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Abstract— A baby’s gestational age determines whether or
not they are preterm, which helps clinicians decide on suitable
post-natal treatment. The most accurate dating methods use
Ultrasound Scan (USS) machines, but these machines are
expensive, require trained personnel and cannot always be
deployed to remote areas. In the absence of USS, the Ballard
Score can be used, which is a manual postnatal dating method.
However, this method is highly subjective and results can
vary widely depending on the experience of the rater. In this
paper, we present an automatic system for postnatal gestational
age estimation aimed to be deployed on mobile phones, using
small sets of images of a newborn’s face, foot and ear. We
present a novel two-stage approach that makes the most out
of Convolutional Neural Networks trained on small sets of
images to predict broad classes of gestational age, and then
fuse the outputs of these discrete classes with a baby’s weight to
make fine-grained predictions of gestational age. On a purpose-
collected dataset of 88 babies, experiments show that our
approach attains an expected error of 6 days and is three times
more accurate than the manual postnatal method (Ballard).
Making use of images improves predictions by 30% compared
to using weight only. This indicates that even with a very small
set of data, our method is a viable candidate for postnatal
gestational age estimation in areas were USS is not available.

I. INTRODUCTION

According to the World Health Organisation (WHO), 10% of
babies are born prematurely each year, amounting to over 15
million preterm babies annually [1]. Complications related to
preterm birth remain the leading cause of death for children
under 5 years [2], with over 1 million deaths just in 2013
[3]. Estimates suggest that over 75% of these deaths could
be prevented with the right treatment [5].

Gestational age helps clinicians determine whether or not a
newborn is preterm and their degree of prematurity [4]. This
estimation influences the treatment that the babies receive
and can, consequently, harm the newborns if estimated incor-
rectly. In high-income countries, the gestational age of a baby
is calculated prenatally with extreme accuracy thanks to early
dating scans performed using USS and trained personnel [6].
However, in regions where USS cannot be deployed due to
the remoteness of the area or lack of funding, the estimation
of gestational age is a challenge. In these countries, in which
the rate of preterm births can reach up to 18% [2], the most
widely used method is the Ballard Score, a manual scoring
system that looks at neuromuscular and physical attributes of
newborns. This method requires significant training and, even
then, it is subjective and prone to errors, specially in low-
income countries [7], [8]. The Ballard score is primarly based
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Fig. 1: Example of images from our database.

on visual analysis of a baby’s features. Thus, the opportunity
for a computer-vision based analysis is tantalising.

In this paper, we present an alternative method for postna-
tal gestational age estimation that eliminates the subjectivity
issues present in the Ballard Score. The main contribution of
this paper is an end-to-end system for automatic gestational
age estimation using a small set of images from a baby’s
face, foot, and ear.

Our Small Sample Deep Learning approach features a
novel method that combines Convolutional Neural Networks
(CNNs) and linear regression, and is particularly suited for
small and skewed datasets, such as our own. Whilst the task
is essentially a regression problem, we reduce the output
space of the Deep Learning component to five major cate-
gories (extremely preterm, very preterm, moderately preterm,
term, and late term), each of which is predicted with a
certain probability. These probabilities are then combined
with the weight of the babies using a simple but effective
linear regressor. This allows us to maintain the fine-grained
prediction required by the original regression task while
still being able to benefit from deep learning’s ability to
automatically learn features from the images.

Results show that, even with data of only 88 babies (see
Fig. 1), we are able to improve the current manual state-of-
the-art, the Ballard score by a factor of 3.10, resulting in
gestational age estimations accurate to 8 days RMSE, or 6
days expected error (standard deviation).

This paper is structured as follows: Section II gives an
overview of the relevant literature in the fields of gestational
age estimation, pre and postnatal, general age estimation,
and segmentation. Section III describes the data that we have
collected of 88 babies as part of this project and discusses978-1-5090-4023-0/17/$31.00 c©2017 IEEE



the major challenges that we have faced in doing so. Section
IV describes in detail the characteristics of the two-step
method developed in this paper, while Section V presents
and discusses the results obtained using this method. Finally,
Section VI summarises this paper and discusses future work.

II. LITERATURE REVIEW

In this section, we briefly review relevant literature on three
main topics: Gestational Age Estimation, Age Estimation and
Image-based Segmentation.

A. Gestational Age Estimation

There are three major methods currently used for gestational
age estimation: Ultrasound Scans (USS), Last Menstrual
Period (LMP), and clinical assessment such as the Ballard
Score [9]. USS are prenatal and accurate to within a day if
performed early in pregnancy [6]. However, USS machines
can be inaccurate if used outside the first trimester and
are expensive and not deployable to many rural areas [9].
Additionally, they require trained personnel to use them, and
report biased estimations for very large or small fetuses [9].

The LMP and Ballard methods, in comparison, are postna-
tal, low-cost and easy to deploy [10], [11]. The LMP method
calculates the gestational age of a baby from the mother’s
last menstruation until the birth of the baby [9]. On the other
had, the Ballard score (shown in Fig. 2) looks at two different
sets of measurements regarding the newborn: Neuromuscular
and Physical criteria. Neuromuscular criteria include posture,
square window, arm recoil, popliteal angle, scarf sign, and
heel to ear measurements, while Physical criteria include
skin, ear/eye, lanugo hair, plantar surface, breast bud and
genital measurements. Using the LMP entails estimation
problems due to uncertainty, very often due to bleeding
not related to periods or delayed ovulation, and using the
Ballard Score is reported to be subjective, dependent on the
clinicians’ experience and, overall, inaccurate [9].

Few researchers have attempted to develop methods of
automatic gestational age estimation. Most research is in
Anthropology and focuses on using simple techniques, like
linear regression, and measurements of skeletal remains or
brain weight [12], which are nearly impossible to obtain in
rural settings.

This paper presents an alternative to these methods. It is
automatic and combines the objectivity and accuracy of the
USS scans, and the ease of use and accessibility of the LMP
and the Ballard score.

B. Automatic Age Estimation

Automatic Gestational Age Estimation is in many ways
related to Automatic Age Estimation. Here we provide a
general overview of popular methods for age classification.
The problem of Age Estimation has recently gained pop-
ularity within the Computer Vision community, with many
databases released and challenges organised [15], [14].

Being essentially a Computer Vision task, the current
state-of-the-art methods use Deep Learning in one form
or another [14], [15], [16], [17]. However, one thing that

Fig. 2: The Ballard test. Neuromuscular and Physical infor-
mation is measured to give an estimate of the gestational age
of the newborn postnatally.

separates our problem from traditional age estimation, and
consequently makes these methods unsuitable, is the ease
with which data can be made available. In [14], participants
were given thousands of images from different people, while
[17] needed tens of thousands of images to apply Convolu-
tional Neural Networks (cNNs) to classify images according
to age. In stark contrast, our dataset consists of only 88
babies. For this reason, we decided to apply the techniques
of deep learning, but had to overcome the challenge to create
a new method that would work for the type of real data that
we were collecting (small and skewed samples).

C. Image-based Segmentation

A vast amount of research has been done in the area of
segmentation, particularly in the area of biomedical imagery
[18], [19]. Again, and unsurprisingly, the current state-
of-the-art uses Deep Learning. One of the most popular
contemporary approaches are Fully Convolutional Neural
Networks (FCNs, [20]). FCNs approach segmentation as
a per-pixel classification problem and modify traditional
CNNs by substituting the final fully-connected layers for
1x1 convolutions. Due to their robust and accurate results in
problems such as object recognition [20], we have decided
to apply FCNs in the first stage of our system.

III. DATA COLLECTION
Recruitment and data collection were crucial for this project.
While the ultimate goal is to deploy our image-based gesta-
tional age estimation system in areas without USS, in order



to obtain ground truth data to learn our algorithms we needed
to recruit participants for whom the gestational age was
determined by USS, our gold standard. Participants were
sorted into five different classes according to their degree
of prematurity using a standard World Health Organisation
categorisation scheme. These classes are shown in Table I.

Participants were recruited by medical staff at the Queen’s
Medical Centre (Nottingham), who approached parents of
newborn babies on the maternity ward and the neonatal
intensive care unit. Ethics approval for this study was ob-
tained from the National Health Service in the UK (NHS
ethics committee approval, ref. 15/EM/0173), and from the
School of Computer Science at the University of Nottingham.
After informed consent had been taken, data collected from
participants resulted in two sets of data:

Images of the participant’s face, foot and ear. In some
cases, particularly in the case of newborns aged 28 weeks of
gestation or less (extremely preterm), who are connected to
machines, some of these images were difficult or impossible
to obtain. Of the 88 participants recruited to date, 88 supplied
foot images, 81 supplied ear images and 80 supplied face
images. Additionally, each participant had between 2 to 10
images taken from each different body part, depending on
the risk involved in taking them. More information about
the number of babies and photographs from each class can
be found in Table I.

Case Report Forms (CRF) with relevant information
such as the gestational age of the baby, days of life at the time
of the visit, current weight, Ballard Score as performed by
the medical team in charge of recruiting participants (blinded
to the gestational age of the baby), the medical history of the
mother, and information about the delivery. The information
on this document was used to collect the ground truth for the
age estimation. All data was anonymised to guarantee that
information could not be used to trace participants.

TABLE I: Data Distribution in terms of Babies and Images.
w stands for Weeks gestation

Babies Images
Face Foot Ear

Extremely (≤ 28w) 8 26 46 13
Very (28 to 32w) 22 73 161 49

Moderate (33 to 36w) 22 86 119 53
Term (37 to 40w) 18 68 140 50

Late (≥ 40w) 18 50 166 17
Total 88 303 632 207

Since part of our system first needs to automatically locate
the different body parts within the image, landmarks were
annotated in the images, which were then used to train and
test our segmentation step. This required the effort of 3
annotators who employed over 300 hours of work in the
span of four months.

Foot images required 43 points, while face images needed
68 points and ear images needed 44 points. An example of
an annotated foot is shown in Fig. 3

The sensitive nature of this project and the characteristics
of the participants needed resulted in a number of challenges

Fig. 3: An example of an annotated foot image with 43
points.

that affected both the data collection stage and computation
stage. The team behind the project encountered two main
challenges:

1. Recruiting babies: Recruiting moderately preterm,
term, and late babies was straightforward and successful,
since the babies were not undergoing any invasive treatment
and taking photos did not incur in any additional stress for
them. However, understandably, parents of extremely and
very preterm babies were too worried about their child and
about potentially interrupting their serious treatment to take
photographs. As a result, despite our best effort our database
is somewhat skewed towards moderately preterm, term and
late babies.

2. Taking high-quality photos: Not only were extremely
and very preterm babies difficult to recruit, they were also
hard to photograph, due to the babies being inside incubators
and connected to machines. This resulted in members of our
team not being able to collect images from babies belonging
to these categories or in the images being blurry or heavily
occluded by clothes, patches or machines. A visual example
of the effects of this challenge is shown in Fig. 4. These
photographs were too blurry or had too much occlusion to
be suitable to be used in our dataset. In particular, Fig. 4a
exemplifies the type of occlusion that many photographs of
extremely and very preterm babies had.

The effects of these challenges are shown in Table I,
where the differences between extremely preterm babies
(8 participants, adding up to a total of 75 images) and
moderately preterm babies (with 22 participants and 283
images) are seen. The babies recruited to date were collected
from October 2015 to September 2016.

IV. SMALL SAMPLE DEEP LEARNING

Our Small Sample Deep Learning method presented in this
paper, and shown in Fig. 5, can be divided into two stages:

1) Segmentation: which uses FCNs [20] to localise the
regions of interest (foot, ear and face) within an image.

2) Gestational Age Estimation: Which, uses a bounding
box around the regions of interest with a combination
of CNNs and Linear Regression to generate a predic-
tion on the gestational age of a baby.
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Fig. 4: Examples of challenging images. Major challenges
include blurry images due to incubator conditions or heavy
occlusion due to babies receiving treatment.

A. Segmentation

The first stage of the system is carried out using Fully
Convolutional Neural Networks (FCNs), developed in [20].
We have used FCNs to segment the images taken by our
team and localise where the foot, ear and face are within
each image. FCNs are the current state-of-the-art method
for segmentation [20]. They use the same architecture as a
VGG network [21] with one major difference: the traditional
fully-connected layers are replaced by 1x1 convolutions.
This allows them to provide a per-pixel classification and,
consequently, segment the original image.

As shown in Fig. 5, the input of this stage are the pre-
processed images from our dataset. The output of the FCNs
are binary masks in which pixels that were predicted as part
of the body parts that were being classified are activated.
The ground-truth used in this stage are binary masks created
using the polygons that resulted from manual annotations. In
these masks, pixels equal to 1 belong to feet, faces or ears
and pixels with a value of 0 are part of the background.

Once the predicted segmentation masks were obtained,
a simple post-processing stage was carried out to isolate
the activated regions that belonged to either the ear, face
and foot of the babies. Since some of the images showed
the clinician’s hands or other parts of the baby, such as
their legs, we found that some patches of flesh from these
regions were sometimes predicted as ear, face and foot.
In a post-processing step the region with the largest area
of activated pixels was retained while discarding any other
spurious regions of activation. This successfully removed
many incorrectly predicted pixels.

B. Gestational Age Estimation

The second stage of our framework, and the main con-
tribution of this paper, is the Gestational Age Estimation
stage. For this stage, we created a new architecture of
CNNs, called CVL17, specifically designed for small and
imbalanced datasets. We have also created a novel method of
combining this architecture with linear regression to obtain

an estimation of the ages in days. The advantages of this
process are three-fold. It allows us to:
• Take advantage of current state-of-the-art methods,

CNNs, even when our input data does not fit the criteria
that CNNs usually require (large amounts and balanced
classes).

• Combine visual information and anthropometric mea-
sures, such as the weight of the babies in the decision-
making process.

• Provide an estimate of the gestational age in weeks,
instead of classes. These results are, by definition, more
finer-grained.

Training of our Small Sample Deep Learning structure
consists of two phases:

1. Convolutional Neural Networks: CNNs were used to
classify images according to five coarse classes (presented in
Section III). Since our dataset was relatively small and there
was a high imbalance between babies who were born before
28 weeks and babies that were 35 weeks or older, we decided
against grouping participants according to their gestational
age in weeks. This would have resulted in 14 classes (from
26 weeks-old to 40 weeks-old) with extremely small sample
sizes. In fact, some classes would even have had no examples
at all. Grouping participants into five classes guaranteed
heavily populated classes with a balanced distribution of
images between them.

For the purpose of training small sets of data, we created
our own network: CVL17. CVL17 is a 17-layer CNN, which
was designed to work with a limited and skewed set of data:
it is “deep” enough that features can be learned and, at the
same time, it is “shallow” enough that it can classify images
confidently. CVL17 was implemented using Caffe. It uses
128x128p RGB images as the input and it is composed of
four distinct blocks of layers. The first three blocks follow
the same pattern: Convolution, ReLu, Convolution, ReLu,
Pooling. Each block reduces the dimension of the input
feature vector by half. The last block of layers is composed
of two fully-connected layers. The first one has 100 outputs
and the second one has 5, according to the 5 classes we want
to recognise. We use a SoftMaxLoss layer to measure error.
Since we are using images from three different regions, we
train separate cNNs for the feet, face and ear.

2. Linear Regression: Once the CNNs have been trained,
the test images are propagated through the network and
the probabilities obtained as the output of the cNN are
stored for each of the babies in the test set and each
of the regions. This produces a 5x1 probability vector, as
shown in Fig. 5, where pe is the probability of the test
image belonging to the extremely preterm class, pv is the
probability of the test image belonging to the very preterm
class, pm is the probability of the test image belonging to
the moderately preterm class, pt is the probability of the test
image belonging to the extremely term class, and pl is the
probability of the test image belonging to the late term class.
This process was repeated using subject-independent 5-fold
cross-validation to obtain predictions for the whole dataset
in a manner that avoids overfitting.



Fig. 5: Overview of the whole process when feet and ear photographs are combined. The first step, FCNs, were developed
by [20]. w stands for the baby’s weight at birth. pe is the probability of the test image belonging to the extremely preterm
class, pv is the probability of the test image belonging to the very preterm class, pm is the probability of the test image
belonging to the moderately preterm class, pt is the probability of the test image belonging to the extremely term class, and
pl is the probability of the test image belonging to the late term class. Newborn’s stock photo from [22]

The 5-dimensional image-based probability vectors are
combined with the weight of the participants and used as the
input of a simple linear regressor, which outputs an estimate
of the gestational age of the babies in weeks.

V. EXPERIMENTS

To test our system, we carried out a series of experiments
using 5-fold subject-independent cross-validation. This guar-
antees no overlap between photos from babies used during
training and photos from babies used during testing. We use
two-stage cross-validation. In the first stage, we do subject-
independent cross-validation to generate predictions made by
the CNN. We then treat these predictions as the features of
our second stage, where we evaluate the linear regressors
again using subject-independent cross-validation.

The purpose of these experiments was to prove three
different hypotheses, all of which were supported through
testing:

1) FCNs can be used to accurately locate faces, feet and
ears within the images of our database.

2) Increasing the number of images directly results in an
overall improvement across all metrics studied.

3) Combining the weight of a baby and visual information
can improve the current state-of-the-art in terms of
postnatal methods.

Due to the small number of images in our dataset, we
needed the characteristics of our images in terms of size,
orientation and perspective to be as similar as possible.
Assuring that all images had the same properties would
diminish and even eliminate any negative effect that vari-
ations on size and layout could bring into the segmentation
and estimation process. However, circumstances not always

allowed photographs to be taken under the exact same
conditions. Consequently, the raw photographs taken by our
team were pre-processed according to:

1) Size: With a size of 4MB, raw images were too large
to be used as the input of FCNs. To solve this, images
were resized to 10KB.

2) Orientation: Images had inconsistent orientations. To
solve this, we rotated all images until they were
landscape images with the captured body part in an
upright position.

3) Perspective: We originally intended to capture the right
foot and right ear from all babies. However, due to
some babies undergoing treatment, this was not always
possible and photographs of their left foot or ear were
taken. To solve this, images with left ears or feet were
horizontally flipped.

After this pre-processing step, all images had the same
characteristics and they were ready to be segmented.

Using the masks obtained from the segmentation step,
bounding boxes were created around the largest region of
activated pixels within the masks. Bounding boxes were
centred around these blobs and resized to 128x128 pixels.

Additionally, we carried out some data augmentation to
balance the dataset. As shown in section III, our dataset was
limited and quite skewed. While CNNs represent the state
of the art in terms of classification methods, they require
large quantities of data to perform adequately. Therefore,
we decided to rotate the bounding boxes within the images
betweeen -10 and 10 degrees. Depending on the gestational
age of the participant, a different number of rotations were
added to our training dataset. Extremely preterm babies had
10 rotations added to the dataset, very preterm babies had



four rotations added and moderately, term, and late preterm
babies had two rotations added. This way, the final number
of images that were used for training were more balanced.

A. Metrics

Segmentation is measured using the Jaccard Index, while
Age Estimation uses RMSE.

1) Jaccard Index: The Jaccard Index is widely used
in segmentation problems, particularly in Biology [23]. It
measures the intersection over the union of two sets of points
[24]. It is calculated with:

J(P,GT ) = |P∩GT |
|P∪GT |

Where P is the prediction (pixel set returned by FCNs as
belonging to body parts), and GT is the ground-truth.

2) RMSE: The Root Mean Square Error was used because
it allows us to measure the error of our predictions in the
same units as the groundtruth, weeks.

RMSE =
√

1
n

∑n
i=1(yi − ŷi)2

Where yi is the gestational age of the ith baby and ŷi is the
prediction for the gestational age of the ith baby according
to our linear regressor.

B. Setup

Experiments were carried out on a machine using an
NVIDIA’s Titan X GPU. For the Segmentation step, we ran
each stage of the FCNs for 30,000 iterations (93 minutes)
with a learning rate of 10−4 and a step of 0.9. For the
Gestational Age Estimation step, we trained each CNN for
20,000 iterations (5 hours and 11 minutes).

C. Results

Results from all of our experiments are shown in Table II,
Fig. 6, and Table III.

TABLE II: Results for Segmentation of Face, Foot and Ear.

No Post Proc Post Proc.
Mean Median Mean Median

Face 0.73 0.78 0.73 0.78
Foot 0.79 0.85 0.79 0.86
Ear 0.67 0.77 0.69 0.78

Results from the Segmentation step show that FCNs are
highly accurate, achieving a Jaccard Index of over 0.7. This
implies that the predictions have over 70% of common
foreground pixels with the input masks. Additionally, the
similarity between the median and mean of the Jaccard Index
indicates that the results are consistent across all images in
the different image datasets.

FCN results were particularly interesting when dealing
with regions that were not convex, like the foot. In some
cases, the predictions were more accurate than the simple
masks that we used, as shown in Fig. 7. More importantly,
these results were sufficiently accurate to localise the body
parts of interest, and to obtain their largest dimension (height
or width), which is the most important information to gen-
erate bounding boxes for CNN training.

Fig. 6: Results from training with 0% (Ballard), 50% and
%100 of the training data on the same test set.

TABLE III: Gest. Age Estimation. Baselines are shown in
bold and italics. Our best result (in bold) improves both. Ft
is Foot, F is Face, E is Ear and W is Weight.

Method RMSE Min E Max E Std E
Weight 1.50 0.027 4.72 1.00
Ballard 3.57 0.036 7.36 2.27
Ballard Separated 3.72 0.004 8.79 2.27
Posture 4.14 0.065 8.17 2.09
Face 3.91 0.384 9.98 2.23
Foot 2.66 0.031 11.73 2.22
Ear 3.35 0.147 8.23 1.97
Weight + Face 1.63 0.013 6.84 1.32
Weight + Foot 1.40 0.005 5.86 1.25
Weight + Ear 1.46 0.023 5.91 1.33
Face +Foot 2.81 0.058 9.68 2.67
Face + Ear 3.24 0.045 12.79 2.83
Foot + E 3.67 0.214 12.18 2.78
F + Ft + E 3.17 0.126 12.49 2.88
F +Ft + W 1.32 0.042 4.67 1.01
F + E + W 1.15 0.016 4.34 0.89
Ft + E + W 1.23 0.001 5.52 1.06
F + Ft + E + W 1.29 0.023 4.97 0.99

Looking at the results obtained in the Gestational Age
Estimation stage, two main points can be inferred. First, as
shown in Fig. 6, the increase in training data directly affects
the performance of the system. To test the importance of
the size of the training set, we carried out three different
experiments. First, we trained with the Ballard score to
obtain a baseline result. Secondly, we trained our system
using 5-fold subject-independent crossvalidation but only
with 50% of our training data, chosen randomly across
folds. Thirdly, we trained our system with 5-fold subject-
independent crossvalidation again, using 100% of the data
available. We maintained the same testing set across folds,
which made the comparison between methods fairer.

Fig. 6 shows the average RMSE square in these three
cases when training with Foot and Ear, but all scenarios
tested presented the same behavior. Once the training set is
doubled, the accuracy of our methods increases dramatically,
improving over 0.70 and 0.50 weeks for the Ear and Foot,



Fig. 7: FCN learns location of foot better than original
manually-annotated mask, outperforming groundtruth.

respectively. This implies that a larger dataset will generate
more accurate and robust results in the future.

Secondly, as shown in Table III, our method of combining
the probability output from CNNs and weight is the most
accurate technique. It consistently outperforms the current
manual state-of-the-art, the Ballard Score, the use of other
alternative anthropometric measures, such as the weight
alone, and it also greatly outperforms the use of CNNs alone.

Furthermore, using 100% of the training data, combining
regions and including weight during linear regression consis-
tently results in a decreased RMSE error and a lower standard
deviation in the prediction error. By combining Weight, Ear
and Faces, we obtain results that on average have a RMSE of
1.15 weeks. That is 8 days difference between a newborn’s
gestational age estimated by an early USS and the age we
predict with our system. Fig. 9 shows the ground-truth from
the Ultrasound machines versus the predictions made by our
system when using in this case. By comparison, using the
Ballard score will results in 25 days of difference and using
only the weight will result in 10.5 days of difference.

Looking at the correlation between the errors of using
Face, Ear, Foot and Weight separately, as shown in Fig.
8, we can see how in particular the errors made based on
information of the images are largely independent of the
errors made based on the weight. On the other hand, it is
interesting to see a strong correlation between the ear and
the face as well as the ear and the foot.

Combined with the expectation that collection of more
data will further improve image-based predictions (see Fig.
6), these results indicate that our system is a viable alternative
to the current manual methods used in remote or underde-
veloped areas where USS is not commonly available.

VI. CONCLUSIONS AND FUTURE WORK

The gestational age of a baby is vital when determining
the best treatment for a newborn, especially when born
prematurely. In this paper we have presented a system that
estimates the gestational age of babies postnatally using
photographs of their face, foot and ear. Our system has two
steps: first, images are segmented using Fully Convolutional
Neural Networks to find where the relevant body parts
appear in the image. Second, a 13-layer Convolutional Neural
Network aimed to classify the photographs according to
five classes (extremely preterm, very preterm, moderately

preterm, term, and late) is trained using bounding boxes
around these body parts. The probability vectors that result
from these CNNs are then combined with the weight of the
newborn and used as the input of a linear regressor. This
allows us to output an estimation of the gestational age in
weeks, instead of classes.

Results show that when our method uses a combination
of images and weight, we are able to outperform the current
manual state of the art, the Ballard Score, and other methods
that use anthropometric measures, such as weight or posture.
This suggests that our system is a potential alternative to
these manual methods, often used in remote and underfunded
locations where USS are not available and healthcare workers
may not be trained in clinical assessment of the premature
newborn.

Future work will focus on increasing the size of our
database and balancing it. We aim to create a database with
equal amounts of images for the three regions (face, foot and
ear) and all five classes of babies (extremely premature, very
premature, moderately premature, term and late). For this, we
are in the process of recruiting more babies, focusing on the
more challenging categories (i.e. extremely and very preterm
babies). We are estimating that we will reach 100 babies by
the time the camera-ready version of this paper is submitted
and plans are underway to recruit thousands of babies in
India to test the method in a setting most likely to benefit
from this approach. This will allow us to train even more
robust regression and to test on a more varied dataset. This
approach could result in improved outcomes for the millions
of vulnerable babies in low-middle income countries where
clinical management is compromised due to incorrect or
unknown gestational age at birth. Furthermore, by uploading
this information to a cloud database we could obtain a more
detailed picture of the populations where preterm birth is
more prevalent.
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