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Abstract
Wederive amultiphase,moving boundarymodel to represent the development of tissue
in vitro in a porous tissue engineering scaffold. We consider a cell, extra-cellular
liquid and a rigid scaffold phase, and adopt Darcy’s law to relate the velocity of
the cell and liquid phases to their respective pressures. Cell–cell and cell–scaffold
interactions which can drive cellular motion are accounted for by utilising relevant
constitutive assumptions for the pressure in the cell phase. We reduce the model to a
nonlinear reaction–diffusion equation for the cell phase, coupled to amoving boundary
condition for the tissue edge, the diffusivity being dependent on the cell and scaffold
volume fractions, cell and liquid viscosities and parameters that relate to cellular
motion. Numerical simulations reveal that the reduced model admits three regimes
for the evolution of the tissue edge at large time: linear, logarithmic and stationary.
Employing travelling-wave and asymptotic analysis, we characterise these regimes
in terms of parameters related to cellular production and motion. The results of our
investigation allow us to suggest optimal values for the governing parameters, so as
to stimulate tissue growth in an engineering scaffold.

Keywords Tissue engineering · Reaction–diffusion model · Darcy’s law

1 Introduction

In vitro tissue engineering is a form of regenerative medicine which often involves
seeding cells into a porous bio-engineered scaffold that allows nutrient transport, struc-
tural support and a means for cell signalling activity (Chan and Leong 2008). Subject
to the correct environment and growth factors, the cells will develop into a functional
construct that can be used to restore damaged tissues and improve concepts in pharma-
ceutical research such as experimental drug therapy (Jensen et al. 2018). Employing
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contributions from an assortment of scientific fields, tissue engineering is considered
an interdisciplinary practice that has the potential to benefit a substantial proportion
of the global population with devastating soft tissue, bone and whole organ diseases
(Dzobo et al. 2018). The field of tissue engineering has enjoyed many successes; for
example, the generation, replacement and longevity of engineered bones and bronchial
tubes derived from the recipients’ cells (Sato et al. 2008; Petite et al. 2000; Schimming
and Schmelzeisen 2010). However, a shortage in the supply of donor tissue creates
a demand on the field to make engineered tissue routinely clinically available (Levitt
2015). Whilst the field is rich in both theoretical and experimental knowledge, a lack
of understanding regarding the processes by which cells assemble into tissues means
that viable replacement constructs are only available in a minority of cases.

Extensive mathematical research has been undertaken to make sense of the compli-
cated mechanisms within tissue growth. Some authors adopt a microscale approach,
which can take the form of cellular automaton systems (Vitvitsky 2014; Lehotzky and
Zupanc 2019; Youssef 2015) that seek to model interactions between a large num-
ber of individual cells. Whilst such systems can track the behaviour of cells, they
can become computationally infeasible for tissue-scale simulations (Ermentrout and
Edelstein-Keshet 1993). Some authors adopt a probabilistic approach (Fadai et al.
2019; Browning et al. 2019a, b) and exploit experimental data to explore ways in
which tissue engineering techniques can be improved. For example, Sogutlu and Koc
(2013) present a stochastic model to determine the expected required number of pores
for each region of a tissue engineering scaffold.

Conversely, continuummodels (O’Dea et al. 2010; Lemon et al. 2006;Breward et al.
2002; Eyles et al. 2019; Byrne et al. 2003 ) track the evolution of tissue constituents by
employing systems of partial differential equations. Whilst continuum models cannot
impose rules on individual cells, they can be derived by imposing averaging techniques
(Drew 1983) on equations that govern cellular behaviour at a microscopic level, from
which relevant mathematical techniques may be exploited to determine relationships
between parameters and model behaviours. The study of in vitro tissue growth via
continuum models is extensive, see O’Dea et al. (2012) and Klika et al. (2016) for
reviews; of particular relevance to this study, however, Lemon et al. (2006) considers a
continuummultiphase model to investigate howmechanical pressures within growing
tissue influence the aggregation or dispersion of cells in a scaffold, and relates the
existence of these regimes to the governing parameters. Lemon and King (2007a)
examines travelling-wave solutions of the multiphase model formulated in Lemon
et al. (2006) and find that in certain limits, the tissue propagates through the scaffold
at a constant speed as either a forward or backward travelling wave, dependent on
parameter values.

In this paper, we develop and analyse a continuummultiphasemodel that represents
the development of tissue in vitro in an artificial scaffold. In our model, we aim to
capture key features of tissue growth and extinction whilst developing a tractable for-
mulation. In particular, we consider a porous flow description comprising a tissue cell
phase, extra-cellular liquid phase and a scaffold phase, the former two being modelled
as incompressible fluids and the latter as an inert solid. Tissuemechanics are accounted
for by considering relevant constitutive assumptions in a similar fashion to those pre-
sented in Lemon et al. (2006) and Lemon and King (2007a). The model is reduced
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to a reaction–diffusion equation for the cell phase and a moving boundary condition
for the tissue edge, after which travelling-wave, asymptotic and numerical methods
are employed to deduce the resulting solution behaviour. The paper is constructed as
follows. In Sect. 2, we formulate and subsequently reduce and non-dimensionalise the
model. In Sect. 3, we present and discuss numerical solutions to the reduced model,
which motivate the travelling-wave and asymptotic analyses conducted in Sects. 4 and
5. In Sect. 6, we draw some conclusions regarding the behaviour of the model and
interpret the mathematical results in terms of the biological application.

2 Model Development

We construct a multiphase model to describe the growth of a nutrient rich tissue within
a porous tissue engineering scaffold. For simplicity, we formulate the model in a one-
dimensional Cartesian geometry. The model consists of three phases: two of which
are fluid phases denoted by n(x, t) and w(x, t), and represent the volume fraction
of cells and extra-cellular liquid, respectively. A rigid, non-degradable scaffold with
uniform volume fraction s is the third phase and remains constant, the porosity of the
scaffold hence being given by 1 − s. Cell growth and death occur via mass transfer
between n and w. The phases satisfy the no voids volume constraint:

n + w + s = 1. (1)

The velocity fields vn(x, t) and vw(x, t), and pressures pn(x, t) and pw(x, t),
are associated with the phases n and w accordingly. The spatial domain of the tissue
evolves over time due to cellular motion, so we track it with a moving boundary,
x = L(t). In the subsections that follow, we state equations that govern mass transfer
between n and w, as well as provide constitutive assumptions for vn, vw, pn and
pw suitable to describe tissue growth in a scaffold. We state necessary initial and
boundary conditions for the variables and the moving boundary L(t), and simplify
and non-dimensionalise the model.

2.1 Governing Equations

We assume that cells proliferate and assemble daughter cells from the available liquid
and that when cells die, they decompose and dissolve into the liquid phase. In view
of these processes, it is reasonable to follow Lemon et al. (2006), Byrne et al. (2003),
Breward et al. (2002) and Preziosi and Tosin (2003) (and many others) and assume
the densities of n and w to be equal. Following these assumptions, the mass transfer
equations can be represented as

∂n

∂t
+ ∂

∂x
(nvn) = Γ (n, w) and

∂w

∂t
+ ∂

∂x
(wvw) = −Γ (n, w), (2)
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where Γ is the net rate of cell proliferation. Adding the equations from (2) results in
the overall conservation of mass condition

∂

∂x
[nvn + (1 − n − s)vw] = 0, (3)

where (1) has been used to eliminate the time derivative and to replacewwith 1−n−s.
Noting that n and w are modelled as fluids and s as a porous scaffold, we take the

interphase drags to be dominated by those with the scaffold and neglect that between
the tissue and liquid. In view of this, we apply Darcy’s law to relate the velocity of the
cell and liquid phases to their respective pressures. Following King and Franks (2004)
and Eyles et al. (2019), we take

vn = − K

μn(n, w)

∂ pn
∂x

and vw = − K

μw(n, w)

∂ pw

∂x
, (4)

where μn and μw represent the viscosity of the cell and liquid phases and K is the
permeability of the scaffold.

Remaining consistent with Lemon et al. (2006) and Lemon and King (2007a, b),
we relate the cellular and extra-cellular liquid pressures via

pn = pw + �(n, s), (5)

where � represents extra pressures that arise due to cell–cell and cell–scaffold inter-
actions. Since the scaffold is assumed to be inert and of uniform porosity, we suppress
the dependence � has on s from hereon for brevity. We note that combining (5) with
the relations from (4) allows the elimination of pn and pw and provides

vn = μw

μn
vw − K

μn

∂�

∂x
. (6)

2.2 Initial and Boundary Conditions

Assuming the tissue to be symmetric about its centre (x = 0), we take

vn(x, t) = vw(x, t) = 0 at x = 0. (7)

Naturally, the cell volume fraction is identically zero at the edge of the tissue:

n(x, t) = 0 at x = L(t). (8)

The moving boundary L(t) moves with the cell velocity, hence

dL(t)

dt
= vn(L(t), t). (9)
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The initial distribution of n and tissue boundary position, respectively, are denoted by

n(x, 0) = n0(x) and L(0) = L0. (10)

2.3 Model Reduction

We reduce the model to a reaction–diffusion equation and a moving boundary condi-
tion. Integrating (3) and applying the boundary conditions from (7) provides

vn = −Φ(n)
∂n

∂x
, where Φ = K (1 − n − s)

μn(1 − n − s) + μwn

d�

dn
. (11)

Here, we note μn and μw are assumed to be independent of n for simplicity. Substi-
tuting (11) into the first of (2) provides the reaction–diffusion equation:

∂n

∂t
= ∂

∂x

(
nΦ(n)

∂n

∂x

)
+ Γ (n, w). (12)

Combining (9) with (11) provides the moving boundary condition:

dL

dt
= −Φ(0)

∂n

∂x
(L(t), t), (13)

where the boundary condition from (8) provides Φ(n) = Φ(0) at x = L(t). Finally,
(11) implies the boundary condition on vn from (7) becomes

Φ(n)
∂n

∂x
= 0 at x = 0. (14)

2.4 Constitutive Assumptions

We now define constitutive assumptions for Γ and � that are suitable to describe
tissue growth in a rigid scaffold. We assume that daughter cells are constructed via
mitosis using the available liquid and that when cells die via apoptosis, they dissolve
into the liquid. Thus, we take

Γ (n) = rmn(1 − n − s) − ran, (15)

where rm and ra are the positive constant rates of cell mitosis and apoptosis, and (1)
is used to replace w with 1 − n − s. Following Lemon et al. (2006) and Lemon and
King (2007a, b), an appropriate expression for �(n) is

�(n) = δnn2

(1 − n − s)
+ νn

︸ ︷︷ ︸
cell–cell interactions

+ δssn

(1 − n − s)
− χs

︸ ︷︷ ︸
cell–scaffold interactions

, (16)
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for ν ∈ R and positive constants δn, δs and χ. The first term in (16) represents
repulsive forces exerted between the cells at high volume fractions, as characterised
by the singularity at n = 1− s. The second term represents the propensity for cells to
disperse or aggregate, with ν taking a positive or negative value accordingly. The third
term represents repulsive forces that occur due to cell–scaffold interactions, whilst the
fourth describes attractive forces between the cells and scaffold. For simplicity, we
take δ := δn = δs . We note that Φ(n) must be strictly positive to prevent negative
diffusion in (12) and nonlinear degeneracy in (13). This is achieved when ν > 0,
which is henceforth assumed. Physically, this corresponds to a tendency for cells to
spread through the scaffold (Lemon et al. 2006).

2.5 Non-dimensionalisation and Parameter Values

We non-dimensionalise (12), (13) and the initial and boundary conditions from
(8), (10) and (14). By introducing the dimensionless variables

t̂ = rmt, x̂ =
√

rm
Φ(0)

x, L̂ =
√

rm
Φ(0)

L, (17)

the following dimensionless model results:

∂n

∂ t̂
= ∂

∂ x̂

(
nφ(n)

∂n

∂ x̂

)
+ n(κ − n), 0 < x̂ < L̂, (18)

dL̂

d̂t
= −∂n

∂ x̂
(L̂, t̂ ), (19)

φ(n)
∂n

∂ x̂

∣∣∣∣
x̂=0

= 0, n(L̂, t̂ ) = 0, L̂(0) = L̂0, n(̂x, 0) = n0(̂x), (20)

where κ = 1 − s − ra/rm and L̂0 = L0
√
rm/Φ(0). We also have

φ(n) = Φ(n)

Φ(0)
= (1 − s)(1 − n − s)

(η(1 − s) + s)(1 − (μ − 1)n − s)

[
(1 − s)

(1 − n − s)2
+ η − 1

]
(21)

where η = ν/δ and μ = μw/μn . In the proceeding, we dispense of the hat notation
for clarity.

The parameter κ is shown in subsequent sections to be of crucial importance to
the qualitative features of the model solutions. Physically, κ represents the difference
between the scaffold porosity and the ratio between the cell death and growth rates.We
note that the scaffold permeability parameter K , as seen in (11) is not present in the
non-dimensional model (18)–(20). However, the scalings selected in (17) imply that
the dimensional tissue boundary position increases with the scaffold permeability. A
linear stability analysis around the steady states of (18), n = 0 and n = κ , is conducted
in “Appendix A” and shows that the former is stable when κ < 0 and the latter when
κ > 0. In view of this, we are primarily motivated to investigate (18)–(20) for different
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values of κ, though variations in s, μ, and η will also be considered in part so as to
deduce their optimal values for the stimulation of tissue growth. Unless otherwise
stated, we take μ = η = 1 and we adopt the initial conditions

n0(x) = ω(1 − x2) and L0 = 1, (22)

so that ω denotes the cell volume fraction at x = 0. Following Lemon and King
(2007a, b), and unless otherwise stated, we set s = 0.2 and ω = 0.03, the former cor-
responding to a scaffold with a porosity of 0.8 and is consistent with the experimental
study presented in Malda et al. (2004).

3 Numerical Results

We present and discuss the numerical solutions for n(x, t) and L(t) from the PDE
system (18)–(20), paying separate attention to the cases κ > 0, κ < 0 and κ = 0.
For numerical convenience, we fix the moving boundary by introducing the variable
transform ξ = x/L(t) so that ξ ∈ [0, 1], which means (18) and (19) become

∂n

∂t
= ξ

L

dL

dt

∂n

∂ξ
+ 1

L2

∂

∂ξ

(
nφ(n)

∂n

∂ξ

)
+ n(κ − n), (23)

dL

dt
= − 1

L

∂n

∂ξ
(1, t). (24)

Subject to the transformed boundary and initial conditions from (20), we numerically
integrate (23) and (24) by discretising first- and second-order spatial derivatives using
second-order finite differences. Upwind finite differences were used for the second
term of (23). Temporal derivatives are numerically integrated by utilising ode23s in
MATLAB.

For κ = 0.3, as shown in Fig. 1a, b, we observe semi-infinite travelling waves in n
and linear growth in L after a period of transient growth from their initial states. For
κ = 0, as shown in Fig. 1c, we observe n decaying from the initial data. Figure 1d
shows unbounded growth in L . The inset shows L(t) and the function ln(t)/

√
2 − 1

plotted against ln(t), from which we conclude that L grows logarithmically at large
time. For κ = −0.3, as shown in Fig. 1e, we observe that n decays from the initial data
more quickly than for κ = 0. The initial growth of L shown in Fig. 1f occurs due to the
diffusion of n from the initial state; however, we observe the eventual formation of a
steady state. Numerical simulations that are not included here suggest that travelling-
wave and steady-state behaviour is exhibited by (18)–(20) for all κ > 0 and κ < 0
accordingly.

Clearly, the case in which κ > 0 corresponds to effective tissue growth. This
motivates a travelling-wave analysis of (18)–(20) for κ > 0 which is presented in
Sect. 4, where we express the speed of the tissue edge in terms of the governing
parameters. In Sect. 5, asymptotic solutions for n and L are found when 0 < κ � 1,
so that the cell distribution and tissue speed are explicitly available. Whilst the case
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κ < 0 results in tissue decay, an asymptotic analysis of (18)–(20) for this case is
presented in Sect. 5. Overall, the results in this section suggest that κ > 0 must hold
for tissue growth to occur, thus suggesting that tissue engineers should ensure that the
porosity of the scaffold is at least larger than the ratio between the rate of cell death
and growth.

4 Travelling-Wave Analysis for � > 0

Figure 1a, b indicates the emergence of semi-infinite travelling waves of constant
speed for κ > 0. In light of this, we assume that for sufficiently large time, L ∼ ct
where c is the constant wave speed at which the tissue edge moves. In this section, we
employ travelling-wave analysis to obtain the wave speed c in terms of the governing
parameters when κ > 0.

We transform (18)–(20) via the travelling-wave coordinates z = x − L ∼ x − ct
where z ∈ (−∞, 0]. Setting n(x − ct) = n(z), we obtain

− c
dn

dz
= d

dz

(
nφ(n)

dn

dz

)
+ n(κ − n), (25)

n(0) = 0, c = −dn

dz

∣∣∣∣
z=0

, lim
z→−∞ n(z) = κ, lim

z→−∞ φ(n)
dn

dz
= 0. (26)

Following Fadai and Simpson (2020) and Fadai (2021) , we define

q(z) = φ(n)
dn

dz
. (27)

Multiplying (25) by φ(n) and rewriting the conditions from (26) in terms of q(z), we
obtain

nφ(n)
dq

dz
= −q(c + q) − φ(n)n(κ − n), (28)

n(0) = 0, q(0) = −c, lim
z→−∞ n(z) = κ, lim

z→−∞ q(z) = 0. (29)

Here, we note the second boundary condition from (26) transforms into the second of
(29) because φ(0) = 1. Dividing (28) by (27) we have

dq

dn
= −q(c + q) + n(κ − n)φ(n)

qn
, (30)

q(κ) = 0, q(0) = −c. (31)

Using the shooting method (presented in “Appendix B”) to find the heteroclinic con-
nection q(n) that connects (n, q) = (κ, 0) to (0, −c), we can determine a numerical
approximation of the wave speed in terms of the governing parameters κ, s, μ and η.

In Fig. 2a, b, the solid black line represents the relationships c(κ) and c(s), respec-
tively, when (30) and (31) is approximated by the shooting method. The dashed green
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Fig. 1 Numerical solutions of the system of PDEs from (18)–(20), with a,c,e showing n(x, t) and b,d, f
showing L(t) for different values of κ . The green lines in a,c,e represent the initial conditions n0(x) from
(22), whereas the black lines represent n for different values of t . The black arrows point in the direction of
increasing time. The dashed red line in d is given by ln(t)/

√
2 − 1 and highlights the logarithmic growth

of L at large time. Parameter values: L0 = μ = η = 1, ω = 0.03 and s = 0.2 (Color figure online)
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Fig. 2 Numerical solutions for the wave speeds c(κ) and c(s). The solid black and dashed green lines
represent approximations sought by numerically solving (30) and (31) using a shooting method and the
system from (18)–(20), respectively. Parameter values for a μ = η = L0 = 1, s = 0.2 and ω = 0.03.
Parameter values for b μ = η = L0 = 1, ra/rm = 0.2 and ω = 0.03 (Color figure online)

line represents these wave speeds when obtained by numerically solving (18)–(20),
and computing c by evaluating dL/dt at large time. In view of the close agreement
between these two approaches to computing c,we henceforth concentrate on solutions
provided by (30) and (31) for simplicity.

The results presented in Fig. 2 suggest that larger κ and smaller s increase the speed
at which the tissue front grows, and since κ = 1− s − ra/rm, this further corresponds
to minimising ra and maximising rm and the porosity of the scaffold. In Fig. 3a, b we
present the wave speeds c(μ, η) for κ = 0.3 and κ = 0.7, respectively. These results
suggest that, for a fixed value of κ , the wave speed is maximised when μ, η → 0.
Physically, this corresponds to the case where the viscosity of the cells is much greater
than the viscosity of the liquid, and where repulsive forces exerted due to cell–cell and
cell–scaffold interactions at high cell volume fractions dominate inter-cellular forces
that give rise to cell dispersal. Furthermore, Fig. 3a, b indicates that the dependence c
has onμ is weaker for κ = 0.3 than κ = 0.7. This suggests that for smaller κ , cell–cell
and cell–scaffold interactions which can drive cellular motion are more prominent in
controlling the wave speed than the cell and liquid viscosities. Additionally, and in
agreement with Fig. 2a, Fig. 3 indicates that the wave speed increases as κ increases.

5 Asymptotic Analysis for |�| � 1

In this section, we construct asymptotic solutions for n(x, t) and L(t) for |κ| � 1
when t � 1. Since scaffold porosity is a readily controllable parameter (in contrast to
cell growth and death), the analysis in this section when κ = 1 − s − ra/rm > 0 can
be associated with the case in which the scaffold porosity is low and tissue growth is
successful, so that 0 < κ � 1.

The numerical results in Fig. 1e indicate that n � 1 holds for κ < 0 when t � 1.
Furthermore, given that max{n} = κ when κ > 0, n � 1 and t � 1 is also expected
when 0 < κ � 1 for sufficiently large time. We therefore have φ(n) ∼ φ(0) = 1
when |κ| � 1 and t � 1. To aid the subsequent asymptotic analysis, we introduce
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Fig. 3 Numerical solutions for the wave speeds c(μ, η) for κ = 0.3 and κ = 0.7 sought by numerically
solving (30) and (31) using a shooting method. s = 0.2 was used for both sub-figures. We note that the
colour axes are different in each sub-figure (Color figure online)

the variables

n = eκt N (x, T ), T = eκt − 1

κ
, (32)

which imply that (18) and (19) are simplified to

∂N

∂T
= ∂

∂x

(
N

∂N

∂x

)
− N 2, 0 < x < L(T ), (33)

∂L

∂T
= −∂N

∂x
(L, T ). (34)

To analyse the behaviour of (33) and (34), we follow Newman (1980) and adopt
the ansatz

N = A(T ) − B(T ) cosh

(
x√
2

)
, (35)

wherein 0 < B < A � 1. Imposing N (L, T ) = 0 on (35), we obtain that

L(T ) = √
2 cosh−1

(
A

B

)
. (36)

In view of (35), (33) provides

dA

dT
= −A2 − B2

2
,

dB

dT
= −3AB

2
. (37)

In this section, initial conditions for N and L are chosen to satisfy (35) and (36)
when T = 0 – i.e., A(0) = A0, B(0) = B0 and hence L0 = √

2 cosh−1(A0/B0). An
implicit solution for N and L is found by computing A(B) from (37) and exploiting
the relation from (36). Following Newman (1980), we have
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N (x, T ) = α

2
csch3

(
L√
2

)[
cosh

(
L√
2

)
− cosh

(
x√
2

)]
, (38)

sinh(
√
2L) − √

2L = αT + β, (39)

where α = 2B−2
0 (A2

0 − B2
0 )

3/2 and β = sinh(
√
2L0) − √

2L0.

We now deduce the large-T behaviour of N (x, T ) and L(T ), fromwhich the large-
time behaviour of n(x, t) and L(t) when |κ| � 1 can subsequently be determined.
Guided by the numerical results from Fig. 1d, the evolution of L satisfies L � L0 for
sufficiently large T , so we have from (39) that

e
√
2L

2
− √

2L = αT + O(1), (40)

which is then inverted to give

L(T ) ∼ ln(2αT )√
2

(
1 + 1

αT

)
(41)

for T � 1. Equation (38) and the leading-order term in the above expansion are used
to find the following large-T approximation for N :

N (x, T ) ∼ T−1 −
√

2

α
cosh

(
x√
2

)
T−3/2. (42)

We now exploit (42) and (41) to deduce the large-time behaviour of n(x, t) and L(t)
when |κ| � 1.

5.1 Large-Time Behaviour of n and LWhen |�| � 1

When 0 < κ � 1, then n(x, t) takes the form of a travelling wave of constant speed
and L � L0 for t � 1. In contrast, when κ < 0, the numerical results in Fig. 1f
suggest that L → L∞ as t → ∞ for some finite constant L∞. In general, a large-time
solution for L is unavailable given that L∞ � L0 does not necessarily hold when
t � 1; however, when |κ| � 1, then t = T to leading order at t = O(1), and L
evolves according to (41) until t = O(1/|κ|). Since L � L0 when |κ| � 1 and t � 1,
(41) becomes

L ∼ 1√
2
ln

(
2α(eκt − 1)

κ

)(
1 + κ

α(eκt − 1)

)
(43)

for |κ| � 1 and t � 1. Equation (43) implies that L ∼ κt/
√
2 when 0 < κ � 1 and

t � 1.Therefore, travelling waves propagate with speed c ∼ κ/
√
2 when 0 < κ � 1,

this being in agreement with the numerical results from Fig. 2a. For 0 < κ � 1, (43)
implies that the growth of the tissue edge is logarithmic until t = O(1/κ) and linear
thereafter. If tissue growth is successful, this suggests the formation of travellingwaves
with constant speed is delayed when the scaffold porosity is low. When κ < 0, the
exponential terms from (43) are negligible as t → ∞ and we obtain
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Fig. 4 Numerical solution (solid black line) of the PDE system from (18)–(20) versus asymptotic solution
(dashed green line) from (45) and (43) for n (a) and L (b) for κ = 0.001. Solutions for n are presented
on t ∈ [6000, 10, 000] at intervals of 1000. Initial conditions for the numerical simulations were chosen
to satisfy (35) and (36). Parameter values: μ = η = 1, s = 0.2, A0 = 0.05 and B0 = 0.01 (Color figure
online)

L∞ ∼ 1√
2
ln

(
2α

|κ|
)(

1 + |κ|
α

)
(44)

when κ < 0 and |κ| � 1. The leading order logarithmic term in (43) and (38) is used
to find the following large-time approximations for n when |κ| � 1 :

n ∼ κ −
√
2κ3

α
cosh

(
x√
2

)
e−κt/2 for 0 < κ � 1, (45)

n ∼ |κ|e−|κ|t

1 − e−|κ|t

[
1 −

√
2|κ|

α(1 − e−|κ|t )
cosh

(
x√
2

)]
for κ < 0 & |κ| � 1.

(46)

We note that (43) and (45) hold for κ = O(1) if μ � 1 and η � 1 because L � L0
and φ(n) ∼ 1 in this case. Furthermore, for κ < 0 and |κ| = O(1), then (38) suggests
that n = O(eκt ) at large time since L∞ = O(L0).

In Figs. 4 and 5, we compare the numerical solution for n and L when obtained by
numerically solving the PDE system from (18)–(20) for κ = 0.001 and κ = −0.001
against their respective asymptotic solutions from (45), (46) and (43). Overall, an
excellent agreement between the numerical and asymptotic solutions is observed. The
large-T behaviors of N and L characterised by (41) and (42), and hence the asymptotic
approximations from this subsection, are only valid for initial conditions that satisfy
(35) and (36). We now show that solutions of (33) and (34) converge to solutions
similar to that of (41) and (42) for a wider class of initial data.
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Fig. 5 Numerical solution (solid black line) of the PDE system from (18)–(20) versus asymptotic solution
(dashed green line) from (46) and (43) for n (a) and L (b) for κ = −0.001. Solutions for n are presented
on t ∈ [8000, 10, 000] at intervals of 500. Initial conditions for the numerical simulations were chosen to
satisfy (35) and (36). Parameter values: μ = η = 1, s = 0.2, A0 = 0.05 and B0 = 0.01 (Color figure
online)

5.2 Convergence of Asymptotic Solutions

Since the choice of initial cell distribution within the scaffold is likely to vary sub-
stantially in practice, it is important to determine the large-T behaviour of N and L
for a wider class of initial data, such as those from (22). The asymptotic behaviour
of (33) as T → ∞ comprises an interior layer near the interface within which the
similarity reduction N ∼ T−1 f (θ) holds where θ = x − L and L = b ln(T ), so that
f (θ) satisfies

− b
d f

dθ
= d

dθ

(
f
d f

dθ

)
+ f (1 − f ). (47)

Following familiar arguments to that of the porous-Fisher equation (Aaronson 1980;
Murray 2002), although we emphasise that N is not a travelling wave of the usual
form, the solution to (47) is given by

f = 1 − eθ/
√
2, b = 1√

2
. (48)

For x = O(1), setting
N = T−1 + G(x, T ) (49)

implies that
∂G

∂T
= T−1 ∂2G

∂x2
− 2T−1G, (50)

the solution to which that matches into the exponential terms in (48), and hence the
corresponding term in the interior layer, is given by

G = −m cosh

(
x√
2

)
T−3/2 (51)
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Fig. 6 Numerical solution (solid black line) of the PDE system from (33) and (34) versus asymptotic
solution (dashed red line) from (52) and (53) for n and L for different initial conditions N (x, 0) and
L0 = 1. Solutions for n are presented on T ∈ [6000, 10, 000] at intervals of 1000 (Color figure online)

for some unknown constant m, and this dominates the asymptotic behaviour of (50)
as T → ∞. Therefore, (49) becomes

N ∼ T−1 − m cosh

(
x√
2

)
T−3/2 (52)

where m depends on the initial data. Since N (L, t) = 0, (52) implies that

L ∼ √
2 cosh−1

(√
T

m

)
∼ 1√

2
ln

(
4T

m2

)
(53)

for T � 1. By comparing (52) and (42), we see that the asymptotic structure is retained
despite the initial cell distribution for large T . In addition, (53) suggests that the choice
of initial cell distribution does not affect the speed at which the tissue edge moves for
large T , but does affect the position of the tissue boundary. We note that if N (x, 0) is
chosen to satisfy (35), then (42) indicates that m = √

2/α.

In Fig. 6, we compare the numerical solutions for N and L when obtain by numer-
ically solving the PDE system from (33) and (34) against the asymptotic solutions
from (52) and (53) for two choices of N (x, 0) and L0 = 1. The value of L0 was found
by solving N (L0, 0) = 0. For both N (x, 0), we are able to choose anm that provides
excellent agreement between the numerical and asymptotic solutions. We note that
the large-time behaviour for n(x, t) and L(t) when κ = 0 can be extracted directly
from (52) and (53) given that N = n when κ = 0 and limκ→0 T = t . This justifies
the numerical results observed in Fig. 1c, d.

6 Conclusions

In this paper, we present a multiphase model to represent the development of tissue
in vitro within a porous tissue engineering scaffold. We consider a tissue cell phase,
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extra-cellular liquid phase and a scaffold phase and adopt Darcy’s law to relate the
velocity of the cell and liquid phases to their respective pressures. The model includes
mechanisms to represent cell growth and death, and pressures that arise from cell–cell
and cell–scaffold interactions. We employ a moving boundary, x = L(t), to track
the speed at which the tissue edge propagates through the scaffold. We reduce the
model to a nonlinear reaction–diffusion equation for the cell volume fraction, n(x, t),
and a moving boundary condition for the tissue edge. The diffusivity of the reaction–
diffusion equation is dependent on the cell and scaffold volume fractions; cell and
liquid viscosities, and pressures that arise from cell–cell and cell–scaffold interactions.
Non-dimensionalisation of themodel shows that the tissue boundary position increases
with the scaffold permeability and exposes important dimensionless groupings. One
such grouping, κ, that describes the difference between the scaffold porosity and the
ratio between the cell death and growth rates is of crucial importance to the qualitative
features of the cell phase evolution. The model admits three regimes for the evolution
of the cell volume fraction and themoving boundary, based on the sign of κ . Employing
travelling-wave and asymptotic analysis, we characterise these regimes in terms of κ

and parameters related to cellular motion.
The case in which κ > 0 corresponds to the successful growth of tissue, which

suggests that tissue engineers should ensure that the porosity of the scaffold is at least
larger than the ratio between the rate of cell death and growth. For κ > 0, we show
that the cell volume fraction, n(x, t), spreads through the scaffold as a semi-infinite
travelling wavewith constant speed, emerging from the steady state n = κ.Employing
travelling-wave analysis, we accurately compute the wave speed (i.e., the speed at
which the tissue edge moves through the scaffold) as a function of the governing
parameters. We find that the wave speed is greatest when the rate of apoptosis is
negligible in comparison with that of mitosis, the viscosity of the cells is much greater
than the viscosity of the liquid, and when repulsive forces exerted due to cell–cell and
cell–scaffold interactions at high cell volume fractions dominate inter-cellular forces
that give rise to cell dispersal.We also find that thewave speed increases as the scaffold
porosity increases; however, we note that the cells will require a sufficient amount of
scaffold on which to attach, so an upper bound on the porosity is to be expected.
Furthermore, we deduce that for smaller values of κ, and hence scaffolds with small
porosities, cell–cell and cell–scaffold interactions which can drive cellular motion are
more prominent in controlling the wave speed than the cell and liquid viscosities.

For |κ| � 1, we employ asymptotic analysis to find explicit solutions for n and L.

Since scaffold porosity is a readily controllable parameter (in contrast to cell growth
and death), the analysis in this section when κ = 1− s − ra/rm > 0 can be associated
with the case in which the scaffold porosity is low and tissue growth is successful, so
that 0 < κ � 1. When |κ| � 1, the growth of the tissue edge is logarithmic until
t = O(1/κ) and linear thereafter, thus suggesting the formation of travelling waves
with constant speed is delayed as κ → 0+, and hence when the scaffold porosity is
low. For κ < 0,we deduce that the cell volume fraction decays exponentially with rate
κ at large time, with the moving boundary tending towards a steady state. For κ < 0
and |κ| � 1, the evolution of the L is shown to be logarithmic until t = O(1/κ)

and approaches a steady state thereafter, the value of which is found explicitly and
related to κ and the initial conditions employed in the model. For |κ| � 1, we also
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demonstrated that the choice of initial cell distribution does not affect the eventual
distribution of cells within the scaffold, nor the speed at which the tissue edge moves,
but does affect the position of the tissue boundary.

For a functional tissue construct to develop within a scaffold, cells must be exposed
to the correct environment and stimulated with growth factors such as oxygen. There
must also be a sufficient amount of scaffold on which the cells can adhere. Whilst key
features of tissue growth such as cell mitosis, apoptosis and motion are included in
this paper, concepts such as environmental pressures, cellular adhesion, and nutrient
supply have not been considered. Therefore, following Lemon and King (2007a), a
natural extension of this work would include examining the influence that nutrient
limitation has on cell growth. We leave these extensions for future consideration.
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A Linear Stability Analysis

A linear stability analysis around the steady states of (18), n∞ = 0, κ, provides insight
into the dependence of themodel behaviour on κ and φ(n). Neglecting the influence of
the moving boundary condition on the stability of (18), we linearise on a semi-infinite
domain. We substitute n = n∞ + ε exp(iγ x + λt) into (18) for a perturbation wave
number γ and growth rate λwhere ε � 1. Considering terms ofO(ε) only, the growth
rate for perturbations of wave length 2π/γ is

λ = −n∞
[
γ 2φ(n∞) + 2

] + κ. (54)

Since φ(n) is assumed to be positive for any n, the steady state n∞ = κ is stable for
all κ > 0. For n∞ = 0, we have λ = κ which indicates stability when κ < 0.

B The ShootingMethod

In this section, we formulate a numerical shooting method to find the wave speed
c, as stated in Sect. 4. To do this, we send trajectories of q(n) from (κ, 0) to find
a trajectory that connects to (0, −c). Computationally, it is more straightforward to
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shoot trajectories forwards as opposed to backwards, and we hence introduce the
change of variable X = κ − n and obtain

dq

dX
= q(c + q) + X(κ − X)φ(κ − X)

q(κ − X)
, (55)

q(0) = 0, q(κ) = −c. (56)

Noting that the end points are computationally singular, we use q(ζ ) = −ζ and
q(κ − ζ ) = −c where 0 < ζ � 1 is some user-defined tolerance. We employ the
discrepancy function

E(c) = q c (κ − ζ ) + c, (57)

where q c (κ − ζ ) is the solution to (55) evaluated at X = κ − ζ for a trial wave speed
c. Equation (55) is numerically integrated with ode23s in MATLAB with the initial
condition q(ζ ) = −ζ. Using fzero in MATLAB to find the zero of E(c), the wave
speed c and the corresponding heteroclinic trajectory q(X) is determined.
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