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The membrane potential, arising from uneven distribution of ions across 

cell membranes containing selectively permeable ion channels, is of 

fundamental importance to cell signaling. The necessity of maintaining the 

membrane potential may be appreciated by expressing Ohm’s law as I = 

V/R, and recognizing that no current flows when V = 0 i.e. trans-

membrane voltage gradients, created by uneven trans-membrane ion 

concentrations, are an absolute requirement for generation of currents that 

precipitate the action- and synaptic potentials that consume over 80% of 

the brain’s energy budget, and underlie the electrical activity that defines 

brain function. The concept of the equilibrium potential is vital to 

understanding the origins of the membrane potential. The equilibrium 

potential defines a potential at which there is no net trans-membrane ion 

flux, where the work created by the concentration gradient is balanced by 

the trans-membrane voltage difference, and derives from a relationship 

describing the work done by the diffusion of ions down a concentration 

gradient. The Nernst equation predicts the equilibrium potential, and as 

such is fundamental to understanding the interplay between trans-

membrane ion concentrations and equilibrium potentials. Logarithmic 

transformation of the ratio of internal and external ion concentrations lies 

at the heart of the Nernst equation, but most undergraduate neuroscience 

students have little understanding of the logarithmic function. To 

compound this no current undergraduate neuroscience textbooks describe 

the effect of logarithmic transformation in appreciable detail, leaving the 

majority of students with little insight into how ion concentrations 

determine, or how ion perturbations alter, the membrane potential.  

Background 
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The concept of the equilibrium potential, also called the reversal potential, 

and the role that it plays in determining the membrane potential is of 

fundamental importance to understanding neural excitability (in this paper 

Em denotes membrane potential, Erev denotes a general description of the 

equilibrium/reversal potential, and EK etc. denote the equilibrium 

potential for a particular ion). The Nernst equation, which determines Erev, 

can estimate the Em in astrocytes, a glial cell subtype whose cell membrane 

is exclusively permeable to K+ (23). The Goldman Hodgkin Katz voltage 

equation, an expansion of the Nernst equation that was developed in order 

to estimate the permeability changes that underlie the action potential 

(14), also functions to estimate the Em of cells permeable to more than 

one ion (12).  

Students who fail to grasp the Nernst equation are at a disadvantage, as 

they are inclined to learn rather than understand. The limitations of such 

a strategy may be readily appreciated by realizing that Em is not a static 

property, but varies in response to such processes as synaptic input and 

action potential generation. For example, students should intuitively be 

able to deduce the effects of altering the trans-membrane concentrations of 

Na+, K+ or Cl- on Erev or Em, and appreciate that in circumstances where 

Em ≠ EK, that K+ moves across the membrane in the direction that restores 

Em towards EK. However students struggle to master the concept of how 

selectively permeable ion channels in the cell membrane combined with 

trans-membrane ion gradients lead to a trans-membrane potential 

difference, an issue that has been recognized (27) and repeatedly addressed 

(7, 17, 26, 33).  

The Nernst equation may be regarded as comprising a conceptual 

component and a practical component. The conceptual component was 
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addressed in a recent article (6), where models were proposed that 

described in an elegant and accessible manner movement of K+ down a 

trans-membrane concentration gradient via K+ permeable ion channels, 

when K+
i > K+

o. The work done or energy associated with such diffusion of 

ions can be quantified as Wdiff = RT ln Ko/Ki (see Equation 3 for 

definitions), implying that the steeper the trans-membrane concentration 

gradient the greater the energy generated. However this diffusion creates a 

potential difference across the cell membrane, which drives K+ from the 

outside to the inside of the cell; the resulting electrical work quantified as 

Welec = EKFz. Equilibrium occurs where the diffusional and electrical forces 

balance and there is no net movement of K+. This can be expressed as Wdiff 

= Welec, which can be expanded into the Nernst equation thus: 

 
RT ln

Ko

Ki

=EKFz           (1) 

 
EK = 

RT
zF

ln
Ko

Ki

         (2) 

An accessible derivation of the Nernst equation can be found in Bertil 

Hille’s classic textbook (12). 

This paper deals with the practical component, the mathematical 

operations required to solve the Nernst equation, and may be viewed as a 

companion piece to the conceptual description (6).  

In describing Erev most neuroscience textbooks deliver contrived scenarios 

based on even concentrations of ions dispersed across a membrane that 

suddenly becomes selectively permeable to a particular ion (3), or describe 

existing uneven ion distributions (15), with no explanation as to how such 

a situation arose. These artificial descriptions deprive the student of the 
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fascinating origins of the membrane potential, which date back over 3.7 

billion years to the emergence of the first life on earth. Although some 

aspects of the origins of life on earth remain contentious (18) a consensus 

opinion may be summarized as follows. The first single celled prokaryotic 

organisms originated in a sea high in salt content with a Na+: K+ ratio of 

5:1. A key definition of life is a cellular entity capable of reproduction, 

thus life consisted of lipid membrane bound sacks of cytoplasm containing 

RNA (1). An impermeant lipid membrane would have retained the 

intracellular macromolecules, but would not have permitted entry of 

nutrients or expulsion of waste products, thus a permeable membrane 

favored cellular survival. The negatively charged intracellular proteins 

created an ion gradient favoring entry of positively charged ions into the 

cell. However the stability of RNA is compromised in high Na+ 

environments (8), thus in order to balance the negative charge the 

membranes evolved a selective permeability to K+, while remaining 

relatively impermeable to Na+ (12). The K+ accumulation in the cell in 

excess of its extracellular concentration was sustained by the Na+-K+ 

ATPase, which maintained a low [Na+]i and high [K+]i (28). Thus, 

maintenance of a steep trans-membrane potassium gradient has been a 

feature of cells for billions of years and is fundamental in generating the 

negatively charged cell membrane potential. The negative membrane 

potential and high [Na+]o was exploited in the evolution of the action 

potential, the primary mode of cell-to-cell communication in the nervous 

system.    

The equilibrium potential  

Complex relationships exist between ion concentrations, fluxes of ions 

across selectively permeable cell membranes, and the resulting voltage 
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differences across cell membranes. However if certain basic assumptions 

are accepted, namely if one assumes flow of ions across a cell membrane is 

one-dimensional, and that the voltage gradient is perpendicular to the 

membrane, then the relationship between ion fluxes and voltage gradients 

can be described by the Transport equation (32). This equation can be 

further simplified to the Nernst equation by assuming that the membrane 

is permeable to only one ion and that net flux of all ions is zero. The 

Nernst equation introduces the concept of the equilibrium potential of an 

ion that is distributed across a semi-permeable membrane, and is defined 

as the electrical potential at which there is no net ion movement across the 

membrane, due to trans-membrane concentration gradients being balanced 

by uneven electric charges across the membrane. The relationship is 

derived ultimately for an individual ion such as a representative cation A+, 

as: 

 
Erev =

RT
zF

ln
[A+]o
[A+]i          (3) 

where Erev, the point of zero current flow, is the reversal potential for A+, 

measured in Volts, R is the Gas constant (8.315 V C K-1 mol-1), T is the 

temperature in Kelvin (K), z is the valence of the ion (unitless), and F is the 

Faraday constant (96,480 C mol-1) (12). In the context of ions distributed 

across a cell membrane, [A+]o and [A+]i are the extracellular and 

intracellular concentrations of cation A+, respectively. As mammals 

maintain a constant body temperature and laboratory experiments tend to 

be carried out at fixed temperatures, the Nernstian relationship may be 

simplified, since RT/F can be expressed as a single number relative to a 

fixed temperature, e.g. 26.7 mV at 37°C. This value is unaffected when the 

value of z, the number of elementary charges per ion, is +1, as is the case 
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with Na+ and K+. In addition, the constant for converting from the natural 

logarithm (ln) to log10 is 2.303. Thus, the Nernst equation at 37°C 

simplifies to  

        (4) 

For anions e.g. Cl-, where z = -1, RT/zF at 37°C is -26.7, thus ECl is 

expressed as  

 
ECl= -61.5 log10

[Cl- ]o
[Cl- ]i  or   

ECl= 61.5 log10

[Cl- ]i
[Cl- ]o     (5) 

The second expression is a result of log(a/b) = -log(b/a) (see later). However 

this is as far as elementary undergraduate textbooks proceed with the 

equation (3, 21), leading to students learning the equation rather than 

understanding how each of its constituent parts contributes to the reversal 

potential. According to Equation 3 the reversal potential varies linearly 

with temperature and logarithmically with the ion concentration ratio, but 

no information is given regarding how logarithmic transformation affects 

the ion concentration ratio. This is not a trivial point as the ion 

concentration ratio can be positive, negative or equal to 1, with each 

condition responding differently to logarithmic transformation. Thus, in 

order to understand how ion concentrations affect reversal potentials we 

must first describe the effects of logarithmic transformation. 

Description of the logarithmic function 

Detailed accounts of the development and implementation of the 

logarithmic function by Napier in 1614 can be found in the following 

reviews (4, 5, 13, 19, 31).  

 
Erev = 61.5 log10

[A+]o
[A+]i
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For our purposes the following definitions will suffice. 

If cx = a then logca = x       (6) 

i.e. the logarithm, to the base c (where c ≠ 1), of a, is x.    

The 1st Law of Logarithms (2) may be expressed as  

logcab = logca + logcb       (7) 

In addition, the 2nd Law of Logarithms, whose derivation can be found 

elsewhere (2), is also fundamental in helping us to understand the effect of 

logarithmic transformation in Nernstian calculations, where 

logc(a/b) = logca - logcb       (8) 

The logarithm to the base 10 

The logarithm to the base 10 (log10) is a convenient form by which to 

express numbers since it simplifies calculations based on the decimal 

numbering system, and clarifies the relationships between numbers 

separated by orders of magnitude e.g. 3.14 and 31.4. Logarithms, such as 

2.871, are composed of the characteristic and the mantissa, the 

characteristic being the integral part (2) and the mantissa being the 

fractional or decimal part (.871). From Fig 1A it can be reasonably 

deduced that the characteristic of 743.2 is 2, since 743.2 lies between 100 

and 1,000. Expressing a number in scientific notation (30), i.e. in the form 

a x 10b, where 1 < a > 10, and b is the appropriate exponent or power, 

clarifies the conversion of a number to log10 since the characteristic can be 

deduced from Fig 1A as the power or exponent required to express the 

number in scientific notation, i.e. 7.432 x 102. This is comparable to 

considering log10743.2 as being equivalent to log107.432 + log10100 
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(Equation 7), by employing the 1st Law of Logarithms. The mantissa of any 

number expressed in scientific notation is between 0 and 1 since the 

number, by definition, must lie between 1 and 10 (Fig 1A). In this case the 

mantissa is 0.871, thus log10743.2 is equal to 2.871 (0.871 + 2). It should 

be readily apparent that one of the great advantages of the log10 system is 

that it relates numbers such as 743.2 and 7432, with the characteristic 

increasing by 1 for each order of magnitude increase in the number, the 

mantissa unchanged.   

Fig 1A reveals that log1010 = 1, log101 = 0, and that log10(> 1) is a negative 

number. Although not immediately apparent such simple relationships 

govern the association between Erev, Em and trans-membrane ion 

concentrations. Since log10 of any number less than 1 is negative, the 

polarity of the Erev can be deduced by a simple rule of thumb: if the extra- 

and intracellular concentrations of the ion are known, for cations, if the 

extracellular concentration is greater than the intracellular concentration,  

Erev is positive, but if the reverse is the case then Erev is negative. Similar 

reasoning can be applied to anions. For example under normal conditions 

[K+]o in the brain is about 5 mM, with [K+]i 150 mM (3). Since the ratio of 

[K+]o/[K+]i is less than 1, Erev for K+ is negative. Similarly, for Na+ where the 

extracellular concentration is 150 mM, and the intracellular concentration 

is 15 mM, the Erev for Na+ is positive (3). 

Logarithmic graphing 

In disciplines related to neuroscience, such as physiology and 

pharmacology, students will frequently encounter data plotted on 

logarithmic scales, with an understanding of such plotting required in 

order to comprehend the underlying scientific principles (22). This is 
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especially true of plots of Em versus [K+]o, where [K+]o is conventionally 

plotted on a log10 scale (14). Plotting data on a log10 scale clarifies the 

logarithmic relationship, since on a linear scale moving a fixed distance 

along the axis moves the data along the axis by adding that fixed amount, 

whereas on a logarithmic scale moving a fixed distance involves 

multiplication by a fixed factor. Thus, the major ticks on a log scale 

increase by orders of magnitude when base 10 is used, such that the major 

ticks progress in the following sequence: 1, 10, 100, 1,000 i.e. each major 

increment is 10 times larger that the previous value, and the distances 

between 1 and 10, and 10 and 100, are equal. This is illustrated by 

examining Fig 1B, which shows the logarithmic scale from 10 to 100. It is 

apparent that the positions of the minor tick intervals are unevenly spaced, 

due to the scale being based on the log10 of the number rather than the 

number itself as occurs on a linear scale. The simple way to understand 

logarithmic scaling is to realize that the distance between 10 and 20 i.e. 

0.301, is the distance gained along the x-axis by multiplying by 2. This is 

shown in Fig 1Ca, which illustrates that the product of multiplying 10 by 2 

(i.e. 20) results in a movement of 0.301 along the x-axis. Similarly, the 

product of 20 and 2 (40) gains 0.301 along the axis, as does the product of 

40 and 2 (80) (i.e. log1040 = log1020 + log102 = 1.301 + 0.301 = 1.602). 

Thus, the distances between 10 and 20, 20 and 40, and 40 and 80, are 

equal, the product of each calculation being the result of multiplication by 

2. In a similar fashion the distance from 10 to 30, and from 30 to 90 

(0.477) represents multiplication by 3 (Fig 1Cb). The value of 60 can be 

calculated by adding the distance between 10 to 30 (i.e. multiplication by 

3) and 30 to 60 (multiplication by 2, Fig 1Cc), and finally the position of 

50 on the axis can be deduced by dividing 100 by 2 i.e. expressing log1050 



	 11	

as log10(100/2) and using the 2nd Law of Logarithms to expand the 

expression, ultimately subtracting the distance between 10 to 20 from 100 

(i.e. 2 - 0.301 = 1.699, Fig 2Cd). The conversion of multiplication into the 

movement of fixed distances along an axis is the basis of slide rule 

operation (29). 

The membrane potential and [K+]o 

The Nernst equation was applied in two classic papers from 1966, 

published by the American Physiological Society, in which Steven Kuffler 

and co-workers described the response of the Em of glial cells (equivalent 

to mammalian astrocytes) in the optic nerve of the mud puppy Necturus to 

alterations in [K+]o (16) and to electrical stimulus (20). These two 

experimental paradigms offer an ideal opportunity with which to 

illuminate how logarithmic transformation of trans-membrane ion ratios 

determine Em, and how stimulus-induced, identical increases in [K+]o 

result in attenuating Em depolarizations. These were landmark studies as 

they showed for the first time, using an equation based on logarithms, that 

the glial cell membrane was exclusively permeable to K+. Appreciation of 

these papers can be enhanced by calculating how the Em of a hypothetical 

cell, exclusively permeable to K+, would respond to changes in [K+]o by 

applying the appropriate values to the Nernst equation. Note that Kuffler’s 

experiments were carried out at 23°C, thus RT/F is 59 mV, and since the 

cell is exclusively permeable to K+, it follows that Em is equal to EK. 

       (9)
 

The first step is to assume a reasonable estimate of [K+]i of 75 mM (12), 

and that this value remains constant. The Em for a range of [K+]o from 1 to 

 
Em = EK = 59 log10

[K+]o
[K- ]i
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100 mM is shown in Fig 2A, where plotting [K+]o on a log10 scale reveals a 

linear relationship between [K+]o and Em, with the slope increasing by 59 

mV for each order of magnitude increase in [K+]o. How can we explain this 

59 mV shift in Em in a simple, logical and easy to understand manner? 

We start by calculating the Em where [K+]o is either 3 mM or 30 mM, with 

a constant [K+]i of 75 mM, and employing the 1st and 2nd Laws of 

Logarithms. 

3 mM [K+]o     30 mM [K+]o 

Em = 59 log10 (3/75)  Em = 59 log10 (30/75)  (10)  

Em = 59 * [log103 - log1075]  Em = 59 * [log1030 - log1075] (11) 

    Em = 59 * [log1010+log103-log1075] (12) 

Em = 59 * [0.477 - 1.875]  Em = 59 * [1 + 0.477 - 1.875] (13) 

Em = 28.1-110.6 = -82.5 mV Em=59+28.1-110.6 = -23.5 mV (14)   

Note the only difference occurs in Equation 12 where the 1st Law of 

Logarithms is used to expand log1030 into log1010 + log103. The subsequent 

multiplication by 59 of the logarithmically transformed fragments reveals 

why Em increases by 59 mV for each decade increase in [K+]o.  

In the experiments carried out by Kuffler, the Necturus optic nerve was 

placed in a perfusion chamber; the composition of the artificial 

cerebrospinal fluid perfusing the tissue could be altered as desired. Glial 

cells were impaled with a sharp microelectrode and the Em continuously 

recorded. Kuffler found that the glial cell Em of Necturus behaved in the 

same way as the hypothetical cell, with a 59 mV shift in Em for a decade 

increase in [K+]o (Fig 8 of 16), which we have reproduced as Fig 2B. This 
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data strongly indicated that extracellular K+ controlled the Em of the glial 

cell to the extent that increases in [K+]o depolarised the Em in a manner 

predicted by the Nernst relationship, validating the assumption that in 

Necturus optic nerve glial cell Em was equal to EK.  

Estimating the value for [K+]i 

Kuffler then used the Nernst equation to estimate the value of [K+]i in the 

following way. As illustrated (Fig 1A) log101 = 0, thus where the 

concentrations of [K+]o and [K+]i are equal, log10[K+]o/[K+]i = 0, and 

therefore Em = 0 (Fig 2B). Kuffler showed experimentally that where Em = 

0 mV, [K+]o = 99 mM, thus [K+]i = 99 mM also, illustrating how 

understanding the Nernst equation allows estimates of intracellular 

concentrations of ions, measurements that were beyond the technical 

capabilities of the day.    

Stimulus induced changes in Em: individual stimuli 

The effect of axon impulses on the Em of glial cells was investigated by 

stimulating the intact nerve with 10 pulses at a frequency of 10 Hz, while 

recording the Em of glial cells with sharp electrodes (Fig 4 of 20), redrawn 

as Fig 3A. Frankenhauser and Hodgkin provided clear evidence of K+ 

efflux during the repolarising phase of an action potential (9), data since 

confirmed with K+-sensitive microelectrodes (25). Given the low resting 

[K+]o, long duration of K+ channel opening and the small interstitial space, 

there is a measurable rise in [K+]o resulting from action potential 

conduction, with repetitive firing resulting in significant and prolonged 

[K+]o elevations (25). The stimulus-induced transient glial depolarisations 

are shown when nerves were bathed in [K+]o of 3 mM, 4.5 mM and 1.5 

mM.  As previously calculated (Equation 9) the Em of a Necturus glial cell 
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perfused with 3 mM [K+]o and 99 mM [K+]i is -89 mV. The increase in [K+]o 

that underlies the stimulus-induced transient 12 mV depolarisation (Fig 

3A, left trace) can be calculated as: 

        (15) 

        (16) 

which can be rearranged according to Equation 6 as 

        (17) 

[K+]o = 1.9 mM        (18) 

thus the stimulus causes release of sufficient K+ from the axons into the 

interstitial space to increase [K+]o by 1.9 mM.  Similar reasoning was used 

by Hodgkin and Katz to calculate the attenuation in action potential 

amplitude when [Na+]o was decreased in squid giant axon (Fig 6 of 14). 

In Necturus nerves bathed in 4.5 mM [K+]o the Em can be calculated, as 

previously demonstrated in Equation 9, as 

 
Em = 59 log10

4.5
99

= -79 mV        (19) 

At a baseline value of 4.5 mM [K+]o stimulus will augment this to (4.5 + 1.9 

mM) 6.4 mM, and hence the stimulus-induced transient depolarisation can 

be calculated as 

       (20) 

Similarly, for 1.5 mM baseline [K+]o the Em is -107 mV, and the stimulus 

causes a depolarisation to -86 mV. 

 
(-89 - 12) = 59 log10

[K+]o  - 3
99

 
−1.305 = log10

[K+]o  - 3
99

 
10−1.305  = 

[K+]o  - 3
99

 
Em = 59 log10

6.4
99

= -70mV
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The depolarisation induced by identical stimuli to those imposed during 

the experiment (i.e. stimuli that will release sufficient K+ from axons to 

increase [K+]o by 1.9 mM) over a range of [K+]o from 1.5 to 4.5 mM can be 

calculated by subtracting the Em calculated with an additional 1.9 mM [K+] 

in the interstitial fluid, from the Em calculated as previously described 

(Equation 9).  

    (21) 

Note that the lower the [K+]o, and hence the more hyperpolarised the Em, 

the greater the amplitude of the stimulus-induced depolarisation (Fig 3B).  

Stimulus induced changes in Em: sequential stimuli 

In subsequent experiments Kuffler measured the Em of the Necturus optic 

nerve glial cells in response to a train of 9 stimuli at a frequency of 10 Hz, 

1 second apart. The response recorded offers an ideal opportunity to relate 

the effect of altering [K+]o on Em/EK. If we adhere to the principal that 

identical stimuli increase [K+]o by identical amounts, then we can assume 

that each of the 9 stimuli increases [K+]o by identical amounts. Under such 

circumstances a simple way to understand the effects of [K+]o on Em is to 

visually relate the two properties. This can be done by plotting the 

log10[K+]o versus the recording of Em. The Nernst relationship in these 

conditions can be reduced to Em ~ log10[K+]o since RT/zF and [K+]i remain 

constant (Equation 9). For the purposes of clarity we assume that each 

stimulus increases [K+]o by 1 minor tick (right axis, Fig 3C). By plotting 

log10[K+]o on a vertical axis and aligning with Em, it can readily be seen 

that, although not a perfect match, the increases in [K+]o result in 

successive glial Em depolarizations of diminishing amplitude. Such a 

 
Depolarisation (mV) = 59 log10

[K+]o+ 1.9
99

- 59 log10

[K+]o
99
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relationship is succinctly expressed by the authors of similar experimental 

results, when they stated “According to the K+ theory each depolarizing 

step in the response to one of these equal K+ increments and the 

diminishing amplitude of successive steps is simply a consequence of the 

logarithmic relationship between [K]o and membrane potential (i.e. the 

efficacy of a given K+ increment in producing depolarization decreases as 

the ambient [K]o increases).” (24).  

Workshops 

In our interactions with students entering the 1st year Neuroscience 

undergraduate course at the University of Nottingham it has become 

apparent that they are unprepared for the rigours of the types of 

calculations using logarithmic transformation illustrated in this paper, 

despite the fact that many of these students possess A level passes in 

Maths. This is particularly concerning as the A level syllabus has the 

following goals regarding logarithms (10). 

1. Understand the relationship between logarithms and indices, and use 

the laws of logarithms (excluding change of base); 

2. Understand the definition and properties of ex and ln x, including their 

relationship as inverse functions and their graphs; 

3. Use logarithms to solve equations of the form ax = b, and similar 

inequalities; 

4. Use logarithms to transform a given relationship to linear form, and 

hence determine unknown constants by considering the slope and/or y-

intercept. 

The most likely explanation for students’ deficits in understanding 

logarithms is the perceived redundancy of the subject in the age of desktop 

computers/calculators/smartphones, which can easily carry out 
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logarithmic transformation without the need to understand or navigate log 

tables, which only a generation ago was an absolute requirement for all 

students. In informal conversations with students logarithms were viewed 

as antiquated and irrelevant reinforcing the impression that most students 

regarded Maths as a difficult and inaccessible subject.  

In order to reacquaint 2nd year Neuroscience students with the logarithmic 

function we carried out revision workshops designed to identify 

deficiencies in students’ knowledge, followed by a 2-hour workshop that 

covered the content of this paper, with a post-workshop assessment to 

determine improvement in performance. At this stage of the course, 

students have had a 1 hour introductory lecture on membrane potentials 

and the Nernst equation. As the first part of the workshop students were 

given an exercise (Appendix 1) that was designed to test their knowledge of 

multiple areas related to logarithms (nomenclature, laws of logarithms, 

simple calculations, Nernst equation related calculations and complex 

calculations). Students were required to complete the test in 30 minutes; 

no calculators were allowed and students were not forewarned about the 

test. The test was carried out anonymously to protect student privacy. 

Students were asked to write on the front of the test paper their 

mathematical qualifications and grade (e.g. B grade at A level). Sixty-five 

students contributed, and of those students 21 had passes at A level Maths 

whereas the other 44 had achieved a GCSE in Maths, a lower qualification 

(for a description of the A level system in England see (11)). Figure 4A 

shows the performance of students either possessing or lacking A level 

Maths. The results are dismal, as out of 1105 questions only 75 were 

answered correctly (6.6%). There was no significant difference in the 

performance of those students possessing or lacking A level Maths (p = 
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0.47; Fisher’s exact test). Within a week of carrying out the test students 

were given a workshop covering the contents of this paper. Students were 

then reassessed within a few days with a new exercise (Appendix 2), which 

was similar in structure and content to the initial test, in order to allow 

quantitative comparison of any improvement in performance. Post-

workshop performance (Fig 4B) showed a considerable improvement (p < 

0.0001; Wilcoxon’s matched pairs single ranked test). The data collected in 

the first workshop determined the extent of the problem that confronts 

students. Academic staff that were taught logarithms expect present day 

students to possess an equivalent degree of understanding, but this is not 

the case. In circumstances such as these students are reluctant to admit to 

such gaps in knowledge, and thus these deficits are not remedied. The 

workshop described in this paper, or equivalent variations, appear an 

effective means by which to address this issue. 

The objective of this workshop was to determine if students understood the 

logarithmic transformation by applying the rules described in this paper. 

These results strongly suggest that no assumption of competency in 

logarithms can be made in incoming undergraduate Life Sciences students 

in the UK, the possession of A level Maths no indicator of understanding 

in the subject. Students clearly benefit from remedial workshops that 

reinforce basic logarithmic descriptions and calculations. This is likely due 

to the fact that in the workshop we reinforced the role of the logarithm as 

integral to key processes (logarithmic transformation underlies the 

graphing of dose-response relationships that are ubiquitous in 

pharmacology, pH and Nernst equation calculations relating to membrane 

potentials) that must be mastered by students wishing to prosper in a Life 

Sciences degree. We would thus recommend a revision session is given to 
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all incoming undergraduate Life Sciences students entering UK 

universities on topics contained in this paper to bring all students to an 

equivalent level of understanding.  
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Discussion 

Examination of classic physiology textbooks shows an attention to detail 

with regard to elementary physico-chemical relationships that has not 

survived into the 21st century. It could reasonably be argued that the 45 

pages devoted by J Walter Woodbury (32) to the genesis of the membrane 

potential is excessive, but in his defence all the information that an 

undergraduate is ever likely to need on the subject is present and can be 

skipped by the disinterested student, whereas to omit such information 

leaves the student in a state of ignorance. The general level of knowledge 

assumed by authors of previous generations with regard to the 

reversal/membrane potential can be appreciated when considering 

statements such as “the reversed potential difference which could be 

obtained by a mechanism of this kind might be as great as 60 mV, in a 

nerve with an internal sodium concentration equal to one tenth that of the 

outside (14)” and “As would be expected … equilibrium potentials change 

sign if the charge of the ion is reversed or if the direction of the gradient is 

reversed, and they fall to zero when there is no gradient (12)”. 

The omission of the rules of physics and physical chemistry that govern 

physiological processes in current textbooks is compounded by recent 

advances in technology that have rendered the requirements to understand 

the logarithmic function obsolete for everyday purposes. However these 

technical advances have come at a cost, namely an ill-conceived acceptance 

of redundancy of aspects of mathematics that are vital to students’ 

understanding of fundamental physiological principles. In this paper we 

have identified deficits in student understanding of the logarithmic 

function, which were remedied with a revision workshop, covering the 

contents of this paper. We sought to impress upon students the benefits of 
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mastering the logarithmic function, and reference two classic papers, 

whose conclusions can only be fully appreciated if the application of the 

logarithmic function in the Nernst equation to membrane potential 

calculations is fully understood.   
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Figure Legends 

Figure 1 

Representation of data on a logarithmic scale. A. Linear representation of 

the relationship between geometrical progression (top) of numbers (n) and 

the arithmetic progression (bottom) of the corresponding logarithms to the 

base 10 of the numbers (log10n). B. A logarithmic scale between 10 and 

100 displays uneven intervals between numbers. C. The underlying 

concept that multiplication by a fixed amount moves data along the axis by 

a fixed distance on a logarithmic scale 

Figure 2 

Nernstian relationship between Em and [K+]o. A. A hypothetical cell 

permeable only to K+, with a constant [K+]i of 75 mM shows a linear 

relationship (bold diagonal line) with [K+]o plotted on a log10 scale. Em 

depolarised 59 mV for each order of magnitude increase in [K+]o, e.g. 

raising [K+]o from 3 to 30 mM depolarised the Em from -82 mV to -23 mV, 

a 59 mV shift (horizontal dotted lines). B. The [K+]i can be estimated by 

extrapolating from 0 mV (dotted horizontal line: see text).  

Figure 3 

Stimulus induced changes in glial Em A. Redrawn Fig 4 from (20) 

demonstrating the stimulus evoked transient depolarisation of glial cell 

membrane in Necturus optic nerves bathed in 3 mM (left trace), 4.5 mM 

(middle trace) and 1.5 mM (right trace) [K+]o. B. Calculated stimulus 

evoked depolarisation that would occur in glial cells bathed in [K+]o over 

the range 1 to 6 mM.  The dotted lines border the [K+]o employed 

experimentally (20). Note that this relationship is what one would obtain 
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by subtracting the open circle data points from the corresponding resting 

Em in Fig 5 of (20). C. Diminished amplitude of Necturus glial Em 

depolarisation in response to sequential stimuli. The vertical log10 scale 

illustrates the attenuation of fixed increases in [K+]o. Experimental trace 

redrawn from Fig 6 of (20) to show attenuation of Em depolarization in 

response to 9 sequential stimuli. Horizontal scale bar is 5 seconds, vertical 

axis (mV) omitted due to qualitative nature of our description.  

Figure 4 

A summary of student performance pre- and post-workshop. A. 

Comparison of performance in the 17 questions of Assessment 1. Results 

are normalised based on 65 student responses and the students were 

categorised as lacking (open columns) or possessing (grey columns) A level 

Maths. There was no significant difference between the two groups. B. 

Post-workshop analysis showed a significant improvement in student 

performance post-workshop (light grey columns) compared to pre-

workshop performance (dark grey columns), based on the 17 questions of 

Assessment 2.   
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Assessment 1 (answers in parentheses) 

Nomenclature of the logarithm 

1. What is the characteristic of 2.4? (2) 

2. What is the mantissa of 3.6? (.6) 

Laws 

3. How else can logab be expressed? (loga + logb) 

4. How else can log(a/b) be expressed? -(log(b/a)) 

Simple calculations 

5. log10100 = (2) 

6. log100.1 = (-1) 

7. log1010000 = (5) 

Understanding the logarithmic scale 

8. On a log10 scale what is the ratio between the distance from 

10 and 20, and 20 and 80? (0.5) 

9. If log1030 = 1.477 what is log10900? (2.954) 

10. If log102 = 0.301 what is log105? (0.699)  

Nernst type calculations 

11. For anion A, if [A]o = 100 mM and [A]i = 10 mM what is 

polarity of EA ? (-ve)  

12. For cation B, if [B]o = [B]i what is the value of EB ? (0 mV) 

13. For cation A, if [A]o = 100 mM and [A]i = 10 mM, and for 

cation B, if [B]o = 1 M and [B]i = 1 mM, what is the ratio of 

EA/EB ? (0.33) 

Complex calculations 

14. What [H+] equates to pH 2.301? (0.005)  

15. log100.0003 = (-3.523) 

16. log100.3 + log1030 = (0.954) 
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Assessment 2 

Nomenclature of the logarithm 

1. What is the characteristic of 1.0? (1) 

2. What is the mantissa of 4.9? (.9) 

Laws 

3. How else can logab be expressed? (logb/loga) 

4. How else can -log(a/b) be expressed? (log(b/a) 

Simple calculations 

5. log101 = (0) 

6. log101000 = (3) 

7. log100.01 = (-2) 

Understanding the logarithmic scale 

8. On a log10 scale what is the ratio of the distance from 10 

and 30, and 30 and 90? (1) 

9. If log102 = 0.301 what is log10400? (2.602) 

10. If log1050 = 1.699, roughly what is log107? (0.85) 

Nernst type calculations 

11. For anion A, if [A]i = 100 mM and [A]o = 10 mM, what is 

polarity of EA ? (-ve)  

12. For cation B, if [B]o = 10[B]i what is the polarity of EB(+ve) 

13. For monovalent cation A the value of EA = +60 mV. What 

would the value of EA be for a divalent cation if the value of 

[A]o was doubled and [A]i was unchanged? (+40 mV) 

Complex calculations 

14. What [H+] equates to pH 3.301? (0.0005)  

15. log100.02 = (-1.699) 

16. If log102 = 0.301 what is lne2? (0.693) 
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