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Abstract
Decades of neuropsychological and neuroimaging evidence have implicated the lateral parietal cortex (LPC) in a myriad of 
cognitive domains, generating numerous influential theoretical models. However, these theories fail to explain why distinct 
cognitive activities appear to implicate common neural regions. Here we discuss a unifying model in which the angular 
gyrus forms part of a wider LPC system with a core underlying neurocomputational function; the multi-sensory buffer-
ing of spatio-temporally extended representations. We review the principles derived from computational modelling with 
neuroimaging task data and functional and structural connectivity measures that underpin the unified neurocomputational 
framework. We propose that although a variety of cognitive activities might draw on shared underlying machinery, variations 
in task preference across angular gyrus, and wider LPC, arise from graded changes in the underlying structural connectivity 
of the region to different input/output information sources. More specifically, we propose two primary axes of organisation: 
a dorsal–ventral axis and an anterior–posterior axis, with variations in task preference arising from underlying connectivity 
to different core cognitive networks (e.g. the executive, language, visual, or episodic memory networks).

Keywords Angular gyrus · Lateral parietal cortex · Multi-modal buffering · Temporo-spatial information · Domain-
general · Connectivity

Introduction

A long history of neuropsychology and functional neuro-
imaging has implicated the lateral parietal cortex (LPC), 
including the angular gyrus (AG), in a confusing myriad of 
different cognitive processes and tasks, providing only a lit-
tle clarity about the underlying neurocomputation. Indeed, 
the LPC is a heterogeneous region (see Text Box 1) with 
multiple graded subregions, commonly differentiated into 
dorsal (IPS), and ventral (AG, SMG) subregions (see Fig. 1), 
yet it is unclear to what extent these anatomical distinctions 
also indicate functional differences. To interrogate how the 
LPC and its subregions are implicated in different cognitive 

processes, two broad approaches are used in the literature. 
The first is a domain-specific organisation, which assumes 
that functions/tasks are supported by a series of discrete, 
neighbouring subregions (Nelson et al. 2010, 2012; Hutch-
inson et al. 2009; Simon et al. 2002; Seghier 2013b; Seghier 
et al. 2010). Prominent examples of proposed sub-regions 
include the intraparietal sulcus (IPS) for number process-
ing or visuospatial tasks (Zacks 2008; Dehaene et al. 2003), 
supramarginal gyrus (SMG) for tool-related tasks or pho-
nological processing (Humphreys and Ralph 2015; Hickok 
2012; Ishibashi et al. 2016), and AG for episodic recollec-
tion or semantic processing (Seghier 2013b; Binder et al. 
2009; Geschwind 1972; Vilberg and Rugg 2008; Shimamura 
2011).
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Text Box 1

As described in the main text, and depicted in Fig. 1, 
the LPC is segregated into two gross anatomical regions: 
the dorsal parietal cortex (DPC), which incorporates the 
intra-parietal sulcus (IPS) and the superior parietal lob-
ule (SPL), and ventral parietal cortex (VPC), which con-
tains the supramarginal and angular gyri (SMG and AG). 
These have been further subdivided via their varying 
cytoarchtectonic properties and structural connectivity 
patterns, as described in further details below (Caspers 
et al. 2008, 2011; Uddin et al. 2010; Cloutman et al. 
2013; Mars et al. 2011). Note that, due to the consider-
able evolutionary expansion of human LPC (particularly 
the AG) detailed and precise anatomical investigation of 
the human LPC require studies using human participants 
(rather than relying on non-human animal investigations 
as has been used elsewhere in neuroanatomy) (Seghier 
2013a; Kaas et al. 2018; Hyvärinen 1982).

A variety of anatomical techniques have been used 
to illustrate the structural and functional heterogeneity 
of the human LPC. The number of subregions identi-
fied varies depending on a variety of factors, such as the 
imaging modality and analytic approach. For example, 
using an observer-independent cytoarchtectonic analysis 
on 10 post-mortem brains, seven cytoarchtectonic areas 
in the ventral parietal cortex have been identified, two 
in the AG (PGa and PGp), and five in SMG (PF, PFcm, 
PFm, PFop, and PFt) (Caspers et al. 2008). The IPS has 
been similarly divided into five subdivisions in human 
pIPS, three on its lateral (hIP4-6) and two on its medial 
wall (hIP7-8) (Richter et al. 2018). Another technique 

involved combining diffusion-weighted magnetic reso-
nance image (MRI)-based tractography with resting-state 
fMRI to derive a single LPC parcellation scheme. This 
technique identified 10 components (5 in the DPC and 5 
in the VPC) with each subregion showing varying pat-
terns of connectivity to the wider brain (Mars et al. 2011). 
In contrast, others have combined task data with resting-
state functional MRI to show differential involvement of 
LPC subregions in distinct cognitive processes (in this 
case different forms of memory retrieval) (Nelson et al. 
2010). In a final example, based on the compilation of 
the anatomy, functional connectivity, and structural con-
nectivity of 180 cortical regions identified in the HCP, 
some authors have suggested a parcellation scheme of 
the LPC into 15 subregions, each with varying patterns 
of connectivity (Baker et al. 2018).

Therefore, there is clear evidence of anatomical het-
erogeneity across LPC. According to PUCC, this het-
erogeneity is functionally relevant since the ‘expressed’ 
contribution of each LPC subregion to different cogni-
tive activities will be influenced by its’ connectivity with 
other brain regions.

The alternative, domain-general approach, suggests 
that at least some parietal subregions may underpin more 
generalised, common or “core” computations that are 
utilised by multiple tasks and cognitive domains. This 
latter approach, also known as the “primary systems 
hypothesis” (Ueno et al. 2011; Seidenberg and McClel-
land 1989; Patterson and Lambon Ralph 1999; Cabeza 
et al. 2018; Noonan et al. 2013; Humphreys and Lambon 
Ralph 2017a), observes that different cognitive processes 
are likely to be underpinned by combinations of more 
generalised neurocognitive computations and that these 
‘primary systems’ will be called upon by multiple tasks 
(Corbetta and Shulman 2002a; Cabeza et al. 2012; Hum-
phreys and Lambon Ralph 2015; Duncan 2010). Under 
this view, the common engagement of LPC regions across 
cognitive domains reflects the shared neurocomputation 
that the tasks call upon. One model that takes such a 
domain-global perspective is the Parietal Unified Con-
nectivity-biased Computation (PUCC) (Humphreys et al. 
2020b, 2022b; Humphreys and Lambon Ralph 2015). In 
the current work, we revisit this model and expand it by 
applying it more widely across LPC regions and multiple 
cognitive domains. In addition, we review recent data 
that relate to different aspects of this model, and outline 
a roadmap for future studies aiming to investigate the 
function of the LPC.

Fig. 1  Neuroanatomical location of the parietal cortex and its major 
subdivisions. Here we focus on the intraparietal sulcus (IPS), angular 
gyrus (AG), and supramarginal gyrus (SMG)
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Parietal unified connectivity‑biased 
computation (PUCC) model

The Parietal Unified Connectivity-biased Computation 
(PUCC) takes a cross-domain perspective of the LPC func-
tion (Humphreys and Lambon Ralph 2015; Humphreys et al. 
2020b). The model is based on three core assumptions. The 
first refers to the form of information being processed by 
the LPC; namely, the LPC is primarily involved in process-
ing temporo-spatial information. Evidence suggests that 
there are two orthogonal forms of neural representations 
with differentiation across a ventral (temporal lobe) and a 
dorsal (parietal) pathway. Whereas the ventral processing 
routes generalise information across repeated episodes, lead-
ing to context-independent representations, such as those 
in semantic memory (Lambon Ralph et al. 2010; Lambon 
Ralph 2014; Buzsaki and Moser 2013), the parietal route 
appears to extract item-independent, temporo-spatial statis-
tics, integrating episodes over items, resulting in represen-
tations about order, space, number, etc. (Ueno et al. 2011; 
Bornkessel-Schlesewsky and Schlesewsky 2013; Kravitz 
et al. 2011; Buckner and Carroll 2007; Pessoa et al. 2002; 
Humphreys and Lambon Ralph 2015).

The second assumption of PUCC is that there is a sin-
gle core underlying LPC neurocomputation; online, multi-
modal buffering of spatio-temporal input/output, and this 
function is considered to be constant across the LPC region 
(IPS, AG, and SMG). This kind of multi-modal convergent 
buffer is important to bring together temporally unfolding 
information from multiple different input systems to process 
time-extended behaviours, such as narrative speech compre-
hension and remembering an episodic event, or non-verbal 
behaviours, such as sequential object use (Botvinick and 
Plaut 2004, 2006; Geschwind 1965; Damasio 1989). Parallel 
distributed processing (PDP) models have demonstrated how 
this proposed underlying neurocomputation—online buffer-
ing of temporo-spatial information—can arise from the same 
computational process. For example, through repeated buff-
ering of sequential input the system becomes sensitive to the 
regularities of sequential information (Botvinick and Plaut 
2004, 2006; Ueno et al. 2011; McClelland et al. 1989). This 
could be likened to the formation of action/event schema, or 
“situation model” which specifies the temporo-spatial rela-
tionships between items in a given context.

The third key assumption of PUCC is that whilst the local 
neurocomputation is constant across LPC, the ‘expressed’ 
contribution of each LPC subregion to different cognitive 
activities will be influenced by its long-range connections. 
Thus, even on an assumption that the online buffering com-
putation might be the same throughout the LPC, the types 
and forms of information being buffered will reflect the 
inputs and outputs to each subregion. This tenet is observed 

in various implemented computational models whereby a 
processing unit’s performance is influenced not only by its 
local computation but also by its connectivity to varying 
input/output systems (cf. ‘connectivity-constrained cogni-
tion–C3’: (Plaut 2002; Lambon Ralph et al. 2001; Chen et al. 
2017). In terms of the underlying architecture, anatomical 
evidence suggests that there are variations in cytoarchi-
tecture and functional/structural connectivity across LPC 
(Caspers et al. 2008, 2011; Uddin et al. 2010; Cloutman 
et al. 2013). Consequently, at least some domain-specific 
variability in the expression of cognitive function across 
LPC might be expected.

Therefore, according to PUCC, the emergent activation 
patterns across LPC results from both the core underlying 
neurocomputation of LPC (multi-modal buffering of tem-
poro-spatial information) and the interaction of a region’s 
input and output systems, which may vary across the LPC 
(e.g. visual, verbal, spatial, executive, etc.) (Humphreys 
and Lambon Ralph 2015; Humphreys et al. 2020b).

What is the nature of the LPC buffer?

We assume that the LPC acts as an online temporary buffer 
of multi-modal spatio-temporal input, rather than support-
ing long-term stored information per se. We propose that 
this buffer might be engaged by any task that involves the 
processing of information that is inherently varying over 
time and/or space. Some prominent examples are narrative 
comprehension or episodic recall, which require mainte-
nance and/or manipulation of information over time. To 
put this in context, tasks that are less likely to require buff-
ering, are single-item tasks that are considered more time/
context independent in which the item that is currently 
presented does not need to be related to other internal or 
external forms of information. For example, picture nam-
ing tasks do not reliably engage the LPC as shown by a 
meta-analysis of picture-naming imaging studies (Choui-
nard and Goodale 2010). Notably, due to the continuous 
nature of our experiences, most cognitive functions would 
entail some level of buffering, which might be attenuated 
under specific conditions. In the episodic memory domain, 
for example, conditions that involve more buffering are 
those that require longer maintenance periods, integration 
across multiple sources, and maintenance of large amounts 
of information; all of these were shown to engage the AG 
(Ben-Zvi et al. 2015; Tibon et al. 2019; Vilberg and Rugg 
2012; Guerin and Miller 2011).

Full characterisation of the temporal properties of the 
LPC buffering system requires additional research. In 
general, it has been shown that the timescales of informa-
tion processing are shorter in sensory areas, and longer in 
“higher-order” areas (Chien and Honey 2020; Honey et al. 
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2012; Murray et al. 2014; Stephens et al. 2013). More spe-
cifically to the LPC, AG activation was shown to respond 
more strongly to information at the level of a paragraph, 
vs. sentences and single words (Hasson et al. 2008; Lerner 
et al. 2011). Furthermore, AG activation is maintained 
throughout the entirety of an event, whereas hippocam-
pus activation appears to indicate event boundaries (Bal-
dassano et al. 2017; Ben-Yakov and Henson 2018). Other 
functions supported by the LPC might require buffering 
over shorter timescales. For example, if SMG supports 
phonological buffering this would presumably require 
faster temporal resolution at the second/millisecond level. 
We propose that these varying timescales are one example 
of the functional distinctions that arise across the LPC, 
driven by variations in anatomical input (see below).

Theoretical roots and current evidence 
of LPC “buffer”

A “buffering-type” function is consistent, and indeed 
partly inspired by more domain- and/or region-specific 
models of LPC function, such as an “episodic buffer” or a 
“schematic-convergence zone” in AG (Wagner et al. 2015; 
Shimamura 2011), or “phonological-buffer” in SMG (Bad-
deley 2000; Vilberg and Rugg 2008; Wagner et al. 2005), 
as well as a “working-memory” type system in dorsal 
LPC which temporarily stores and manipulates informa-
tion (Pessoa et al. 2002; Humphreys and Lambon Ralph 
2015). An online buffer would seem to be necessary for 
bottom-up capture of attention by an unexpected target 
(i.e., to determine what might be expected in a continu-
ous current context (Corbetta and Shulman 2002b), for 
the construction of internal models, or “situation-models”, 
of the current world, as well as for the (re)construction 
of episodic and future events (Hasson et al. 2008; Lerner 
et al. 2011; Ramanan and Bellana 2019; Baldassano et al. 
2017). Whilst domain- and/or anatomically-specific theo-
ries have been useful to account for findings from that 
domain of interest, they fail to explain how and why dis-
parate cognitive domains coalesce in LPC subregions and 
thus what types of domain-general neurocomputation 
underlies processing across tasks. According to PUCC, 
these apparently domain-specific functions are the prod-
uct of two key ingredients, namely, a common underlying 
temporo-spatial buffering computation combined with the 
varying input/output connections to other neural regions 
(Humphreys and Lambon Ralph 2015, 2017a; Corbetta 
and Shulman 2002b; Humphreys et al. 2020b).

There is a growing body of evidence in favour of a 
buffer-type LPC function. For instance, patient with LPC 
damage are not profoundly amnesic, unlike those with 
damage to the medial temporal lobe, rather their memory 

lacks clarity or vividness of episodic details (Berryhill 
et al. 2007; Humphreys et al. 2020b; Simons et al. 2008) 
which might reflect reduced ability to buffer rich represen-
tations. Furthermore, these patients demonstrate reduced 
ability to regenerate multi-modal associative representa-
tions (Ben-Zvi et al. 2015), as one might predict from a 
deficit in buffering multi-modal contextual information 
(Bonnici et al. 2018; Davidson et al. 2008; Yazar et al. 
2014; Moscovitch et  al. 2016; Shimamura 2011; St. 
Jacques 2019). Neuroimaging evidence supports the role 
of LPC in a temporo-spatial context-related processing 
network (although see below for important caveats when 
considering neuroimaging evidence of LPC function). The 
AG responds more strongly to images with strong rather 
than weak contextual associations (Bar et al. 2008), when 
subjects remember contextual associates of an item (For-
nito et al. 2012), or when episodic memories are vividly 
retrieved, suggesting the recollection of rich contextually-
specific details (Kuhl and Chun 2014; Tibon et al. 2019). 
Furthermore, it is implicated in tasks that require temporal 
unfolding of information, thus rely on temporal context. 
Some examples are episodic retrieval or future thinking 
(Buckner et al. 2008), narrative speech comprehension 
(Branzi et  al. 2020), and event occurrence frequency 
(d’Acremont et al. 2013). The LPC is also sensitive to 
the temporal structure of events in linguistic, pictorial, 
numerical, and motoric sequence tasks (Kuperberg et al. 
2003; Hoenig and Scheef 2009; Melrose et al. 2008; Tinaz 
et al. 2006, 2008; Gheysen et al. 2010; Stevens et al. 2005; 
Ciaramelli et al. 2008; Bubic et al. 2009; Humphreys et al. 
2020a). We would predict that if the LPC operates as a 
“buffering-system” then the content represented in the 
system would update periodically, to reflect the chang-
ing incoming internal/external information. Indeed, a 
good example of evidence that the current “content” of 
the LPC reflects the currently processed information has 
been shown using MVPA in the episodic memory litera-
ture (Wagner et al. 2015; Lee and Kuhl 2016), whereby the 
episodic content of a person’s current recall (in this case 
the visual features of a face) directly aligns with decoding 
in the AG (Lee and Kuhl 2016).

Anatomical evidence: variations 
in cytoarchitecture, structural, 
and functional connectivity

We assume that a wide variety of cognitive activities can 
arise from a single underlying neurocomputation (multi-
modal buffering), with the distinctions in the expressed cog-
nitive function arising across the region based on variations 
in anatomical input (e.g. visual, verbal, spatial, executive 
etc.) (Humphreys and Lambon Ralph 2015). In terms of the 
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underlying architecture, anatomical evidence suggests that 
there are variations in cytoarchitecture and functional/struc-
tural connectivity across LPC (Caspers et al. 2008, 2011; 
Uddin et al. 2010; Cloutman et al. 2013) along two axes: 
a dorsal–ventral axis and an anterior–posterior axis. Given 
the anatomical heterogeneity of the LPC, at least some vari-
ability in cognitive function across LPC might be expected.

Along the dorsal–ventral axis, the dorsal LPC (dLPC) 
forms part of a fronto-parietal system, which is part of 
the multiple-demand network (Duncan 2010), whereas 
the ventral LPC (vLPC) connects with a distributed set of 
regions associated with the default mode network (DMN) 
or saliency network (Cloutman et al. 2013; Spreng et al. 
2010; Power and Petersen 2013; Vincent et  al. 2008; 
Uddin et al. 2010; Lee et al. 2012; Yeo et al. 2013; Power 
et al. 2011), with the fronto-parietal and DMN networks 
often showing anti-correlated activity (Keller et al. 2013; 
Chai et al. 2012; Fox et al. 2009; Humphreys and Lambon 
Ralph 2017b). The classical neuropsychological literature 
demonstrated that damage to dorsal vs. ventral LPC pro-
duces different patterns of deficits, such as ideomotor vs. 
ideational apraxia, or Bálint's vs. Gerstmann’s syndrome 
(Buxbaum et al. 2006; Vallar 2007). Likewise, in func-
tional neuroimaging a dorsal–ventral difference has been 
observed in separate cognitive literatures. For instance, 
goal-directed attention vs. stimulus-driven attention, 
numerical calculation vs. numerical fact recall, or episodic 
decisions (e.g. “mnemonic accumulator”) vs. episodic 
recollection (Sestieri et al. 2017; Gonzalez et al. 2015; 
Delazer et al. 2003; Kim 2010; Vilberg and Rugg 2008; 
Corbetta and Shulman 2002a). In line with the assumption 
of the PUCC model, these task-specific variations can be 
explained in terms of varying input/output systems to the 
dLPC and vLPC. Indeed, the dLPC is structurally con-
nected to frontal executive processing areas (Caspers et al. 
2011; Cloutman et al. 2013) and forms part of a domain-
general multiple-demand network, necessary for any exec-
utively demanding task (Duncan 2010). Most models of 
executive function or top-down attention posit a mecha-
nism, akin to a working-memory like system, that selects 
and manipulates temporarily buffered information (Crowe 
et al. 2013). In contrast, without the direct influence of 
prefrontal goal-directed cognition, the vLPC will act more 
like a ‘slave’ buffer whereby information is accumulated 
and maintained throughout a sequential activity. Indeed, 
the divergent dorsal vs. ventral pattern is supported by 
evidence showing an opposing influence of task difficulty 
in dorsal vs. ventral LPC. Specifically, dLPC (IPS) shows 
a positive correlation with task difficulty across cognitive 
domains, whereas vLPC, which is commonly associated 
with the DMN, shows the inverse pattern—stronger deacti-
vation for harder tasks (Gilbert et al. 2012; Harrison et al. 
2011; Humphreys and Lambon Ralph 2017b).

In addition to the emergent dorsal–ventral connec-
tivity/functional differences, there exists an additional 
anterior–posterior organisational axis within the vLPC, 
as evidenced by varying connectivity to the saliency net-
work, DMN, language network, and visuospatial network 
(Caspers et al. 2011; Cloutman et al. 2013; Daselaar et al. 
2013). These variations are reflected in differences in the 
emergent cognitive functions. For instance, anterior vLPC 
(SMG) has been associated with phonological process-
ing and bottom-up attention, whereas the AG forms part 
of the DMN and is engaged by episodic/autobiographical 
memory retrieval, narrative comprehension, numerical fact 
retrieval etc. (Humphreys et al. 2020a, 2022a; Humphreys 
and Lambon Ralph 2015; Branzi et al. 2020; Corbetta and 
Shulman 2002a; Delazer et al. 2003; Kim 2010; Vilberg 
and Rugg 2008).

Directly combining functional data 
with functional/structural connectivity

As discussed above, the central assumptions of the PUCC 
model are that whilst LPC as a whole might share a com-
mon underlying neurocomputation (e.g., multimodal 
buffering of temporo-spatial information), variations in 
function across subregions arise due to differences in the 
underlying input (e.g. visual, verbal, spatial, executive 
etc.). Therefore, PUCC would predict a direct one-to-one 
mapping in a region’s task-related activation profile and 
its connectivity to certain functional networks (e.g. visual, 
linguistic, episodic memory etc.), with the level of acti-
vation dependent on the extent to which a particular task 
draws on resources from other cognitive/sensory networks. 
Whilst the evidence discussed above is consistent with 
these assumptions, a direct test of the model requires (1) 
within-study cross-domain comparisons, and (2) directly 
linking functional data with measures of functional and 
structural connectivity. We addressed this issue in a series 
of studies that especially focused on the AG and its dorsal 
boarder with lateral IPS (Humphreys et al. 2020a, 2022b). 
First, using resting-state ICA, we identified separable AG 
subregions, consistent with those identified elsewhere 
(Caspers et al. 2008, 2011; Uddin et al. 2010; Cloutman 
et al. 2013; Mars et al. 2011). Specifically, within the AG, 
we identified a dorsal region (dorsal PGa and IPS) and 
three ventral AG regions: an anterior region (ventral PGa), 
a central region (mid PGp), and a posterior region (poste-
rior PGp). These subregions were found to have varying 
underlying connectivity profiles, as verified by independ-
ent DTI and resting-state fMRI analyses (see Fig. 2). Spe-
cifically, the dorsal region (AG/IPS) showed long-range 
connectivity with lateral frontal executive control regions 
in dorsolateral prefrontal cortex and inferior frontal gyrus. 
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Fig. 2  Top left: The four LPC functional connectivity networks 
derived from ICA (Humphreys et  al. 2020a). The results show four 
separable functional networks (executive network in blue, DMN in 
green, language network in red, and parieto-visual network in yel-
low) that implicate different LPC regions: a dorsal region (1: dor-
sal PGa/IPS) and three ventral AG regions: a central region (2: mid 
PGp; mAG), an anterior region (3: ventral PGa; aAG), and a poste-
rior region (4: posterior PGp; pAG). Top right: The results from the 
DTI analysis (Humphreys et  al. 2022b), using the four functional 
ICA-derived ROIs as seed regions. Consistent with the functional 
connectivity data, the dorsal region (AG/IPS) showed long-range con-
nectivity with lateral frontal executive control regions (dorsolateral 
prefrontal cortex; DLPFC). In contrast, within the ventral AG, the 
anterior region (aAG) showed connectivity with temporal lobe lan-
guage areas (middle- and superior-temporal gyrus (MTG and STG); 
the mAG showed connectivity with areas involved in the DMN and 
the core recollection network (hippocampus and precuneus) and the 
pAG connected with areas including the medial parietal cortex [infe-
rior temporal gyrus (ITG) and fusiform gyrus (FG)] and occipital 
cortex. Note: there are also some additional connections shown in the 
figure (e.g. mAG to MTG/STG, and mAG to occipital cortex), which 
may be consistent with the evidence of a graded- rather than sharp-

shift in connectivity between regions. Bottom panel: The ROI results 
from two fMRI studies (Humphreys et  al. 2020a, 2022b) using the 
same LPC regions shown in the top panel above. The task activation 
profile varied across subregions, the pattern of which closely mir-
rored its functional and structural connectivity profile. Specifically, 
consistent with the role of IPS as part of a domain-general executive 
processing network, the dorsal region (blue) demonstrated a domain-
general response with the level of activation correlating with task 
difficulty both within and across cognitive tasks. Ventral AG also 
showed a functional response consistent with each region’s individ-
ual connectivity profile. Specifically, the central AG (mAG; green), 
which is functionally connected with the DMN and episodic retrieval 
network, showed a strong positive response during episodic retrieval, 
with activation correlating with memory vividness. This region was 
deactivated by all other tasks, with the level of deactivation inversely 
correlated with task difficulty. In contrast, the anterior region (aAG; 
red) that connected with the fronto-temporal language system showed 
positive activation for only the sentence task alone, and the poste-
rior region (pAG; yellow) was part of the visual/SPL network only 
responded to tasks with pictorial stimuli (the picture sequence and 
picture-decision tasks)
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In contrast within vLPC, anterior AG showed connectivity 
with temporal lobe language areas (Lambon Ralph et al. 
2017; Vigneau et al. 2006; Binder et al. 2009), the mid 
AG showed connectivity with areas involved in the DMN 
and the core recollection network (Thakral et al. 2017), 
including the hippocampus, as well as large portions of 
the precuneus (Rugg and Vilberg 2013; Sestieri et  al. 
2011), and the posterior AG connected with areas associ-
ated with visual processing and spatial attention, including 
the medial parietal cortex and occipital lobe (Zacks 2008; 
Corbetta and Shulman 2002b).

We then examined variations in the pattern of task-
based activation across these subregions in two independ-
ent fMRI studies. In the first fMRI study, participants were 
presented with temporal sequences of stimuli that followed 
either a coherent or violated sequence in a sentence, num-
ber, and picture task (Humphreys et al. 2020a). In the 
second study, participants performed a series of tasks 
involving episodic memory retrieval, semantic memory 
retrieval, picture-decisions, and a low-level visual control 
task (Humphreys et al. 2022b). Consistent with the notion 
that the whole LPC is sensitive to the temporal structure 
of events, the results of the first study showed that all sub-
regions within the LPC were sensitive to the coherence 
of the sequences. Nevertheless, the task activation pro-
file varied across subregions, the pattern of which closely 
mirrored its functional and structural connectivity profile 
(see Fig. 2). Specifically, consistent with the role of IPS 
as part of a domain-general executive processing network, 
the dorsal region demonstrated a domain-general response 
with the level of activation correlating with task difficulty 
both within and across cognitive tasks. Ventral AG also 
showed a functional response consistent with each regions 
individual connectivity profile. Specifically, the central 
AG (mid PGp), which is functionally connected with the 
DMN and episodic retrieval network, showed a strong 
positive response during episodic retrieval, with activa-
tion correlating with memory vividness. This region was 
deactivated by all other tasks, with the level of deactiva-
tion inversely correlated with task difficulty (this result has 
since been replicated in a propositional speech production 
task (Humphreys et al. 2022a)). In contrast, the anterior 
region that connected with the fronto-temporal language 
system showed positive activation for only the sentence 
task, and the posterior region was part of the visual/SPL 
network only responded to tasks with pictorial stimuli (the 
picture sequence and picture-decision tasks). Interestingly, 
the AG showed no sensitivity to the semantic retrieval 
task—see below for possible explanations. Together these 
results fit with the PUCC model that suggests a shift in 
the functional engagement of vLPC based on shifts in the 
underlying structurally connectivity of the network.

Important factors to consider when studying 
LPC function

The various studies that were conducted since PUCC was 
proposed, highlight some key considerations for future 
research. In particular, these studies demonstrate that 
when designing a study aiming to test the function of the 
LPC direct cross-domain comparisons are required. Until 
recently, most models have approached LPC function from 
a single domain (although see recent reviews Rugg and King 
2018; Renoult et al. 2019). Nevertheless, reviews and cross-
domain meta-analyses of existing fMRI data have clearly 
identified overlapping areas of activation within the LPC. 
These findings, however, are consistent with two alterna-
tive interpretations: (1) True overlap across tasks impli-
cating the region in a common neurocomputation (Cabeza 
et al. 2012; Corbetta and Shulman 2002b; Humphreys and 
Lambon Ralph 2015, 2017b; Walsh 2003; Fedorenko et al. 
2013) or (2) small-scale variability in function across the 
LPC which is blurred by cross-study comparisons or meta-
analyses (Dehaene et al. 2003). Whilst highly suggestive of 
domain-general computations in these regions, one needs 
within-participant comparisons to test the model. To date, 
only a handful of within-study cross-domain comparisons 
have been conducted, and very few looked at more than two 
domains.

Further to this, when interpreting the results from neu-
roimaging studies of LPC function, it is necessary to take 
certain factors into account. First, the direction of activation 
relative to rest: given the involvement of LPC in the DMN, 
it is of critical importance to consider whether a task posi-
tively or negatively engages the LPC relative to rest. Con-
trasts between a cognitive task of interest vs. an active con-
trol condition are ambiguous because the difference could 
result from (1) greater positive activation for the task or 
(2) greater deactivation for the control. This issue becomes 
even more important when considering the impact of task 
difficulty on activation and deactivation in this region (see 
next). Whilst many tasks generate deactivation in the AG, 
this is not always the case, and the handful of activities that 
do positively engage the AG might be crucial sources of evi-
dence about its true contribution (Humphreys and Lambon 
Ralph 2015; Humphreys et al. 2022a, 2022b). A straightfor-
ward expectation applied to almost all brain regions is that 
if a task critically requires the LPC then the LPC should 
be strongly engaged by that task. Indeed, this is the pattern 
observed in the anterior temporal lobe (ATL) where seman-
tic tasks are known to positively engage the ATL relative to 
rest, whereas non-semantic tasks do not modulate/deactivate 
ATL (Humphreys et al. 2015, 2022a, 2022b). Perhaps one 
of the major motivations for considering task (de)activation 
relative to rest is that rest can be used as a common constant 
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acting as a common reference point across tasks. This is 
particularly important when conducting cross-domain com-
parisons. For instance, when one is examining a single cog-
nitive domain it is possible to use a within-domain baseline 
i.e. compare strong vs. weak demanding version of the same 
task (e.g. words > non-words in a semantic memory task). 
Since the same is not possible across cognitive domains, rest 
acts as a common constant for cross-domain comparisons, 
even if the true cognitive interpretation of rest is debated.

Second, when interpreting the results it is important 
to consider the impact of task-difficulty. Task-difficulty is 
important in multiple ways. First, it correlates positively 
with activation in dLPC (dorsal AG/IPS) but negatively with 
the level of activation within vLPC or, put in a different way, 
the level of deactivation in vLPC (mid-AG) is positively 
related to task difficulty. Indeed, the dLPC and vLPC have 
often been shown to be anticorrelated in resting-state data 
(Keller et al. 2013; Chai et al. 2012; Fox et al. 2009; Hum-
phreys and Lambon Ralph 2017b). Furthermore, task-diffi-
culty deactivations need to be accounted for when interpret-
ing differences in ventral LPC areas. A ‘positive’ difference 
can be obtained in the AG simply by comparing easy > hard 
task conditions even for tasks that are entirely non-semantic, 
non-linguistic and non-episodic (Humphreys and Lambon 
Ralph 2017b). One major limitation of evidence in favour 
of the semantic hypothesis is that apparent semantic effects 
observed from fMRI studies could be explained by a diffi-
culty confound (e.g. word > nonword, concrete > abstract). 
Indeed, it is known that the level of de-activation corre-
lates with task difficulty (Gilbert et al. 2012; Harrison et al. 
2011; Humphreys and Lambon Ralph 2017b)), it has been 
shown that one can both eliminate the difference between 
semantic and non-semantic tasks when task difficulty is con-
trolled (Humphreys and Lambon Ralph 2017b) and, more 
compellingly, also flip the typical ‘semantic’ effects (e.g. 
words > nonwords, concrete > abstract) by reversing the dif-
ficulty of the tasks or stimuli (Pexman et al. 2007; Graves 
et al. 2017). Finally, the effect of task difficulty on LPC 
activation (and AG in particular) depends on specific task 
demands. When the AG is not critical for task performance 
the AG is deactivated, with stronger deactivation for hard vs. 
easy tasks. Note, however, that when AG is critical to task 
performance, such as during episodic memory retrieval, a 
different pattern is found: the AG is positively engaged, and 
increased task difficulty is associated with increased activa-
tion (Humphreys et al. 2022a, b).

A third factor that should be considered is the potential rela-
tionship between univariate activity and multivariate patterns. 
As abovementioned, several recent studies focusing on voxel-
wise multivariate analysis of LPC regions provide evidence 
that the LPC holds currently processed content. For example, 
a study that measured brain activity during viewing and mental 
replay of short videos showed that univariate activity of mental 

replay in the dorsal AG negatively correlated with recollection, 
whereas the ventral and anterior parts of the AG depicted a 
multivariate content-sensitive signal (St-Laurent et al. 2015). 
In another study, participants recalled visual stimuli. Content 
reactivation in the LPC was then assessed via multivoxel pat-
tern analysis, and event-specific activity patterns of recalled 
stimuli were found in the AG (Kuhl and Chun 2014). In a 
third example, information extracted from individual face 
images was correlated with fMRI activity patterns. In two 
different tasks, targeting perception and memory retrieval, 
the authors were able to successfully reconstruct individual 
faces from activity patterns within the AG (Lee and Kuhl 
2016). Finally, when directly assessing the relations between 
pattern-based content representation and mean activation in 
the context of subsequent remembering (i.e., during episodic 
encoding) in the ventral posterior parietal cortex (vPPC), the 
authors showed that within the same vPPC voxels, subsequent 
memory was negatively predicted by mean univariate activa-
tion, but positively predicted by the strength of pattern-based 
information (Lee et al. 2017). These examples provide compel-
ling evidence for stimulus-specific content representations in 
this region, which is consistent with our proposal of an online 
buffering system. They also demonstrate potential divergences 
between univariate and multivariate activity patterns, and that 
for certain cognitive functions (e.g., during memory encoding; 
as in Lee et al. 2017), AG might show overall deactivation, 
while still maintaining online information. These important 
variations, as well as their interactions with the other key fac-
tors mentioned above (i.e., direction of activation and task 
difficulty) should be carefully considered when designing 
experiments targeting LPC functions, and when interpreting 
the results thereof.

Conclusions

Here we propose a unifying model of the lateral parietal func-
tion. We review evidence that supports the core assumptions 
of our proposal (although further work is needed to understand 
the implications of this theory; see Text Box 2 for Outstanding 
Questions). Namely, we propose that although a variety of cog-
nitive activities might draw on shared underlying machinery, 
variations in task preference across, and wider LPC, arise from 
graded changes in the underlying structural connectivity of the 
region with different input/output information sources. More 
specifically, we propose two primary axes of organisation: a 
dorsal–ventral axis and an anterior–posterior axis, with varia-
tions in task preference arising from underlying connectivity 
to different core cognitive networks (e.g., the executive, lan-
guage, visual, or episodic memory networks). With this, we 
join other theories that assign computational or process-driven 
rather than domain-driven roles to dissociated brain regions 
(Moscovitch et al. 2016).
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Text Box 2

Outstanding questions

• What are the adaptive benefits of a multi-modal buffering 
system?

• How do the “executive” regions in the dorsal LPC inter-
act with the “automated” regions in the ventral-LPC?

• Are there laterality differences in LPC engagement and/
or organisation?

• How does the proposed LPC buffering system relate to 
other models that operationalize similar phenomena, 
such as the temporal context model (TCM; Howard and 
Kahana, 2002)
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