric type-1 and type-2 flagic
systems.|[EEE Transactions on Fuzzy Systerd§(1):3-15, 2007.

[6] J. C. Figueroa Garcia. An approximation method for typeuntidn
of an interval type-2 fuzzy set based ancuts. InComputer Science
and Information Systems (FedCSIS), 2012 Federated Cortferen
pages 49-54. |IEEE, 2012.

[7] J. C. Figueroa Garcia and G. Hernandez. Solving lineagm-
ming problems with interval type-2 fuzzy constraints usinteial
optimization. InIFSA World Congress and NAFIPS Annual Meeting
(IFSA/NAFIPS), 2013 Joinpages 623-628. IEEE, 2013.

[30]

[2] [31]

(33]
[34]
[35]

[36]

[37]

11

S. Greenfield, F. Chiclana, S. Coupland, and R. John. Tilepsing
method of defuzzification for discretised interval type-Z#y sets.
Information Sciencesl79(13):2055-2069, 2009.

H. Hamrawi and S. Coupland. Non-specificity measures faety
2 fuzzy sets. InProc. FUZZ-IEEE pages 732-737, Korea, August
2009.

H. Hamrawi and S. Coupland. Type-2 fuzzy arithmetic usafigha-
planes. InProc. IFSA/EUSFLATpages 606—611, Portugal, 2009.
H. Hamrawi, S. Coupland, and R. John. Extending opemation
type-2 fuzzy sets. IiProc. UKCI, Nottingham, UK, September 2009.
H. Hamrawi, S. Coupland, and R. John. A novel alpha-cptegenta-
tion for type-2 fuzzy sets. Iffroc. FUZZ-IEEE pages 1-8, Barcelona,
Spain, July 2010.

R. John. Type-2 fuzzy sets: an appraisal of theory argliegtions.
International Journal of Uncertainty, Fuzziness and Knedge-Based
Systems6:563-576, 1998.

R. John and S. Coupland. Type-2 fuzzy logic: A histdridaw. IEEE
Computational Intelligence Magazing(1):57-62, February 2007.
A. Kaufmann and M. Guptalntroduction to Fuzzy Arithmetic Theory
and Applications Van Nostran Reinhold Co. Inc., 1985.

G. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and
Applications Prentice Hall, Upper Saddle River, NJ, 1995.

F. Liu. An efficient centroid type-reduction strategy feneral type-2
fuzzy logic system.Information Sciencesl78(9):2224-2236, 2008.
J. Mendel. Uncertain Rule-Based Fuzzy Logic Systems: Introduction
and New Directions Prentice Hall, Upper Saddle River, NJ, 2001.
J. Mendel, F. Liu, and D. Zhaix-plane representation for type-2 fuzzy
sets: Theory and application$EEE Transactions on Fuzzy Systems
17(5):1189-1207, 2009.

J. Mendel and H. Wu. Type-2 fuzzistics for nonsymmetriteival
type-2 fuzzy sets: Forward problemdEEE Transactions on Fuzzy
Systems15(5):916-930, 2007.

J. M. Mendel. Advances in type-2 fuzzy sets and systénfermation
Sciences177(1):84-110, January 2007.

J. M. Mendel and R. John. Type-2 fuzzy sets made simpiEEE
Transaction on Fuzzy Systeni®(2):117-127, 2002.

H. Nguyen. A note on the extension principle for fuzzytsseJ.
Mathematical Analysis and Application84(2):369-380, 1978.

J. T. Rickard, J. Aisbett, and G. Gibbon. Fuzzy subsethfor fuzzy
sets of type-2 and generalized type-EEE Transactions on Fuzzy
Systems17(1):50-60, 2009.

J. Starczewski. Efficient triangular type-2 fuzzy logiystems.Inter-
national Journal of Approximate Reasonjrg0(5):799-811, 2009.

H. Tahayori, A. Tettamanzi, and G. Antoni. Approximatege-2
fuzzy set operations. IRroc. FUZZ-IEEE 2006pages 9042 — 9049,
Vancouver, Canada, July 2006.

C. Wagner and H. Hagras. zSlices—Towards bridging #ye lietween
Interval and General Type-2 Fuzzy Logic. FBUZZ-IEEE 2008.pages
489-497, Hong Kong, 2008.

C. Wagner and H. Hagras. Toward general type-2 fuzziclegstems
based on zslices.IEEE Transactions on Fuzzy System§(4):637
—660, 2010.

C. Walker and E. Walker. Sets with type-2 operatioirgernational
Journal of Approximate Reasonin§0(1):63-71, 2009.

D. Wu and J. Mendel. Corrections to Aggregation Using ltinguistic
Weighted Average and Interval Type-2 Fuzzy SHEEE Transactions
on Fuzzy System$6(6):1664-1666, 2008.

D. Wu and J. M. Mendel. Aggregation Using the Linguisfieighted
Average and Interval Type-2 Fuzzy SelEEE Transactions on Fuzzy
Systems15(6):1145, 2007.

R. R. Yager. Level sets and the extension principle feerval valued
fuzzy sets and its application to uncertainy measurbgormation
Sciences178:3565-3576, 2008.

L. A. Zadeh. The concept of a linguistic variable andafsplication
to approximate reasoning-Information Sciences3:199 — 249, 1975.
L. A. Zadeh. The concept of a linguistic variable andafsplication
to approximate reasoning-tformation Sciences8:301 — 357, 1975.
L. A. Zadeh. The concept of a linguistic variable andafsplication
to approximate reasoning-3nformation Science9:43 — 80, 1975.
W. Zeng and H. Li. Representation theorem of intenallsed fuzzy
set. International Journal of Uncertainty, Fuzziness and Knedgde-
Based System44(3):259-269, 2006.

W. Zeng and Y. Shi. Note on interval-valued fuzzy detcture Notes
in Computer Scien¢e3613:20, 2005.



12

_ TABLE XV ~
T2FS3, IN EXAMPLE 5.1. THE NUMBERS IN BETWEEN ARE THESGS, 34 (uz).
z/u, | 00[01]02[03]04[05][]06[07]08]09]10

1 1.0| 06| 0.3
2 01(06| 10| 0.7]0.2
3 1.0
4 01| 06]|10]|0.7] 0.2
5 10| 06| 0.3

~ TABLE XVI ~

T2FS6, IN EXAMPLE 5.1. THE NUMBERS IN BETWEEN ARE THESGS, 64 (uz).
z/uy, | 00]01]02[]03[]04][]05[]06[07]08[]09]10
4 1.0{ 08| 04]02]| 0.1
5 02| 10|04
6 1.0
7 0.2|10]| 04
8 10(08(04|02|01
TABLE XVII
a-PLANE, 35, IN EXAMPLE 5.1.
T 1 2 3 4 5
392(z) | [0,0.2] [0.4,0.7] [1,1] [0.4,0.7] [0,0.2]
TABLE XVIII
a-PLANE, 645, IN EXAMPLE 5.1.
T 4 5 6 7 8
60 (z) | [0,0.3] [0.5,0.7] [1,1] [0.5,0.7] [0,0.3]
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THE a-CUTS OFa-PLANES, 35 AND 65, IN EXAMPLE 5.1.
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THE a-CUTS OFa-PLANES, 375 U 6475, IN EXAMPLE 5.1.

Q-PLANE, 3= ., U647 ., IN EXAMPLE 5.1 FROM ITSa-CUTS IN TABLE XX.
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