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ABSTRACT  

OBJECTIVE: This study aimed to investigate the neural correlates of psychotic-like experiences in 

youth on measures of inhibitory control, reward anticipation and emotion processing. A 

secondary aim was to test whether these neuro-functional correlates of risk were predictive of 

psychotic symptoms 2 years later. 

METHOD: Functional imaging response to three paradigms: the Stop-Signal, Monetary Incentive 

Delay, and Faces tasks was collected in youth at age 14, as part of the IMAGEN study. At 

baseline, youth from London and Dublin sites were assessed on psychotic-like experiences and 

those reporting significant experiences were compared with matched controls. Significant brain 

activity differences between the groups were used to predict, with cross-validation, the 

presence of psychotic symptoms in the context of mood fluctuation at age 16, assessed in the 

full sample. These prediction analyses were conducted with the London-Dublin subsample 

(N=246) and the full sample (N=1196). 

RESULTS: Youth reporting psychotic-like experiences showed increased hippocampus/amygdala 

activity during neutral faces processing and reduced dorsolateral prefrontal activity during failed 

inhibition relative to controls. The most prominent region for classifying 16-year olds with mood 

fluctuation and psychotic symptoms relative to the control groups (those with mood 

fluctuations but no psychotic symptoms and those with no mood symptoms) included 

hyperactivation of the hippocampus/amygdala, when controlling for baseline psychotic-like 

experiences and cannabis use. 

CONCLUSIONS: The results stress the importance of the limbic network’s increased response to 

neutral facial stimuli as a marker of the extended psychosis phenotype. These findings might 

help to guide early intervention strategies for at-risk youth. 
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INTRODUCTION  

There is evidence of a continuity between clinical and subclinical phenotypes of psychosis that is 

measurable in the general population (1) and in individuals with a psychiatric diagnosis (2). On a 

clinical level, individual differences in psychosis proneness are expressed across a number of 

psychiatric conditions besides schizophrenia, namely mood, anxiety, eating, impulse control, 

and substance use disorders (2). At a subclinical level this liability is characterized by 

“attenuated” or “brief” psychotic symptoms that might not co-exist with other diagnostic 

criteria (frequency and intensity) to meet full diagnosis, yet sufficient impairment is observed to 

motivate treatment seeking (3). This clinical high-risk state has been shown to be a robust risk 

factor for progression to clinically-significant psychiatric disorders (4), but does not necessarily 

predict to one specific disorder and instead is predictive of a number of psychopathologies that 

include psychotic symptoms (5). 

At the far end of the extended psychosis continuum are children/adolescents from the 

community reporting psychotic-like experiences (i.e., perceptual abnormalities and delusional 

thoughts) prior to the onset of more impairing psychotic symptoms. These preclinical 

experiences, even though they are common in children/young adolescents (7 to 23% (6)), are 

associated with increased risk for psychotic or Axis I disorders over the longer term (6, 7). 

Studying young adolescents prone to such experiences will help to identify etiologic processes 

implicated in psychosis proneness, without the confounds of diverse risk factors and iatrogenic 

effects, such as substance misuse, medication and social impairment (8). Investigating the 

neural correlates of this preclinical psychosis proneness on cognitive functioning can shed light 

on early altered neural processes prior to significant cognitive impairments.   



 

7 
 

However, the vast majority of functional magnetic resonance imaging (fMRI) studies have 

focused on adults with a clinical risk to psychosis, not on young adolescents reporting psychotic-

like experiences. These studies have mostly investigated the neural circuits implicated in 

executive functioning, social cognition and reinforcement learning. Recent fMRI studies in 

individuals with psychosis-spectrum symptoms have shown significant reduced activation in the 

dorso-lateral prefrontal cortex (dlPFC) during executive functioning (e.g., working memory, 

inhibitory control) relative to low-risk controls (9, 10). These results are consistent with findings 

of dlPFC hypoactivation in patients with clinical diagnoses of psychosis or bipolar disorder on 

tasks of working memory and response inhibition (11, 12), suggesting that the brain markers 

associated with psychosis proneness cross diagnostic boundaries.    

Social cognition which encompasses emotion processing and theory of mind processes has also 

been identified as a domain which might differentiate individuals at clinical risk for psychosis 

from low-risk individuals (13). Neuroimaging studies show that the experience of high arousal 

negative emotions is associated, in individuals at clinical risk relative to healthy controls, with 

both reduced (14) and increased activation of fronto-limbic areas (9), depending on the contrast 

used (15), while viewing neutral material is more consistently associated with increased 

activation of this network (14, 16).  

Another core feature of psychosis, dysfunctional reinforcement learning, was shown to be 

shared with distinct diagnostic categories such as major depressive and bipolar disorders (17). A 

recent meta-analysis of fMRI studies has demonstrated that psychosis spectrum disorders are 

associated with a blunted response from the ventral striatum during anticipation of reward, 

which might explain why patients demonstrate impaired learning of stimulus-reinforcement 

associations (18). Functional MRI studies with clinically at-risk individuals have shown modest 
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reduced activity in fronto-striatal regions during reward anticipation, relative to controls (19, 

20).  

Among the very few neuroimaging studies investigating the early neural correlates of preclinical 

psychosis proneness prior to the onset of more impairing psychotic symptoms, Modinos et al. 

(21, 22) found that community youth self-reporting psychotic-like experiences had reduced 

activation of the medial prefrontal cortex, insula and amygdala during passive viewing and 

reappraisal of negative pictures relative to low-risk youth. In a quite young sample of 11- to 13-

year olds reporting these experiences, Jacobson et al. (23) observed reduced activity in 

prefrontal and temporal regions during a response inhibition task. However, the sample was 

small (11 in the at-risk group). Consequently, we intended to extend these findings in another 

community sample of young adolescents with psychotic-like experiences. Of note, considering 

that psychotic-like experiences are, for most individuals, transient and not persistent (1), it is 

crucial to understand to what extent these early neural abnormalities relate to a subsequent 

psychosis vulnerability in terms of clinically validated symptoms.  

The primary aim of the present exploratory study was to identify brain correlates of psychotic-

like experiences in youth prior to exposure to regular substance use on fMRI measures of 

emotion processing, inhibitory control and reward anticipation using data from the IMAGEN 

study, in which two sites, London and Dublin, assessed these preclinical experiences to 

participants when they were 14. The secondary aim was to validate whether these brain 

correlates predicted emergence of psychotic symptoms in the context of mood fluctuation 

symptoms at age 16 in the full IMAGEN sample. We hypothesized that psychotic-like 

experiences would be associated with reduced activity in the executive network during response 

inhibition, altered activity in fronto-limbic regions during processing of emotional and non-
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emotional stimuli as well as modest reduced ventral striatum activity during anticipation of 

reward.  

 

METHODS 

Participants  

2257 14-year old adolescents were recruited through high schools in the large European 

multicenter IMAGEN study from 8 sites across the United Kingdom, Ireland, France and 

Germany. Parents and adolescents gave written informed consent to the study procedures. All 

procedures were approved by each local institutional ethics committee. A detailed description 

of the study recruitment and assessment procedure, exclusion criteria, data storage and safety, 

as well as imaging acquisition protocol may be found elsewhere (24).  

Measures 

For a more detailed description of the study measures, see the online data supplement. 

Psychotic-like experiences 

At baseline, 14-year olds from London and Dublin completed the self-report Adolescent 

Psychotic-Like Symptoms Screener (25), which contains 7 items evaluating perceptual 

abnormalities and delusional thoughts in the past 6 months. Participants were asked to rate 

their responses to different statements on a 1-point scale (0=not true, 0.5=somewhat true, 

1=certainly true). Based on Cannon’s team (23, 25) previous studies, to identify youth with 

significant psychotic-like experiences, we used the following criteria: a total score ≥2 and a score 

≥0.5 on the auditory hallucination (this item revealed 88% probability of predicting which 
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individuals would be classified as “at-risk”, as determined by consensus ratings from the 

Structured Interview for Prodromal Syndromes).  

Among 410 adolescents [mean (SD), 14.3 (0.4) years old; 51.7% girls] from London and Dublin 

sites, 300 had complete fMRI and behavioral information. Among them, 27 were classified as 

having significant psychotic-like experiences. None had yet started using cannabis and they 

reported minimal alcohol and cigarette use (<3-5 times in the previous year). Using an in-house 

groupwise matching script designed by the IMAGEN consortium, the group was matched (on 

sex, handedness, imaging site, general IQ and puberty development) to a control group 5 times 

larger (135 adolescents) which included those with a total score ≤ 1 and a score of 0 on the 

auditory hallucination question.  

Psychotic symptoms at age 16 

For the secondary objective of the study, psychotic symptoms were evaluated with the Self-

Report Development and Well-Being Assessment interview (www.dawba.com) (26), a computer-

based package of questionnaires designed to generate DSM-IV-TR psychiatric diagnoses for 5- to 

16-year olds. While the schizophrenia module was not administered to participants at age 16, 

the bipolar module was more developmentally appropriate for this age group, and therefore 

all participants answered initial screening questions assessing mood dysregulation (“rapid 

mood changes” and “abnormally high mood”), and if positive, they were then asked three 

specific items assessing the presence of visual and auditory hallucinations and delusional beliefs. 

Among the 300 individuals from London and Dublin with complete baseline assessments, 246 

(82.0%) completed the bipolar module at age 16 and were further divided into three groups: 

those who endorsed mood dysregulation plus hallucinatory/delusional symptoms (i.e., group 

with mood and psychotic symptoms, N=12), those reporting mood dysregulation without 

http://www.dawba.com/
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hallucinatory/delusional symptoms (i.e., group with mood symptoms only, N=80) and those who 

did not endorse the mood dysregulation criteria (i.e., no mood symptoms group, N=154). 

Additionally, we conducted similar analyses on the full IMAGEN sample: among the 1602 

participants re-assessed at 16 years old, 1196 had complete fMRI and behavioral information 

and were divided into three groups: those with mood and psychotic symptoms (N=72), those 

with mood symptoms only (N=451), and those without any mood symptoms (N=673).  

Neuroimaging tasks 

We report results from three task-based fMRI paradigms: the Faces task to assess emotional 

processing, the Stop-Signal Task to evaluate motor inhibitory control and a modified version of 

the Monetary Incentive Delay Task to examine reward anticipation. The block design Faces task, 

known to elicit prefrontal and amygdala activations (27), uses video clips displaying a neutral 

expression progressively turning into angry or a second neutral expression. A control condition 

displays expanding/contracting circles. In the event-related adaptation of the Stop-Signal Task 

used to measure activation of the fronto-striatal network (28), a motor response to high 

frequency go signals (80% of trials) has to be inhibited when infrequently and unexpectedly (in 

randomised 20% of trials), a stop signal appears after the go signal. In the modified Monetary 

Incentive Delay task, participants had to respond to a target in order to win a previously 

indicated amount of points (3 trial types: no win, small win and large win). In the anticipation 

phase, which elicits striatal and medial prefrontal activity (29), participants were presented with 

cues signaling the amount of reward that could be won in a given trial. 

Data analysis 

fMRI 
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To test activity differences between the group reporting or not psychotic-like experiences on 

each of the contrasts of interests (Faces: angry vs neutral and neutral vs control; Stop-Signal: 

stop success vs baseline and stop failure vs baseline; Monetary Incentive Delay: anticipation of 

large reward vs no reward), we conducted two-sample t tests, using a whole-brain approach in 

SPM8 (Wellcome Trust Centre for Neuroimaging). Following Eklund et al. (30) recommendations 

for controlling type 1 error, significant voxels were required to be part of cluster of more than 

24 contiguous voxels giving a 0.05% probability of a cluster surviving due to chance (AFNI’s 

3dClustSim). For our secondary objective, we used a more liberal threshold: significant voxels 

were required to be part of cluster of more than 10 contiguous voxels. Then, we created 

regions-of-interest based on the regions’ coordinates and extracted the mean contrast value 

(betas) for each region of interest and for each subject.  

Machine learning procedure 

For our secondary objective, we aimed to classify youth according to 16-years old psychotic 

outcomes with fMRI information. We conducted cross-validated logistic regressions with elastic-

net regularization to model this relationship. Cross-validation is used to evaluate how well a 

predictive model generalizes to out-of-sample observations. On one hand, leave-one-out cross-

validations were used during classification of the groups within the smaller London-Dublin 

subsample; on the other hand, k(10)-fold cross-validations were used during classification of the 

groups within the full sample. Cross-validation analysis within the London-Dublin subsample 

allowed to test the predictive capacity of the brain markers while controlling for baseline 

psychotic-like experiences. Considering that the sample size of the groups was much larger in 

the full sample, we were able to control for more predictors such as developmental risk factors 
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for psychotic symptoms (i.e., cannabis, alcohol and cigarette use, as well as internalizing and 

externalizing behaviors (31)), gathered at age 14.  

Elastic-net regularization is used to achieve better prediction performance by penalizing the 

regression coefficients in an attempt to minimize overfit. Elastic-net regularization is an example 

of a sparse regression method, which imposes a hybrid of both L1- and L2-norm penalties (i.e., 

penalties on the absolute (L1-norm) and squared values of the regression coefficients (L2-

norm)). Model performance was evaluated using the area under the curve (AUC) of the receiver-

operating characteristic (ROC), which quantifies the predicted sensitivity (true positive rate) as a 

function of false positive rate (1-specificity). 

 

RESULTS 

Demographic and clinical information of the groups at age 14 

Reported in Table 1 are the means of the variables used as matching parameters between the 

27 adolescents with and the 135 matched controls without psychotic-like experiences (no 

significant differences between the groups). Furthermore, the groups were not different on age, 

as well as alcohol, cigarette and cannabis use in the previous year.  

Task activation differences between the groups 

Between-group differences were present in small clusters in the three tasks (Table 2). Only two 

significant clusters of activity differences survived the cluster-corrected threshold of 24 

contiguous voxels: a hyperactivation of the right anterior hippocampus/amygdala during passive 

viewing of neutral/ambiguous faces and a reduced activity in the right dlPFC during failure to 

inhibit a motor response in youth with psychotic-like experiences (Figure 1).  
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Prediction of psychotic-related symptoms at age 16 

First, from the London-Dublin subsample, we classified N=12 youths reporting both mood- and 

psychotic-related symptoms at 16 from N=154 youths reporting no mood symptoms. The final 

models returned from this analysis had a mean AUC=.709 (95% CI=.706-.713, p<.01) (Figure 2A). 

This model included all brain regions that survived the more liberal threshold of 10 contiguous 

voxels (all regions reported in Table 2), and controlled for psychotic-like experiences’ score at 

age 14 as well as demographic information (i.e., age, sex, handedness and site). All features 

were present in at least 9 folds (out of 10) of the final model. In addition to psychotic-like 

experiences, the most robust brain classifiers were cerebellum activity during processing of 

angry faces and the hippocampus/amygdala activity during neutral faces processing (Table 3A). 

The performance of each domain on its own (i.e., brain activity vs psychotic-like experiences) is 

displayed in Fig S1. We could not significantly classify youth with mood only symptoms (N=80) 

from the other two groups (i.e. mood and psychotic symptoms group, no mood symptoms 

group) (AUC=.532, 95% CI=.525-.539, p=.36; AUC=.453, 95% CI=.450-.456, p=.90 respectively).  

In the second prediction analyses, using the full IMAGEN sample, we classified N=72 youths 

reporting both mood- and psychotic-related symptoms at age 16 from N=673 youths reporting 

no mood symptoms and from N=451 youths with mood symptoms only. The final models 

returned from this analysis had a mean AUC=.633 (95% CI=.630-.636, p<.0001) and AUC=.615 

(95% CI=.614-.617, p=.001) respectively (Figure 2B, 2C). This model included all brain regions 

that survived the more liberal threshold of 10 contiguous voxels, and controlled for internalizing 

and externalizing behaviors, cigarette, alcohol and cannabis use, as well as demographic 

information (i.e. puberty development index, handedness, age, sex and site). When classifying 

the mood and psychotic symptoms group relative to the no mood symptoms group, only the 
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following features: internalizing and externalizing behaviors, cigarette and cannabis use, 

hippocampus/amygdala and cerebellum activity during neutral faces processing as well as 

cerebellum activity during angry faces processing were present in at least 9 folds of the final 

model (Table 3B). However, when classifying the mood and psychotic group relative to the 

mood only group, all features were present in at least 9 folds of the final model, with cerebellum 

activity during angry faces processing, fusiform activity during anticipation of reward, 

internalizing behaviors, cigarette and cannabis use, and hippocampus/amygdala activity during 

neutral face processing making the strongest contribution to group classification (Table 3C).  

Finally, we classified N=451 individuals with mood symptoms only from N=673 individuals 

reporting no mood symptoms with a mean AUC=.553 (95% CI=.552-.553, p=.002) barely better 

than chance (Figure 2D). All features, except the dlPFC activity during failed response inhibition, 

were present in at least 9 folds of the final model. The most important classifiers were 

internalizing and externalizing behaviors, cannabis use, reduced activity from the cerebellum 

during neutral faces processing, puberty development scale, and site (Table 3D).  

 

DISCUSSION 

At age 14, across the brain networks implicated in emotion processing, response inhibition and 

reward anticipation, the cluster-corrected markers of psychotic-like experiences included an 

increased response from the hippocampus/amygdala during processing of neutral material as 

well as reduced activity from the dlPFC during failed inhibition. Of note, hyperactivity from the 

hippocampus/amygdala during the processing of neutral faces further discriminated at 2-year 

follow-up individuals with mood- and psychotic-related symptoms relative to the other groups 

in both the London-Dublin subsample and the full IMAGEN sample, even when controlling for 
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baseline psychotic-like experiences as well as cannabis and cigarette use. The cross-validation 

models best discriminated the mood and psychotic group from the no mood symptoms group in 

comparison to the mood only group from the no mood symptoms group. 

One of the most replicated neural markers of psychosis and high-risk states is hypofunctioning 

of PFC and dlPFC during executive functioning (32). Our results support findings from other 

community-based studies of youth reporting psychosis-spectrum symptoms showing reduced 

PFC activity during working memory and response inhibition tasks (9, 23). However, the activity 

of the dlPFC during the Stop-Signal task was a weak brain classifier for adolescents reporting 

both mood and psychotic symptoms relative to the other groups. A possible explanation might 

be that reduced dlPFC activation is not directly related to positive or mood symptoms, but more 

to disorganized symptoms or cognitive deficits (which were not assessed by our screening tools) 

(9, 33). Consequently, dlPFC alterations would appear to be a promising neuro-functional 

marker of the clinical risk for psychosis when, in addition to positive and negative symptoms, 

significant cognitive impairments are observed; not of youth reporting psychotic-like 

experiences prior to a cognitive decline. It is worth mentioning that the use of a working 

memory task instead of response inhibition could have yielded more significant dlPFC results 

considering that working memory paradigms, in comparison to Stroop tasks or Go-Nogos, 

consistently elicit a more widespread loci of significant activation in the dLPFC and anterior 

cingulate cortex in both healthy controls and schizophrenia patients (11).  

The current exploratory study stresses the importance of an observed increased activity in the 

limbic network in the extended psychosis phenotype. Both fMRI and perfusion studies have 

highlighted increased hippocampal activity at rest and across cognitive tasks in clinically at-risk 

individuals (32, 34). Interestingly, Schobel et al. (35) demonstrated that baseline 
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hypermetabolism of the hippocampus in clinical high-risk individuals is directly related to a 

subsequent volume loss (via a hyperglutamatergic state); thereby supporting the heightened 

hippocampus activity as a highly promising early vulnerability marker to psychotic disorders. In 

the context of emotion processing, a recent meta-analysis showed that the apparent deficit in 

amygdala activity observed in individuals with a psychotic disorder during the viewing of 

negative material may be explained by an elevated amygdala response to neutral material (15). 

These findings have led some authors to propose that abnormalities in salience attribution 

might be core to the extended psychosis phenotype, rather than stress reactivity, per se (36). 

Thus, the increased neural response to neutral information may reflect an atypical assignment 

of motivational salience to these stimuli (37). Results from other cognitive studies showing an 

impaired decoding of facial expressions in patients with psychosis and high-risk populations 

further suggest that the abnormal neural activity in the current study might be due to an 

erroneous identification of neutral faces specifically. For instance, children and adolescents 

reporting psychotic-like experiences over-attribute significance (i.e. negative valence) to neutral 

faces (38). Considering that impaired emotion recognition is linked to declining social 

functioning in high-risk populations (39), it represents a potential target for psychosis symptoms 

prevention strategies for at-risk youth, prior to subsequent impaired social functioning. 

Considering that cerebellar activity significantly contributed to the classification of youth with 

mood- and psychotic-related symptoms relative to the other groups even in the absence of a 

marked alteration in individuals reporting psychotic-like experiences, its role in emotion 

processing in the psychosis-spectrum remains elusive but deserves to be clarified in the future. 

No cluster-corrected activity difference between 14-year olds with and without psychotic-like 

experiences were observed during reward anticipation. Even when using a more liberal cluster 
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threshold, significant activity related to reward anticipation did not robustly contribute to 

discriminate the groups at age 16. These findings are inconsistent with recent fMRI studies 

showing a blunted response from the ventral striatum during reward processing in psychosis 

and high-risk individuals (18, 40). A possible explanation for this negative result may be 

explained by Radua et al.’s findings of a negative correlation between striatal activity and the 

severity of negative symptoms in both patients and individuals at clinical risk for psychosis (18). 

Here, only positive experiences/symptoms were assessed.  

Limitations 

The use of an extended risk phenotype (i.e. youths self-reporting psychotic-like experiences) 

may constitute both a strength and weakness. While it might be too liberal to predict 

vulnerability to specific disorders, particularly those with very low prevalence, one advantage of 

this approach is that it might capture a dimension of vulnerability that is implicated in a number 

of different psychopathological outcomes. The current study also did not investigate 

interactions with family, substance misuse and genetic data, which might further clarify how this 

extended phenotype is implicated in future psychiatric outcomes. Another potential limitation 

to the study is that the use of the bipolar module, at age 16, may have under-estimated the 

emergence of psychotic symptoms in the no mood symptoms group. However, the prevalence 

of psychotic symptoms is low at the end of adolescence (e.g. 5-7%) (1). Finally, the timeframe 

for studying outcomes was relatively brief and might predate the typical age of onset of 

psychotic disorders, however, this might also be considered a strength, as we were able to 

detect relevant brain-related abnormalities before psychotic experiences begin to cause 

significant functional and cognitive impairment, substance misuse and require medical 

intervention.   
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Conclusion 

The results of the present study suggest that an aberrant neural response to non-salient stimuli 

may be an important early vulnerability marker for psychosis, at least in the context of mood 

fluctuations. These findings might help to guide early intervention strategies for at-risk youth. It 

has yet to be determined whether individual differences in emotional reactivity to non-salient 

stimuli can be modified in young adolescents and whether such modifications have any clinical 

significance for high-risk youth.  
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FIGURES LEGENDS 

Figure 1. Cluster-corrected activation differences between 14-year olds with (N=27) and without 

(N=135) psychotic-like experiences.  

Abbreviations: PLEs, Psychotic-like experiences. 

Only cluster-corrected activations are shown in the maps. Bar graphs refer to standard 

deviations (SD).  

 

Figure 2. Receiver-operating characteristics (ROC) curves 

A, ROC of age 16 classification between youth from the London-Dublin subsample with mood 

and psychosis symptoms and those with no mood symptoms 

B, ROC of age 16 classification between youth from the full sample with mood and psychosis 

symptoms and those with no mood symptoms 

C, ROC of age 16 classification between youth from the full sample with mood and psychosis 

symptoms and those with mood symptoms only 

D, ROC of age 16 classification between youth from the full sample with mood symptoms only 

and those with no mood symptoms 
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Table 1. Demographic, substance use and clinical characteristics of the groups at 14 years old 

(baseline).  

Abbreviations: SD, standard deviation; PLEs, Psychotic-like experiences.  

a All p-values in the table are 2-tailed, uncorrected. 

b Unless specified by b, t-tests were used for comparing group means. When specified by b, Chi-

squared tests were used to compare proportions for categorical variables. 

  

Characteristics 
PLEs group 

(N=27) 

Control group 

(N=135) 
P Valuea 

Demographic    

Sex: female, (%)b 64.3% 65.2% .93 

Age at testing, mean (SD) 14.26 (0.31) 14.35 (0.38) .24 

Imaging site: London, (%)b 57.1% 64.4% .47 

Right handed, (%)b 92.9% 91.0% .88 

Puberty status, mean (SD) 3.73 (0.72) 3.69 (0.69) .77 

Cognition    

Verbal IQ, mean (SD) 107.28 (13.64) 110.25 (13.43) .31 

Abstract reasoning IQ, mean (SD) 106.60 (16.70) 107.34 (14.04) .82 

Substance use    

Cigarette use, mean (SD) 0.43 (1.17) 0.40 (1.18) .92 

Alcohol use, mean (SD) 2.25 (1.84) 1.90 (1.84) .37 

Cannabis use, mean (SD) 0.00 (0.00) 0.08 (0.48) .36 
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Table 2. Regions showing group differences in the fMRI contrasts 
 

Regions Direction T-Value 

MNI 

coordinates 
Voxels 

Effect size 

(Cohen’s d) 

x y z 

Faces Task, Angry > Neutral contrast  

Cerebellum L CT > PLEs 3.58 -3 -79 -38 10  

Faces Task, Neutral > Reference 

contrast 

       

Hippocampus/amygdala R PLEs > CT 4.68 30 -13 -17 25* 0.987 

Middle temporal gyrus R | Temporal 

pole 

PLEs > CT 4.19 54 5 -20 10  

Cerebellum L PLEs > CT 3.88 -42 -49 -32 11  

Inferior frontal gyrus, orbital part L CT > PLEs 4.18 -30 32 -20 13  

Lingual gyrus R CT > PLEs 4.15 21 -55 -5 12  

Fusiform gyrus L CT > PLEs 4.14 -33 -31 -17 12  

Stop-Signal Task, Stop success > Baseline  

No significant activation difference  

Stop-Signal Task, Stop failure > Baseline  

Middle frontal gyrus R CT > PLEs 4.65 30 38 40 37* 0.980 

Caudate nucleus L CT > PLEs 4.41 -15 8 19 10  

Monetary Incentive Delay Task, Anticipation large win > No win  

Anterior/middle cingulate gyrus R PLEs > CT 3.77 3 29 31 13  

Fusiform gyrus L CT > PLEs 4.40 -27 -37 -23 15  

 
Abbreviations: MNI, Montreal Neurological Institute space; L, left; R, right; CT, Control group 

reporting no significant psychotic-like experiences; PLEs, Group reporting significant psychotic-

like experiences. 

*Cluster presented are corrected at p<0.05 according to AFNI 3dClustSim. Other brain regions 

presented survived the more liberal cluster threshold of ≥ 10 contiguous voxels. 
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Table 3. Beta weights for prediction of age 16 outcome 

A 

Predictors Mean Betas 

Demographic information 

Age 0.101 
Sex (male) -0.079 
Site 0.105 
Handedness (right-handed) -0.182 
Symptoms 

Psychotic-like experiences at baseline 0.577 
Brain ROIs 

dlPFC during failed inhibition 0.021 
Caudate during failed inhibition -0.088 
Cerebellum during angry faces processing 0.276 
Hippocampus/amygdala during neutral faces processing 0.253 
Middle temporal during neutral faces processing 0.070 
Cerebellum during neutral faces processing -0.234 
Inferior frontal during neutral faces processing -0.126 
Lingual gyrus during neutral faces processing -0.142 
Fusiform gyrus during neutral faces processing -0.077 
ACC/MCC during anticipation of reward 0.066 
Fusiform gyrus during anticipation of reward -0.216 

 

B 

Predictors Mean Betas 

Demographic and substance use information 

Cannabis use in the previous year 0.137 
Lifetime cigarette use  0.150 
Symptoms 

Internalizing behaviors 0.307 
Externalizing behaviors 0.084 
Brain ROIs 

Cerebellum during angry faces processing 0.092 
Hippocampus/amygdala during neutral faces processing 0.073 
Cerebellum during neutral faces processing -0.090 

 

C 

Predictors Mean Betas 

Demographic and substance use information 

Age 0.027 
Sex (male) 0.188 
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Site 0.023 
Handedness (right-handed) -0.020 
Puberty development score 0.077 
Cannabis use in the previous year 0.250 
Lifetime cigarette use 0.268 
Alcohol use in the previous year -0.171 
Symptoms 

Internalizing behaviors 0.297 
Externalizing behaviors 0.098 
Brain ROIs 

dlPFC during failed inhibition 0.100 
Caudate during failed inhibition -0.142 
Cerebellum during angry faces processing 0.317 
Hippocampus/amygdala during neutral faces processing 0.192 
Middle temporal during neutral faces processing 0.100 
Cerebellum during neutral faces processing -0.066 
Inferior frontal during neutral faces processing -0.101 
Lingual gyrus during neutral faces processing -0.158 
Fusiform gyrus during neutral faces processing -0.135 
ACC/MCC during anticipation of reward -0.005 
Fusiform gyrus during anticipation of reward -0.306 

 

D 

Predictors Mean Betas 

Demographic information 

Age -0.024 
Sex (male) -0.053 
Site -0.097 
Handedness (right-handed) 0.041 
Puberty development score 0.096 
Cannabis use in the previous year 0.140 
Lifetime cigarette use -0.057 
Alcohol use in the previous year 0.058 
Symptoms 

Internalizing behaviors 0.154 
Externalizing behaviors 0.100 
Brain ROIs 

Caudate during failed inhibition 0.062 
Cerebellum during angry faces processing -0.083 
Hippocampus/amygdala during neutral faces processing -0.029 
Middle temporal during neutral faces processing -0.025 
Cerebellum during neutral faces processing -0.132 
Inferior frontal during neutral faces processing 0.036 
Lingual gyrus during neutral faces processing 0.071 
Fusiform gyrus during neutral faces processing 0.039 



 

30 
 

ACC/MCC during anticipation of reward 0.025 
Fusiform gyrus during anticipation of reward 0.088 

Abbreviations: dlPFC, dorsolateral prefrontal cortex; ACC/MCC, anterior/middle cingulate 

cortex. 

A, Mean beta weights (averaged over 10 outer folds) of the features that were present in at 

least 9 folds (out of 10) of the final model for classification of the mood and psychotic symptoms 

group versus the no mood symptoms group in the London-Dublin subsample. B, Mean beta 

weights (averaged over 10 outer folds) of the features that were present in at least 9 folds (out 

of 10) of the final model for classification of the mood and psychotic symptoms group versus the 

no mood symptoms group in the full IMAGEN sample. C, Mean beta weights (averaged over 10 

outer folds) of the features that were present in at least 9 folds (out of 10) of the final model for 

classification of the mood and psychotic symptoms group versus the mood symptoms only 

group in the full IMAGEN sample. D, Mean beta weights (averaged over 10 outer folds) of the 

features that were present in at least 9 folds (out of 10) of the final model for classification of 

the mood symptoms only group versus the no mood symptoms group in the full IMAGEN 

sample. 


