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Abstract: Solar electricity generation system (SEGS) which employs cascade

steam-organic Rankine cycle (SORC) and steam screw expander (SE) is promising

due to the high efficiency at moderate heat source temperature. This paper puts a

special emphasis on heat storage and thermo-economic evaluation. Preferable

operating temperature of the system is first clarified on the basis of SE

characteristics. The temperature-dependent permissible stress of steam accumulator

is modelled and the capital cost is investigated. Comparison between the direct

steam generation (DSG) SEGS and an indirect one using thermal oil is made at a

power capacity of 1 MW and storage of 6.5 hours. The results indicate the DSG

system has both thermodynamic and economic superiorities. The hot side

temperature ( HT ) of SORC generally does not exceed 250 oC to achieve an optimum

solar thermal power efficiency. Given radiation of 750 W/m2, the maximum
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efficiency ( ,T m ) is 14.3% with a corresponding HT around 240 oC. The material

cost of pressure vessels is 2.55 million RMB. For the indirect system, the optimal

HT is about 230 oC and ,T m approximates to 13.2% and the estimated oil cost is

7.92 million RMB. It is recommended to adopt steam accumulators in the SE-driven

SEGS.

Keywords: solar thermal power generation; screw expander; thermal storage; steam

accumulator; part-load behavior
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1．Introduction

Screw expander (SE) is a volumetric machine used for the production of mechanical

work in the power interval from several kW to a few MW. The functional

characteristics of SE differ significantly from those of dynamic expanders (e.g.

turbines). SE has high tolerance for two-phase working fluid and the fluctuation of

heat source in a wide range of pressure, temperature and volumetric flow. It is able to

start up and shut down quickly, and has no special warm-up, less faults from

over-speeding and turning.

SE technology is promising in the low-medium temperature applications. The SE

industry is at a stage for promotion in the world, with major industrial suppliers

including Jiangxi Huadian Electric Power Co.,Ltd, Opcon Group, Kaishan Ltd.,

Denair Group, ElectraTherm, Shanghai Hanbell Precise Machinery, Heliex Power Ltd.

and QiyaoExpander Ltd. Products such as Opcon Powerbox WST (100-1600 kW) [1],

HP145/HP204 (160-500 kW) [2], SEPG (300-3000 kW) [3], LGP510-S (750-2500
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kW) [4], KE110V-50 (60-1000 kW), 6500-FL(110 kW) [5] and Denair ORC (10-300

kW or above) [6] are available on the markets. Isentropic efficiency of 75-80% is

claimed for most products. The SE-based plants are gaining ever increasing interest as

cost-effective sustainable energy systems.

Solar electricity generation system (SEGS) holds a potential market for SE [7-10].

SEGS using steam SE avoids superheat at the expander inlet [11]. Direct steam

generation (DSG) in the parabolic trough collectors (PTCs) can be facilitated. The

system can work at lower temperature than steam turbine-driven ones without

remarkable decrement in the efficiency. The technical requirement in solar energy

collection is thus reduced. Coupling with a bottom organic Rankine cycle (ORC), the

SE does not need to experience highly off-design operation [12-14], and the SEGS

can perform better at low ambient temperature. It is especially suitable for distributed

cogeneration applications. Fundamentals, advantages and some thermodynamic

results of the SEGS using cascade steam-organic Rankine cycle (SORC) at constant

SE efficiency have been presented previously [15].

Heat storage is a key subject in solar thermal electricity generating systems. The

proposed SEGS is appreciated only if the issues related with storage can be easily

addressed. Similarly with steam turbine-driven systems, there are many alternative

materials for thermal storage of the SE-based SEGS, including molten salt, thermal oil

and water.

Molten salts were adopted for thermal energy storage in Themis solar power plant

in 1983. Salts composed of NaNO3 (wt=60%) and KNO3 (wt=40%) were chosen as
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storage mediums of Solar Two in 1995 [16]. Molten salts acting as the heat transfer

and storage fluid were further employed in Solar Tres power plant built in 2008 [17].

After a long-term development, molten salt technology represents one of the most

flexible, efficient and cost-effective large-scale solar energy storage technologies

nowadays and is being deployed in many plants such as 280 MW Solana Generating

Station and Ivanpah concentrating solar power plant.

Thermal oil was used for storage in the first SEGS plant (SEGS I) in 1984. It was

filled into two different tanks: a hot tank, where the oil was stored after being heated

to 307 °C by the collectors, and a cold tank, where the oil was kept at about 240°C

after releasing its energy to the Rankine cycle [18-19]. This storage technology was

found to be successful for helping the plant dispatch its electricity generation during

non-sunlight periods. Another benefit was that oil could be utilized as heat transfer

fluid. Because thermal stability of commercial thermal oil could be guaranteed only

when the working temperature ranged below 395 °C, this storage concept no longer

appeared in later, more efficient SEGS plants.

Water was especially suitable to meet the requirements for buffer storage in solar

steam systems. Pros and cons of steam accumulator for thermal storage of

conventional turbine-driven SEGSs have been estimated [20-24]. Water was selected

as the storage, heat transfer and working fluid in commercial solar power plants of

Abengoa Solar's Planta Solar 10 and 20 (PS10 and PS20). In PS10, the design

temperature and pressure of the steam accumulators were 250 °C and 4 MPa,

respectively. The storage system consisted of four tanks that were sequentially
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operated in relation to their charge status [25]. In PS20, the design values were

elevated to 300 °C and 4.5 MPa [26]. The introduction of steam accumulators

eliminated intermediate heat transfer fluid and steam generator. The storage system

could react fast to transience in radiation without complicated control strategy.

Experience in SEGSs indicates that molten salt is the best choice for thermal

storage in the high temperature application (> 400 °C) [27]. Thermal oil is attractive

in the temperature range from 300 °C to 400 °C. And both thermal oil and water are

appropriate medium at temperature below 300 °C. Notably, so far thermal storage for

SEGS is affected by the characteristics of steam turbine. Due to the technical

difficulty and short lifetime of turbine operating with wet steam, a large degree of

superheat (>100 °C) at the device inlet is favorable. This will reduce the solar power

efficiency at a given heat source temperature. For the sake of efficiency improvement

and cost-effectiveness, SEGS tends to move towards higher operating temperature

(>500 °C). As the most promising medium in such application, molten salt is currently

receiving great interest [28-33].

In case of SE, the problems associated with wet steam are overcome. It is

unnecessary to harness solar energy at temperature above 400 °C to implement

efficient power conversion. A solar electricity efficiency around 15% can be expected

with heat source of just 250 °C [15]. In this situation, steam accumulator rather than

molten salt will be a competitive method.

It is innovative to couple the steam screw expander-based SORC with DSG solar

collectors and water heat storage. Thermo-economic performance of this sort of
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system has not been reported and it is worth examining its feasibility. Meanwhile

detailed investigation of the thermo-mechanical stress in storage vessel and the

mathematical relationship between operating temperature/pressure and consumption

of material (i.e. steel) are rare. Quantitative analysis of the capital cost of pressure

vessel working with steam for solar energy storage in the temperature range from

200 °C to 250 °C is needed and valuable.

This paper focuses on the steam SE-based solar thermal electricity system with

water as the heat transfer and storage fluid. It aims to explore the applicability of this

storage technology in the proposed SEGS. The main contributions are as follows.

(1) Advantages of the system are outlined.

(2) Mathematical model on the steam accumulator is established. Influence of key

factors on the accumulator cost is analyzed. Valuable information on the cost of

pressure vessel operating within the recommended temperature limit is

presented.

(3) Thermodynamic and economical comparisons between the SEGSs using water

and thermal oil as the storage fluids, are conducted. The superiority of the former

is clarified.

(4) Annual performance, part-load behavior and storage cost of the SE-assisted

SEGS are evaluated, giving a better understanding of the system.

2. Characteristics of screw expander

The optimum working condition of the system is rooted on the current technology of

SEs, which possess some characteristics that have significant effect on the operation
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of SEGS, including:

(1) Allowance for flexible multi-phase expansion. SE is a kind of full-flow power

machine, which can accept not only superheated and saturated steam (or vapor in case

of organic fluid), but also wet steam and steam-liquid mixtures. Unlike the mode of

power conversion in turbines, the velocity of fluid in SEs is much lower and merely a

relatively small portion of power is facilitated by dynamic effects relevant to fluid

motion. Hence the presence of liquid droplets in the machine has little influence on its

lifetime.

(2) Low built-in expansion ratio. A small built-in expansion ratio is desirable because

it maximizes the input flow of fluid, before the high pressure port is cut off. Great

mass flow rate can diminish the effect of leakage [34]. Nevertheless, it leads to under

expansion and expulsion of the fluid at a too high pressure. Available work is thus lost

and the expander efficiency falls. There is a compromise between the manufacturing

cost and the work loss. According to the existing plants, common built-in expansion

ratio of SE is around 4.

(3) Excellent part-load behavior. Low built-in expansion ratio is not a good match for

the practical one, which usually exceeds 10 in light of the heat source and heat sink

temperatures. Fortunately, this can be compensated by the excellent part-load

behavior of SE. Many works have demonstrated this feature [35-37]. The SE can

operate efficiently to a large extent of pressure ratio ( pr ). The decline of isentropic

efficiency from the maximum is only about 10% when the operating pr increases by

three times as the built-in [38].
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(4) Limited pressure difference. SE is positive displacement rotary machine

comprising a meshing pair of helicoid lobed rotors on parallel axes, contained in a

casing. Pressure difference across the rotors may impose heavy loads on them and

cause rotor deformation. As a result, the pressure difference at which SE can function

reliably and economically is restricted. Most commercial SEs have a maximum

operating pressure below 4.0 MPa. This constraint is similar to screw compressors

which have been widely used in low-medium pressure applications.

3. System description

Fig.1 shows the DSG solar power system using SE. Steam is generated in the PTCs.

The power conversion subsystem is the cascade SORC. Cycle I (red color) and Cycle

Ⅱ (blue color) are the steam Rankine cycle (SRC) and ORC, respectively. Cycle I

mainly consists of SE, condenser (HX1), pumps (P1, P3), steam accumulator (water

storage unit) and collectors. Cycle Ⅱ is composed of expander, condenser (HX2),

pump (P2). Regarding the properties of common organic fluids, turbine is a better

option in the ORC [15].

HX2 is the heat exchanger between the ORC fluid and the environment. Water

cooling is preferable than air cooling on account of larger temperature difference

driving the ORC and smaller negative power consumption. To support space heating

and absorption cooling, heat exchangers can be placed in parallel with HX1. HX1

serves as the evaporator for Cycle Ⅱ. Both SRC and ORC fluids undergo phase

change in HX1. The outlet temperature, pressure and quality of the fluids are affected

by the heat transfer inside. Three aspects could be considered for the feasibility of
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HX1. First, commissioning is one practical action before the system works on the

nominal condition. In this process, auxiliary devices such as sensor, controller,

by-pass, liquid-vapor separator and reservoir are needed [39], which may shorten

commissioning time. Second, cascade Rankine cycle using mercury and steam had

been employed in historical power systems and similar heat exchangers as HX1 were

included [40], though the plants were limited probably because of high capital cost

and the obvious toxic hazard if the mercury leaked into the environment. Third,

nowadays cascade refrigeration cycle is used in low temperature applications where a

common single-refrigerant two-stage compression system gets inefficient [41]. The

internal heat exchanger plays a key role in the system and its outlet fluid in the

high-temperature circuit should not contain liquid for the proper operation of the

compressor. The experience in cascade refrigeration cycle reinforces the applicability

of HX1 in the SORC.

The operation is flexible and the system has many operating modes including:

a. Simultaneous heat collection and power conversion (Mode 1). V1, V2 and V3 are

open, and P1 and P2 work. Water is heated and vaporized in PTCs. Saturation

steam goes into the SE, exporting power during expansion. The exhaust is

condensed to saturation liquid in HX1, and is pressurized and sent back by P1 to

the PTCs. The condensation heat is used to vaporize the working fluid in the

ORC.

b. Heat storage in process (Mode 2). V3 and V4 are open and P3 runs. Solar energy

is stored in the form of water sensible heat.
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c. Sole power conversion (Mode 3). When solar radiation is unavailable and power

is demanded, V1, V2, V5 are open. P1 and P2 run. Heat is released by water and

converted into power.

d. Simultaneous heat collection, power conversion and heat storage (or release)

(Mode 4). This mode is more complicated but also more common in practice. V1,

V2, V3 and V4 are open. P1, P2 and P3 run. The design area of PTCs is relevant

to the nominal power and capacity factor of the plant. In case of strong solar

radiation, heat collected by PTCs is partly used to generate power and the rest is

stored in the accumulator. While under weak radiation the input energy may be

not sufficient for power conversion and heat is released from the accumulator. In

both situations the SORC operates smoothly. Depending on solar radiation, the

mass flow rate through P3 is adjustable. Water leaving the solar field can be at

liquid, binary or vapor state. Superheat is prevented in a simple way.

In contrast to the conventional turbine-driven DSG solar thermal power system,

superheater is eliminated. Moreover, the technical problems associated with steam

accumulator can be more easily solved. For conventional systems the investment cost

on water storage is dominated owing to the vessel operating at high temperature and

pressure which may reach 400 °C and 10 MPa [24]. Since water is used as both

storage medium and working fluid, high discharge rate is possible and the capacity is

limited by the vessel volume. There is a decline in pressure during the discharge

process, which would lead to degradation of the turbine performance. These concerns

are eased in the present of SE because it operates at relatively lower temperature and
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pressure, and has excellent part-load performance.

The representative two-tank heat transfer fluid (HTF) system is shown in Fig. 2.

Thermal oil is used as the HTF and heat storage medium, which is a proven

technology applied in some SEGS plants for two decades without major troubles.

Thermal oil seems to be the best HTF in regard to the operational aspect, safety and

cost [42].

A typical thermodynamic process of the cascade cycle is illustrated in Fig.3. The

numbers are linked with those in Figs.1 and 2.

4. Mathematical models

4.1. Solar energy collection efficiency

It will be shown in the following sections that collectors in both DSG and HTF

systems operate at pressure less than 4 MPa, and most commercial PTCs should be

applicable. Therefore, it is assumed in this work that the systems in comparison

employ the same kind of collectors. A type of PTC installed in the USA with up to

2700 m2 of aperture area is referenced here [43]. The performance formula of a single

PTC provided by the manufacturer is [44]:

 
2

( ) 0.762 0.2125 0.001672 aa
PTC

b b

T TT T
T

G G



     (1)

where bG is beam solar radiation ; T is collector inlet temperature.

Thousands of collectors are usually adopted in SEGS, the temperature difference

between neighboring collectors is supposed to be small. To calculate the overall

efficiency for solar energy collection, it is reasonable to assume that the average

operating temperature of the collector changes continuously from one module to



12

another.

For thermal oil and water at liquid state, in order to reach an outlet temperature

outT with an inlet temperature inT , the required collector area is obtained by

( )

( )

Tout
p

l
PTC bTin

m C T
A dT

T G





Ⅰ

(2)

where mⅠ is mass flow rate of oil or water through the collectors. For the DSG

system, it is also the mass flow rate in SRC.

Heat capacity of oil or water can be expressed by a first order approximation:

,0 0( ) ( )p pC T C T T   (3)

Where ,0pC is heat capacity corresponding to a reference temperature 0T .

With 1 0.2125 / bc G ， 2 0.001672 / bc G , the collector area according to Eqs. (1) -

(3) is calculated by

1 2
, 1 , 2

2 2 1 1 2

( )
( )ln ( )ln

( )
out a in a

l p a p a
b in a out a

m T T T T
A C C

c G T T T T

 
 

   

    
    

     

Ⅰ
(4)

Eq.(4) is the analytic solution to the formula of integration of Eq.(2). 1c and 2c

are two defined intermediate parameters. 1 and 2 are the arithmetical solutions of

Eq. (5)（ 1 20, 0   ）.

2
1 20.762 0c c    (5)

, ,0 0( )p a p aC C T T   (6)

1 and 2 can be determined once solar radiation is known since Eq.(5) is a

common quadratic function.

Collector efficiency in liquid phase region is calculated by

,
l

PTC l
b l

m h

G A
  (7)
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Eq. (7) is adequate to calculate the solar energy collection efficiency of HTF system.

For DSG system, the solar field contains steam-liquid mixture. Overall collector

efficiency is calculated by Eq. (8)

, ,

( )

l

l b
PTC

l bb l b

PTC PTC b

h hQ

h hG A A


 

  
 

  
(8)

where lh and bh are the enthalpy increments of water in liquid phase and

binary phase regions. ,PTC b can be easily calculated since the temperature is

constant.

4.2. Power conversion efficiency

4.2.1. Expanders

The work generated by SE or turbine is defined as Eq. (9) or Eq. (10): 

1 2 1 2( ) ( )SE s SEW m h h m h h    Ⅰ Ⅰ (9)

П 5 6 П 5 6( ) ( )T s TW m h h m h h     (10)

4.2.2. Heat exchanger

Heat balance in HX1 is expressed by

)()( 8532 hhmhhm  ⅡⅠ (11)

4.2.3. Pumps

The work required by pump is expressed by

1 4 3 4 3( ) ( ) /p s pW m h h m h h    Ⅰ Ⅰ (12)

2 П 8 7 П 8 7( ) ( ) /p s pW m h h m h h     (13)

The pressure drop through the collectors, heat exchangers and pipes are neglected.

Flow resistance in the PTCs is supposed to have limited effect on the net power
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output of the system. For example, if the design pressure at the SE inlet is 4.0 MPa

and the pressure loss in the PTCs is 0.5 MPa, then the outlet pressure of P1 will just

need to increase from 4.0 to 4.5 MPa. The relative increment in the power

consumption of P1 is about 12.5%. Because the pump power is very small in

comparison with the expander output (about 1.5% of the latter) [15], the influence of

the pressure drop in the PTCs will be slight.

4.2.4. Thermal efficiency of the cascade Rankine cycle

Heat-to-power conversion efficiency of the SORC is

1 4( )
net

SORC

W

m h h
 

Ⅰ

(14)

   1 2net SE T g p pW W W W W     (15)

Analogously, for the SRC and ORC,

1

1 4( )

SE g p
SRC

W W

m h h




 


Ⅰ

(16)

2

5 8( )

T g p
ORC

W W

m h h




 


Ⅱ

(17)

4.3. Solar thermal power generation efficiency

Thermal efficiency ( T ) of the proposed system indicates how effectively solar

radiation is converted into electricity.

AG

W

b

net
PTCSORCT


  (18)

4.4. Part-load behavior of SE

Built-in volume ratio of SE ( ,v br ) is defined as

,

,

,

out b

v b

in b

v
r

v
 (19)
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The operating pressure ratio ( pr ) is defined as

in
p

out

p
r

p
 (20)

,v br and pr are the known parameters normally available in the literature [45].

There are four types of losses in SE operation [38]:

(i) Loss due to mismatch of the operating pressure ratio to the built-in ,p br ;

(ii) Fluid leakage loss;

(iii) Loss due to thermodynamic irreversibility;

(iv) Mechanical friction loss from the rotating shaft.

For each stage of the work loss, an efficiency term can be specified to account

for it. They are theoretical, leakage, thermodynamic and mechanical efficiencies for

(i)-(iv), respectively. The actual overall isentropic efficiency can thus be defined as:

os Th L TM M Th D M         (21)

where D L TM   (22)

M is determined by the characteristic of SE, and it has a constant value for a specific

SE. By definition, the theoretical efficiency is given as [38]:

1
, ,

(1 )/

(1 ) ( 1)(1 / )

[1 ]

v b v b pTD
Th

TI p

r r rW

W r



 










   
 

 (23)

where TDW and TIW are theoretical diagram power and theoretical isentropic power

respectively.  is the isentropic index. It depends on the working fluid and its state

and is 1.13 for dry saturated steam. ‘Pseudo-polytropic’ index could replace  to give

the actual expansion path of fluid when it is correlated against the specified inlet and

outlet conditions [45].
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The thermodynamic work output can be estimated by summing the shaft work output

and the frictional work, i.e.

TM S FW W W  (24)

The actual TMW could be well lower than the polytropic work output attributed to the

irreversibility losses of fluid expansion and admission, blowdown exhaust and other

leakage losses. FW is a direct function of the shaft speed N . It is generally

assumed to be unchanged if the rotation speed is held constant. Mechanical friction is

insignificant as compared with the mismatching of pr , leakage and presence of

thermodynamic irreversibilities [45].

The diagram efficiency is given by the ratio of the thermodynamic work to the

theoretical diagram work, i.e.

1
, ,(1 )

(1 )
1

s FTM
D

TD v b v b
t su s

p

W WW

W r r
m p

r










 

 
  

  

(25)

The definition of diagram efficiency includes the effect of leakage and

thermodynamic irreversibility. The leakage mass flow rate in an expander can be

estimated using the ideal-gas choked flow model with a given leakage flow area [46].

Therefore, it is expected that the behavior of diagram efficiency is similar to that in

the conventional turbomachines. Increment in ,v br has a negative effect on the

diagram efficiency, but the efficiency variation is quite slight at high pr [47].

Peak isentropic efficiency ( ,os p ) can be achieved when ,Th p is 1.

, ,os p Th p D M    (26)

Combine Eqs. (21), (23) and (26), os can be estimated as:
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1
, ,

, , 1 /
,

(1 ) ( 1)(1 / )

(1 )

v b v b pD
os os p Th os p

D p p

r r r

r



 


   

 





   
  

 (27)

According to Eq. (27), the actual SE efficiency is affected by the operating pr , ,os p ,

,v br , working fluid and state.

4.5. Cost of heat storage units

The thermodynamic performance comparison between the DSG and HTF systems can

be made by the above models. Economic performance is important and a

confrontation can be also conducted. According to Figs.1 and 2, costs of the heat

storage units and collectors are the remarkable difference between the two types of

systems. The collector cost can be figured out by the overall areas, which is related to

the system power efficiency. Given a plant capacity, the cost of thermal energy

storage (e.g. 6.5 hours) depends upon many factors involving the size of vessel,

materials of construction, shape, welding requirements and additional custom

standards. Taking into account all these factors will make the calculation difficult.

However, like large heat exchangers whose cost is mainly contributed by the

exchanger area and hence total amount of materials in use [48-49], large pressure

vessels have the cost in approximate proportion to the vessel weight [50]. In particular,

comparison between thermal storages using water and oil for the SE-based SEGS is

one key issue in this work. The two fashions of storage units have similar cost related

to indirect equipment expense, direct field labor for manufacture and installation, etc.

The water-type storage is distinguishable from the other in view of the need of more

steel for the vessel and the avoidance of expensive oil. Based on the above

consideration, this section pays attention to the cost of materials for heat storage.
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The material cost of steam accumulator is determined by

9
, 10s DSG steel steel steel steel steelC P m P V    (28)

,s DSGC is the total cost. steelP is the cost per kilogram. Alloy steel, stainless steel and

carbon steel are favorable in pressure vessel applications. Cylinder vessel is

commonly adopted. The total volume of steel ( steelV ) is a function of the diameter ( )iD ,

thickness ( ) and height ( )H of the vessel. The design  of the cylinder is

correlated with the design pressure [51]

2[ ]
i

cy t

pD

p


 



(29)

The units for pressure and diameter are MPa and mm, respectively.  is the welding

coefficient. [ ]t is the permissible stress.

The material mass used for the cylinder is

9 2 2 9

, , 10 [(0.5 ) 0.25 ] 10steel cy steel steel cy steel i cy i cyM V D D H          (30)

Cylinder vessel generally has two elliptical heads at the top and the bottom. The

standard ratio of the half long axis (a) and the half short axis (b) of an ellipse is 2:1.

The design thickness is expressed by

2[ ] 0.5
i

head t

pD

p


 



(31)

The surface area ( 2mm ) and mass ( kg ) of an elliptical head are calculated by [52]

2

2

{ ln[ ( ) 1]} 2

( ) 1
head head

b a a
A a a ah

b ba

b

     



(32)

2 2 2 2 9
,

2 2
{[ ( ) ( ) ( ) ] ( )} 10

3 3
steel head steel head head head head headM a b a h a b a h             (33)

For a standard head as shown in Fig. 4, a=0.5Di, b=0.5a.
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20.345head i i headA D D h   (34)

2
2 9

,

5 2
[ ( ) ] 10

3 6 3
i

steel head steel head i head head i head head

D
M D D h           (35)

headh can be 25, 40 and 50 mm as regulated by the standard [53].

The total mass of material used for the vessel is approximated by

, ,2steel steel cy steel headM M M  (36)

The design pressure p is the sum of the saturation pressure ( sp ) of water at the

design temperature and the static pressure ( gp ) caused by gravity. The vessel can be

laid up in two ways (as shown in Fig. 5) determined by the axis of symmetry of the

cylinder. For a vessel of vertical axis, the design pressure is expressed by

9( 2 2 ) 10s g s w cy headp p p p g H b h        (37)

For a vessel of horizontal axis, the design pressure is expressed by

910s g s w ip p p p gD      (38)

The determination of permissible stress is not at discretion. There are strict technical

standards. Permissible stresses for six types of materials are listed in Table 1, which is

guideline for the vessel design.

For the thermal oil storage unit,

, , ,s HTF s steel s oilC C C  (39)

,s oil oil oil oilC P V (40)

,

3600 H net
oil oil

SORC p oil

t W
V

C T







  
(41)

Ht is storage time in hour. ,p oilC is the heat capacity of the oil. T is the

temperature drop from the hot to the cold tank.

5. Results and discussion
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In this section, optimization of the SEGSs using water (direct system) and oil (indirect

system) as heat transfer medium in the PTCs is first implemented at certain solar

radiation and environment temperature. Mode 1 in Section 3 is exemplified. The

objective function is solar electricity efficiency. The variables are SRC evaporation

temperature ( 1T ) and ORC evaporation temperature ( 5T ), which may be deemed as

two dimensional arrays [ 1T , 5T ]. After finding out the optimum [ 1,opT , 5,opT ] on the

given boundary conditions, cost-effectiveness of the thermal storage unit is

investigated. Mass of steel at the preferable operation temperature is subsequently

estimated in consideration of parametric distributions and arrangements of the vessels.

Finally, cost comparison between DSG and HTF systems is conducted.

Some specific parameters and their values are listed in Table 2. R245fa is chosen

for the ORC. Subcritical cycles are considered for both ORC and SRC. The ORC

turbine has a constant efficiency.

5.1. The optimum hot side temperature ( ,H opT )

5.1.1. ,H opT at 750 W/m2

Fig. 6 shows the heat collection efficiencies of direct and indirect systems and the

cascade cycle efficiency varying with the hot side temperature HT (i.e. temperature

at the SE inlet, 1T ) under the beam solar radiation of 750 W/m2. The ORC

evaporation temperature varies with HT in order to promote the heat-to-power

conversion efficiency. Water prior to the SE remains at saturation vapor state. The

temperature difference between thermal oil inlet and outlet is 50 oC. Temperature

interval of neighboring points of HT in calculation is 10oC. The collector efficiencies
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for both systems decline approximately linearly with the increment in HT . The heat

carried away by water is divided into two parts: latent heat and sensible heat. Due to

the heat transfer irreversibility the average operating temperature of thermal oil is

larger than the water’s. Solar energy collection of the DSG system is more efficient by

4%-10%. This superiority gets more appreciable as HT increases.

The power conversion efficiency of SORC first climbs when HT rises, and then

approaches to the peak point at HT around 320 oC, and drops with further

temperature increment. It is not a monotonically increasing function of the hot side

temperature, which is inconsistent with the behavior of a Rankine cycle of constant

expander efficiency. There are two reasons behind this phenomenon. For subcritical

ORC with working fluid of R245fa, the efficiency goes up insignificantly or even falls

down as the evaporation temperature ( 5T ) moves close to its critical temperature (154

oC), attributed to the decrement in the fluid’s equivalent hot side temperature [55].

The other reason is that SE will go through highly off-design operation as HT

increases due to the small built-in volume ratio. The power conversion in the SRC

suffers from the degraded SE performance.

The solar thermal electricity efficiencies of the DSG and indirect systems varying

with HT are depicted in Fig. 7. Both curves have parabola-like shapes, and open

downward. At each HT , the DSG system has a higher efficiency than the indirect one.

The maximum efficiency is 14.3% and 13.2% for the former and the latter. And the

corresponding optimum TH is about 240 oC and 230 oC. Given the solar radiation and

ambient temperature, it can be deduced that the optimum TH of the DSG system
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surpasses that of the indirect system. According to Eq. (18), the derivative of solar

electricity efficiency with respect to HT is expressed as

PTC SORCT
SORC PTC

H H H

d dd

dT dT dT

 
   (42)

When HT is lower than 320 oC, 0SORC

H

d

dT


 and 0PTC

H

d

dT


 . For common solar

collectors, PTC and PTC

H

d

dT


(absolute value) are monotonically decreasing and

increasing functions of HT , respectively. Given HT , the expression for DSG system

differs from the indirect system’s in the collector efficiency ( ,PTC DSG and ,PTC HTF ).

The relationship between them is

, ,( ) ( )PTC HTF H PTC DSG HT T    , 0  (43)

For both systems, HT at the peak efficiency points ( ,H DSG opT  and ,H HTF opT  ) shall

fulfill

0T

H

d

dT


 (44)

,

,

,( ) 0

H H DSG op

PTC DSG SORC
SORC PTC DSG

H H T T

d d

dT dT

 
 



  (45)

,

,

,( ) 0

H H HTF op

PTC HTF SORC
SORC PTC HTF

H H T T

d d

dT dT

 
 



  (46)

Because

, ( )PTC DSG HT > , ( )PTC HTF HT (47)

, ,PTC DSG PTC HTF

H H

d d

dT dT

 
 (48)

Therefore
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,

,
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H H DSG op

PTC HTF SORC
SORC PTC HTF

H H T T

d d

dT dT

 
 
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  (49)

,PTC HTF

H

d

dT


and ,PTC HTF are monotonic functions of HT . Combining (46) and (49),

,H DSG opT  > ,H HTF opT  (50)

5.1.2. ,H opT varying with solar radiation

The influence of solar radiation on ,H opT is illustrated by Fig. 8. The corresponding

solar electricity efficiency variations are exhibited in Fig. 9. In the normal radiation

ranges from 600 W/m2 to 900 W/m2, ,H opT of the DSG system varies from 220 oC to

250 oC. It is comparatively low for the thermal oil-connected system. The maximum

T ascends as the radiation turns stronger, though the increment becomes less

significant. The efficiency difference between the DSG and indirect systems is about

0.9-1.5%, and the largest occurs at the lowest radiation. The detailed parameters on

the optimum conditions at three levels of radiation are posted in Tables 3 and 4. The

corresponding thermodynamic state points are marked in Figs.1 and 2.

5.1.3. Annual ,H opT in six areas

Solar radiation fluctuates from time to time in practice. The optimum operation of the

SEGS is linked with the local meteorology. The recommended ,H opT at the design

condition in six areas of rich solar energy resource is provided in Table 5. Hourly

weather data in a typical year are used [56]. ,H opT changes with the location and

ranges from 200 oC to 240 oC. In other areas of poorer solar energy, ,H opT is expected

to be lower. The relative increment of annual power output of the DSG system by that

on the use of the indirect system is around 10%.
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The above analysis indicates that owing to the compromise among solar energy

collection, temperature difference driving the cycle and irreversibility of SE, the

preferable ,H opT shall go below 250 oC. It is a desirable thermodynamic result since

common SEs operate at pressure up to 4 MPa and water can be selected for heat

storage.

5.2. Parametric effect on steam accumulators in the DSG system

Q345R is exemplified. It is currently the most widely used material for

manufacturing vessels and boilers in China. It has been permitted in ASME Code

Case 2642 for the fabrication of pressure vessels without concern on the low stress

conditions [57]. It is a typical low alloy steel, originated from three old steel grades of

16MnR, 16Mng and 19Mng. It has good mechanical properties of low phosphorus

and sulfur contents. Small amounts of trace elements are allowed to be added to

improve smelting and rolling processes. The regulated quality of components for

Q345R is listed in Table 6 [58]. Design thickness of vessel made of Q345R on

different conditions of temperature, pressure and diameter is indexed in Table 7.

Based on the thermodynamic results in Section 5.1, a design temperature of 250

oC for the steam accumulator is selected. The saturation pressure of water at this

temperature is 3.98 MPa. The practical temperature/pressure could be lower than the

design. The reference radiation is 750 W/m2. The total mass of water in use varies

with the temperature range of operation. A larger temperature drop of water during

heat discharge will lead to a smaller accumulator. But as the temperature descends, the

supply pressure for SE will be diminished, thus affecting the power conversion. The
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curve in Fig. 7 shows that the DSG system efficiency almost keeps constant when HT

stays within the interval of (230 oC, 250 oC). Therefore, the temperature drop is

assumed to be 20 oC in the heat release process. Given cascade cycle efficiency ( SORC )

of 23.5% at 240 oC and 6.5 h storage, a total volume of 1204 m3 of water for storage is

required, as calculated in a similar way by Eq.(41).

5.2.1. Single pressure vessel

Fig. 10 shows material consumption ( steelM ) and vessel design pressure ( p ) varying

with the diameter ( iD ) for the vertical vessel. steelM first decreases drastically as iD

increases, reaching a minimum value of about 861.3 tons at iD of 4600 mm and

then climbs gradually with further increment in iD . The decline of steelM is

attributed to a lower p when the vessel is enlarged. The vessel volume is constant

and the height ( cyH ) is linearly inversely proportional to the square of iD . So the

increment of iD leads to reduced cyH and p . The influence of iD on p becomes

unnoticeable in the low range of cyH . At iD =5000 mm, cyH is about 61 m and the

pressure due to gravity is about 0.6 MPa, which is around one-seventh of the

saturation pressure of water at 250 oC. In this situation, iD has limited effect on the

design pressure but much more appreciable one on the mass of Q345R for the heads.

When iD changes from 5000 mm to 9000 mm, the overall head mass ( ,2 steel headM )

goes up from 43.0 tons to 229.6 tons.

The effect of iD on steelM and cyH in case of horizontal vessel is graphed by

Fig. 11. cyH is actually the vessel length rather than the height so the design pressure

is a weak function of iD . Unlike that of vertical vessel, steelM rises in a monotonic
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fashion. In light of Eq. (29), given p and the permissible stress, cy is almost

proportional to iD . Because 2
, / (0.25 )steel cy steel i cy cy steel i cy vessel iM D H D V D      ,

so ,steel cyM  /cy iD and nearly unvaried ,steel cyM can be expected. Meanwhile,

higher iD is accompanied by larger ,steel headM , resulting in a monotonically

increasing steelM with increment in iD . Several sudden growths in steelM are

observed at iD around 1100, 2300, 3500, 5400 and 7800 mm. They are caused by

the non-continuous regulated permissible stress of Q345R. The stress may de-escalate

abruptly as wall thickness increases. At each iD , steelM of the horizontal vessel gets

below the vertical’s. When iD =4600 mm, the former is 735.5 tons, nearly 14.6%

lower than the latter. The difference turns larger at smaller iD .

Figs. 10 and 11 indicate iD of no more than 5000 mm is material-saving. In

particular, the horizontal vessel always benefits from the decrement in iD in terms of

the consumption of Q345R. However, cyH could be extremely high at low iD . It is

about 72 m at iD =4600 mm. There will be great difficulty in fabrication and

transportation of such a vessel.

5.2.2. Vessels in parallel

To solve the problem of unusual cyH , two or more vessels can be employed

concurrently. Figs. 12 and 13 present the relationship between steelM and the number

of vessels ( N ) in use. The vessels of a given number are of the same dimension and

design pressure, and work in parallel with each other. For all cases, cyH is fixed at 25

m. steelM is the total mass of the vessels. Obviously, steelM together with iD drops

as more vessels are utilized. The sudden decrements are facilitated by the hopping
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cy that could come along with discontinuous permissible stress.

The variations of steelM for the vertical and horizontal vessels are similar. The

horizontal placement still has superiority in the material usage when multi-vessels are

combined. The reduction of mass ranges from 38.7 tons to 41.7 tons when N is

within 12. It seems horizontal vessels are more beneficial than vertical ones for the

water storage of the DSG solar power generation system.

Though multi-vessels offer comparatively low steel material cost, there may be

several disadvantages. As the number increases, the processing cost is supposed to

rise. Besides, the heat loss from the vessels could be more remarkable. The total

surface area ( cyS ) of the cylinders is approximately proportional to
0.5N because

cy i cyS N D H    0.5[ / (0.25 )]steel cy cyN V N H H     0.5 0.5(4 )steel cyV H N    . A

larger cyS may lead to more cost for thermal insulation.

Considering the above pros and cons, N of 6 seems to be acceptable. And steelM

is about 709 tons in the presence of horizontal vessels, with cy of 54.8 mm and iD of

3195 mm.

5.3. Parametric effect on thermal oil storage

The two-tank system of oil or molten salt is the most proven utility-scale thermal

storage system, and has been used or projected in many CSP plants including SEGSⅠ,

the 10 MW Solar Two plant, the Andasol plant (1-3, 50 MW per plant) and the 280

MW Solana plant. The temperature range in which the storage unit is operated needs

to be determined at its design stage. If the temperature difference between the hot and

the cold tanks ( T ) is broadened, more heat will be released during the discharge
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process at a given tank size. Putting it differently, the tank size will be reduced with a

widened temperature range at the given power output and capacity factor.

However, on the same conditions of HT and pinch point temperature and solar

radiation, the increment in T elevates the hot tank temperature and effectuates

lower efficiencies of heat collection and solar thermal power generation. The

maximum T at different T is displayed in Table 8. It declines monotonically as

T grows, which may lengthen the payback period of the SEGS. Moreover, as the

operating temperature rises, the requirement on thermal and chemical stability of oil

becomes stricter. And fewer sorts of oils will be applicable. An appropriate T shall

be the trade-off among the amount of oil, its applicability and system efficiency. In

SEGSⅠ, T was designed at 67 oC [18].

5.4. Cost comparison between water-based and oil-based storage technologies

According to the information of one of the pacesetting pioneers in China's steel

E-Commerce sector, the current market price of Q345R ranges from 3000 RMB to

4200 RMB per ton [59]. Thermal oils which have been employed in PTC-CSP plants

such as Therminol VP-1 [60], ENE L-QB300 and ENE L-QD400 [61] cost about

12000-25000 RMB per ton. In the following comparison, the prices of Q345R and

thermal oil are assumed to be 3600 and 18500 RMB per ton, respectively.

The cost variation of thermal oil with T is exhibited in Fig. 14. The cost of

Q345R is also referenced. It is about 2.55 million RMB given T of 20 oC and total

mass of 709 tons, which remains constant in the chart. For the oil, the cost decreases

with the increment in T . The decrement is not linear owing to the diversified
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electricity efficiency. At T =100 oC, the oil cost is 7.92 million RMB with a mass of

428.2 tons. The cost superiority of steam accumulator over thermal oil storage is

evident. It is noteworthy that oil needs to be periodically replaced or reprocessed. Its

lifetime is about 5 years, more or less.

The results indicate water as the thermal storage, heat transfer and working fluid

of the SE-based SEGS is feasible. Supported by the data, it is not complicated to find

out the reason why the steam accumulator does not has so good applicability in the

conventional turbine-driven SEGS as in the proposed system. First, the design

pressure is much larger. As pointed out by predecessors, a main steam condition of

500 oC /12 MPa could provide lower LCOE for the PTC-DSG power plant than those

of 400 oC /12 MPa and 500 oC /10 MPa [62]. In this case, the design pressure is 3

times of 4 MPa. Second, the design temperature is higher. The permissible stress of

material generally drops as the operating temperature increases. For example, it is

about 130 MPa -167 MPa for Q345R at 250 oC, and becomes merely 66 MPa at 450

oC. Third, the material gets limited. At temperature above 500 oC, Q345R, Q245R, etc.

are not competent. 15CrMoR could be an alternative, but its price is almost twice of

Q345R [63]. Fourth, the accumulator shall be much thicker. Since cy and head are

approximately proportional to the design pressure and permissible stress, they may be

6 times thicker than those in the SE-related system. The permissible stress will be

further degraded at the same design temperature and pressure as it is a

thickness-dependent parameter. Counting on these issues, the cost of steam

accumulator for the traditional SEGS operating at high temperature and pressure is
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supposed to transcend that of thermal oil.

5.5. Uncertainty analysis

Thermodynamic performances of the DSG and indirect systems are sensitive to

efficiencies of the PTCs, SE and ORC turbine. The deployed PTCs have optical

efficiency of 0.762, first and second loss coefficients of 0.2125 W/(m2K) and

0.001672 W/(m2K2). The collector efficiency is about 0.585 with solar radiation of

750W/m2 and operating temperature of 250 oC, which is lower than those of products

such as Schott LS-2 [64] and Eurotrough 150 [65]. The SE and ORC turbine have a

design efficiency of 0.75. Isentropic efficiency of around 0.72 for small SE (10-50kW)

has been experimentally reported [66-67]. For large SEs, efficiency approaching 0.80

can be expected [68]. The turbine-based ORC is mature nowadays with installation

capacity more than 1.8 GW [69]. Turbine efficiency above 0.8 is common [70-71].

Constant turbine efficiency is assumed in the optimization. In comparison with SE,

turbine can be designed at a much higher expansion ratio. Nominal efficiency over 0.8

for single-stage axial turbine is expected when the built-in expansion ratio is below 50

[72]. From Table 3, the expansion ratio of R245fa on a recommended working

condition is about 12. Even if the ORC evaporation temperature increases to 140 oC,

the ratio will remain less than 16. Once the optimum working condition is determined,

it is easy to design the turbo-expander accordingly. Besides, multi-stage turbine is

popular for high expansion ratio applications.

Therefore, device efficiencies in the simulation are reasonable and the

thermodynamic performance of the proposed SGES does not seem to be
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over-estimated. The PTC, SE and ORC turbine are the same in DSG and indirect

systems, if they are replaced the efficiency superiority of the DSG system shall be

retained.

Cost comparison between the DSG and indirect systems are made on the

conditions of thermal storage of 6.5 hours, steel and oil prices of 3600 RMB and

18500 RMB respectively. The prices of steel and oil may change with time. The

storage cost ( ,p steelC , ,p oilC ) can be simply deduced because there is a linear

relationship between ,p steelC , ,p oilC and the material price. ,p steelC and ,p oilC are

also proportional to the storage time.

In the comparison, cascade cycle efficiency ( SORC ) of the DSG system of 23.5%

is employed. However, heat charging and discharging lead to temperature fluctuation

in the accumulator and the power conversion is not steady. The variation of SORC

during the unsteady process is shown in Fig. 15. The design HT is 240 oC. SORC

increases with the increment in the accumulator temperature. The deviation from the

design is within (-0.45%, +0.35%), which is slight. Variation of the equivalent solar

thermal electricity efficiency ( T ) is also depicted in the figure. When heat is released

due to an accumulator temperature decrement from (T T  ) to T , equal energy

should be harvested from the solar field in the periodical operation. So the equivalent

T is deemed as the product of SORC and PTC at T . Deviation of T falls within

an interval of (-0.09%, +0.01%).

6. Conclusion

The SE-based DSG solar thermal electricity system using cascade Rankine cycle is
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designed. The principle is illustrated. By establishing the part-load model on the SE, a

close view to the performance of the proposed system can be brought and

parametrical optimization can be executed. Thermo-economic comparison between

the DSG and indirect systems is made, followed by further discussion on the

uncertainty.

Maximum solar thermal electricity efficiency ( ,T m ) and optimum hot side

temperature of the SORC ( ,H opT ) are 14.3% and 240 oC respectively under beam solar

radiation of 750 W/m2 for the DSG SGES. There are deviations of (-0.9%, +0.6%) in

,T m and (-20 oC, +10 oC) in ,H opT when the radiation range is widened from 600

W/m2 to 900 W/m2. ,H opT for system’s annual operation in six territories of abundant

solar energy resource i.e. Phoenix, Sacramento, Cape Town, Canberra, Barcelona and

Lhasa falls within (220 oC, 240 oC).

Replacing the DSG solar field by collectors working with thermal oil, both ,T m

and ,H opT are decreased on the same conditions of solar radiation and environment

temperature. The decrement in ,T m is about 1.1% at 750 W/m2, which turns more

appreciable at lower radiation. And the annual electricity generation suffers from a

yield drop around 10% in the six areas.

Aside from the thermodynamic benefits, the DSG system has cost advantage over

the indirect one in terms of storage. The concept of using steam accumulators for heat

storage in DSG plant has been discussed in the literatures. In this work, mathematical

model is built and the material cost of the accumulators is analyzed in detail at an

eligible design temperature of 250 oC. The horizontal pressure vessels appear to save
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more material of steel than the vertical ones. And the total occupied mass tends to

decrease with the decrement in the vessel diameter. Multi-vessels functioning in

parallel can effectively reduce the device length. When 6 vessels of length of 25 m are

used and a temperature drop of 20 oC during heat discharge ( T ) is assumed, an

amount of 709 tons of Q345R is needed for 6.5 h storage in a 1 MW plant.

To facilitate a similar storage using the two-tank HTF system, the required oil is

428.2 tons on the assumption of T =100 oC. In accordance with the current market

price, the thermal oil cost is three times more than that of the steel material for steam

accumulators.
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Figure Legends

Fig. 1. DSG solar cascade Rankine cycle system

Fig. 2. Solar cascade Rankine cycle system with thermal oil

Fig.3. T-s diagram of the cascade cycle

Fig. 4. Cross-section of elliptical head

Fig. 5. Different placements of pressure vessel
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Fig. 6. Variations of the collector and cascade cycle efficiencies with the hot side

temperature

Fig. 7. Variations of solar thermal power efficiencies with the hot side temperature

Fig. 8. Variation of the optimum hot side temperature with radiation

Fig. 9. Variation of maximum solar thermal power efficiency with radiation

Fig. 10. Variations of total mass and design pressure of Q345R with the diameter of

vessel of vertical symmetrical axis

Fig. 11. Variations of total mass and length of the vessel of horizontal symmetrical

axis with the diameter

Fig. 12. Variations of the total mass and the diameter with number of vessels in use

for vertical placement

Fig. 13. Variations of the total mass and the diameter with number of vessels in use

for horizontal placement

Fig. 14. Cost comparison between thermal oil and Q345R

Fig. 15. Variations of the cascade cycle efficiency and equivalent solar thermal power

efficiency with the accumulator temperature in the heat charging/discharging process

Table Legends

Table 1. Permissible stress for some materials

Table 2. Fixed parameters

Table 3. Parameter distribution of the DSG system when maximum solar thermal

power efficiency is achieved

Table 4. Parameter distribution of the indirect system when maximum solar thermal
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power efficiency is achieved

Table 5. Optimum TH and maximum power output in six regions

Table 6. Quality of different components for Q345R, unit: %.

Table 7. Design thickness under different working conditions for Q345R, unit: mm

Table 8. Maximum thermal power efficiency at different temperature drops from the

hot to the cold tank

Fig. 1. DSG solar cascade Rankine cycle system
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Fig. 2. Solar cascade Rankine cycle system with thermal oil
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Fig. 5. Different placements of pressure vessel: (a) vertical; (b) horizontal
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Table 1. Permissible stress for some materials [54], unit: MPa

Type Standard Thickness

/mm

Temperature / oC

200 250 300 350 400 450

Q245R GB 713 3-16 131 117 108 98 91 61

＞16-36 124 111 102 93 86 61

＞36-60 119 107 98 89 82 61

＞60-100 109 98 90 82 75 61

＞10-150 100 90 80 73 70 61

Q345R GB 713 3-16 183 167 153 143 125 66

＞16-36 170 157 143 133 125 66

＞36-60 160 147 133 123 117 66

＞60-100 150 137 123 117 110 66

＞100-150 147 133 120 113 107 66

＞150-200 143 130 117 110 103 66

15CrMoR GB 713 6-60 160 150 140 133 126 119

＞60-100 147 140 131 124 117 111

＞100-150 140 133 123 117 110 104

Q370R 10～16 196 190 180 170

＞16～36 193 183 173 163

＞36～60 180 170 160 150

16MnDR GB 3531 6-16 167 153 140 130

＞16-36 157 143 130 120

＞36-60 150 137 123 117

＞60-100 147 133 120 113

＞100-120 143 130 117 110

09MnNiDR GB 3531 6-16 160 153 147 137

＞16-36 150 143 137 127

＞36-60 143 137 130 120

＞60-120 140 133 127 117
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Table 2. Fixed parameters

Term Value

Pinch-point temperature difference, ppT 5 K

Pump efficiency, p 0.8

Peak isentropic efficiency of SE, ,os p 0.75

Turbine isentropic efficiency, T 0.75

Generator efficiency, g 0.95

Built-in volume ratio of SE, ,v br 5

Ambient temperature, aT 25

Welding coefficient,  0.8

Gravity, g 9.8 m/s2

Net power output, netW 1 MW

Capacity of heat storage, Ht 6.5 hours



54

Table 3. Parameter distribution of the DSG system when maximum solar thermal

power efficiency is achieved

bG (W/m2) 600 750 900

T1(oC) / P1(MPa) 220 / 2.32 240 / 3.35 250 / 3.98

T2(oC) / P2(MPa) 121 / 0.21 130 / 0.27 134 / 0.30

T3(oC) / P3(MPa) 121 / 0.21 130 / 0.27 134 / 0.30

T4(oC) / P4(MPa) 121.31 / 2.32 130.47 / 3.35 134.58 / 3.98

T5(oC) / P5(MPa) 116 / 1.78 125 / 2.13 129 / 2.30

T6(oC) / P6(MPa) 55.22 / 0.18 56.58 / 0.18 56.89 / 0.18

T7(oC) / P7(MPa) 30 / 0.18 30 / 0.18 30 / 0.18

T8(oC) / P8(MPa)

T (%)

30.81 / 1.78 30.99 / 2.13 31.07 / 2.30

13.38 14.24 14.90
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Table 4. Parameter distribution of the indirect system when maximum solar thermal

power efficiency is achieved

bG (W/m2) 600 750 900

T1(oC) / P1(MPa) 210 / 1.91 230 / 2.80 240 / 3.35

T2(oC) / P2(MPa) 114 / 0.16 126 / 0.24 130 / 0.27

T3(oC) / P3(MPa) 114 / 0.16 126 / 0.24 130 / 0.27

T4(oC) / P4(MPa) 114.25 / 1.91 126.39 / 2.80 130.47 / 3.35

T5(oC) / P5(MPa) 109 / 1.54 121 / 1.97 125 / 2.13

T6(oC) / P6(MPa) 53.70 / 0.18 56.09 / 0.18 56.58 / 0.18

T7(oC) / P7(MPa) 30 / 0.18 30 / 0.18 30 / 0.18

T8(oC) / P8(MPa)

T (%)

30.69 / 1.54 30.90 / 1.97 30.99 / 2.13

12.25 13.23 13.99
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Table 5. Optimum TH and maximum power output in six regions

Region

DSG system Indirect system

Optimum

TH (oC)

Maximum

power output

(kWh·m-2·year-1)

Optimum

TH (oC)

Maximum

power output

(kWh·m-2·year-1)

Phoenix 240 351.16 220 322.33

Sacramento 240 294.99 220 270.46

Cape Town 230 252.78 210 230.75

Canberra 220 227.50 200 209.89

Barcelona 210 206.46 200 186.73

Lhasa 200 214.87 190 193.03

Table 6. Quality of different components for Q345R [58], unit: %

Component value Component value Component value

C ≤0.20 Si ≤0.55 Cu ≤0.30 

Ni ≤0.30 Cr ≤0.30 Mo ≤0.08 

Nb ≤0.05 V ≤0.05 Ti ≤0.03 

Alt >0.02 P ≤0.025 S ≤0.01 

Mn 1.2-1.7
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Table 7. Design thickness under different working conditions for Q345R, unit: mm

Di

mm

200 oC 250 oC 300 oC

1.6 MPa 2.1 MPa 2.6 MPa 4.0 MPa 4.5 MPa 5.0 MPa 8.6 MPa

1000 5.49 7.22 8.96 15.20 18.08 20.10 40.76

1500 8.24 10.84 13.44 24.08 27.11 30.16 66.22

2000 10.99 14.45 19.21 32.10 38.63 42.97 88.29

2500 13.74 19.38 24.01 42.88 48.29 53.72 113.18

3000 17.70 23.25 28.81 51.46 57.95 69.22 135.82

3500 20.65 27.13 33.62 64.46 72.60 80.76 162.61

4000 23.60 31.00 40.83 73.66 82.97 92.29 185.84

4500 26.55 34.88 45.94 82.87 93.34 106.99 209.07

5000 29.50 41.18 51.04 92.08 106.86 118.88 232.30

5500 32.45 45.30 56.14 104.36 117.55 130.77 255.53

6000 35.40 49.42 65.35 113.85 128.24 142.65 278.76

6500 40.75 53.54 70.80 123.34 138.92 158.15 302.00

7000 43.89 57.66 76.25 132.83 149.61 170.32 325.23
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Table 8. Maximum thermal power efficiency at different temperature drops from

the hot to the cold tank

Temperature difference

during discharge (oC)

50 60 70 80 90 100

Oil inlet temperature (oC) 227.23 224.40 221.18 218.37 215.59 212.86

Oil outlet temperature (oC) 277.23 284.40 291.18 298.37 305.59 312.86

TH (oC) 227 226 225 224 223 222

Maximum thermal power

efficiency (%)

13.23 13.13 13.02 12.91 12.80 12.68
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Nomenclature

A aperture area, 2m Subscripts

surface area, 2mm Ⅰ CycleⅠ

a half long axis, mm Ⅱ Cycle Ⅱ

b half short axis, mm 0 reference state

C total cost, RMB 1–8 state points

D diameter, mm a ambient

G solar radiation, 2/ mW b binary phase/ beam/ built-in

g gravity, 2/ sm C cold side

H height, mm ch characteristic

h enthalpy, kgkJ /

edge height of head, mm

cy

F

cylinder

friction

M mass, kg g generator/ static

m mass flow rate, /kg s H hot side/ hour

P cost per kilogram, /RMB kg head elliptical head

p pressure, MPa i diagram

r ratio in inlet

T temperature, o C L leakage

V total volume, 3mm l liquid phase

v specific volume, 3 /cm kg M mechanical

W power output, kW m maximum

 thickness, mm net net
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 device efficiency oil oil

 welding coefficient op optimum

 isentropic index os overall isentropic

 system efficiency out outlet

[ ]t permissible stress, MPa P peak

 density, 3/ mkg p pressure/ pump

Abbreviation pp pinch-point

DSG direct steam generation S shaft

HTF heat transfer fluid s storage/isentropic/steam

HX heat exchanger steel steel

ORC organic Rankine cycle su supply

P pump T thermal/ turbine

PCM phase-change material t total mass flowrate

PTC parabolic trough collector T D diagram

SE

SEGS

screw expander

solar electricity generation system

Th

T I

theoretical

isentropic

SORC steam-organic Rankine cycle TM thermodynamic

SRC steam Rankine cycle v volume

V valve w water


