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Abstract— Attention Deficit Hyperactivity Disorder (ADHD)
and Autism Spectrum Disorder (ASD) are neurodevelopmental
conditions which impact on a significant number of children
and adults. Currently, the diagnosis of such disorders is done
by experts who employ standard questionnaires and look for
certain behavioural markers through manual observation. Such
methods for their diagnosis are not only subjective, difficult
to repeat, and costly but also extremely time consuming. In
this work, we present a novel methodology to aid diagnostic
predictions about the presence/absence of ADHD and ASD by
automatic visual analysis of a persons behaviour. To do so, we
conduct the questionnaires in a computer-mediated way while
recording participants with modern RGBD (Colour+Depth)
sensors. In contrast to previous automatic approaches which
have focussed only on detecting certain behavioural markers,
our approach provides a fully automatic end-to-end system to
directly predict ADHD and ASD in adults. Using state of the
art facial expression analysis based on Dynamic Deep Learning
and 3D analysis of behaviour, we attain classification rates of
96% for Controls vs Condition (ADHD/ASD) groups and 94%
for Comorbid (ADHD+ASD) vs ASD only group. We show that
our system is a potentially useful time saving contribution to
the clinical diagnosis of ADHD and ASD.

I. INTRODUCTION
The last 5 years have seen a steady progress in auto-
matic expressive behaviour analysis, with the detection and
tracking of faces [1][2][3][4], recognition of facial muscle
actions [5][6][7], and accurate head pose estimation [1][8]
all now possible under mild environmental constraints. This
has renewed the interest of researchers to employ such
behaviour analysis in the medical domain, targeting so-
called behaviomedical conditions that alter one’s expressive
behaviour [9]. In this paper we use state of the art facial
expression analysis and RGBD head motion analysis to help
in the diagnosis of Attention Deficit Hyperactivity Disorder
(ADHD) and Autism Spectrum Disorder (ASD).

ADHD is a neurodevelopmental condition affecting a large
number of people and it has been estimated that at least
2.5% of the general adult population is affected by it [10].
ADHD is characterized by symptoms such as hyperactivity,
impulsivity, inattention, etc. [11][12]. It usually begins in
early childhood and quite often the symptoms persists into
adulthood [13]. It is widely believed that both genetic
[14] and environmental influences [15] contribute to the
underlying cause of this disorder. Presently, the diagnosis
of ADHD is made following the criteria of the DSM-5 [16],

Fig. 1: Overview of our system. A participant follows instruc-
tions on a screen while being recorded by a Kinect 2 camera.
Deep Learning and RGB-D behaviour analysis of each video
segment leads to successful ASD/ADHD classification.

which involve mechanisms to validate hyperactivity, attention
deficit and impulsivity. The diagnosis is made by experts
using a combination of developmental history, collateral
information, psychometrics and behavioural observation and
impairment. This is often difficult and time consuming.

ADHD is also known to show co-morbidity with ASD
(Autism Spectrum Disorder). ASD is a neuro-developmental
condition which is characterised by impairments in social
interaction and communication and restricted, repetitive or
stereotyped behaviours and interests. It has been found
that a significant number of people with ASD also show
symptoms of ADHD [17]. Treatment methods also vary
for all 3 groups of people i.e. only ASD, only ADHD,
and comorbid (ADHD+ASD). Hence, accurate diagnosis
can have important implications for treatment. However,
currently the manual diagnosis for each of these disorders
has to be done separately which requires more time.

Although there has been a lot of research in the area of
ADHD and ASD and their diagnosis using brain scanners
and manual observation of subjects for extended periods of
time by psychological experts, there has been relatively little
work in the direction of developing automated diagnostic
aids for ADHD and ASD using easily available devices (e.g.
video camera). The current methods of diagnosis are not
only time consuming but they are also susceptible to human
decision making bias. Development of machine learning
methods which can be used as a tool for decision making by978-1-5090-4023-0/17/$31.00 c©2017 IEEE



human experts, could not only save time but will also help in
bringing more objective, repeatable measures in the decision
making process.

Currently available commercial systems (e.g. QbTest [18])
seek to automate the process of ADHD diagnosis uses only
head motion of a person as a proxy for the activity of the
subject. The other aspects of head actions including its pose
are not taken into account directly. The head motion itself
is captured using a normal 2D imaging camera which has
limited ability to capture motion in 3D. Facial expression
is another aspect which is completely ignored in current
ADHD assessment systems. Facial expressions and gestures
can provide important cues about the psychological state
of a person. There has been some work which indicates
that facial expressions could be useful in the diagnosis of
certain psychological disorders[19], [20]. But to the best of
our knowledge, until now there has been no research which
establishes the relationship between facial expressions and
ADHD/ASD.

In this work we aim to make the diagnostic procedure for
ADHD and ASD easier, more efficient and more objective
through automatic analysis of a person’s behaviour. We
propose a computer-vision based approach to automatically
aid diagnosis of ADHD and ASD. We extract high level
features from tracked faces in videos to learn classification
models for ADHD and ASD prediction. We adapt a recently
proposed Dynamic Deep Learning method to recognise facial
action units from RGB data [21], and use face tracking data
from RGBD (colour+depth) images recorded using a Kinect
2.0 sensor camera to obtain head actions and facial animation
unit parameters.

We also present a first of its kind RGBD database in
which 55 subjects who have previously been diagnosed with
ADHD or ASD as well as subjects from a healthy control
group were recorded in a controlled setting. We evaluate our
proposed approach on this database and show that that our
approach performs highly accurately on ADHD and ASD
classification tasks achieving classification rates of 96% for
Controls vs Condition (ADHD/ASD) group and 94% for
Comorbid (ADHD+ASD) vs ASD only group.

In summary, our main contributions are:
• A novel fully automatic approach for making diagnostic

predictions for ADHD and ASD directly from videos.
• Establishing the relationship between facial expres-

sion/gestures and neurodevelopmental conditions such
as like ADHD and ASD.

• A new database for evaluating computer vision based
algorithms on the task of predicting ADHD and ASD
diagnosis.

II. RELATED WORK

The field of using Computer vision techniques for monitoring
people for ADHD and ASD is still in its infancy and there
has been limited research reporting on this topic. Below
we describe some of the existing works which aim towards
automatic detection of certain markers which could help in
the diagnosis of ADHD and ASD.

A. Detection for ADHD

Some preliminary studies have been conducted to demon-
strate the use of depth capturing cameras to monitor the activ-
ities of people. For e.g. Hernandez-Vela et al. [22] extracted
3D skeletal model of human body, using RGB-D image
sequences. Using this skeletal model, they tracked 14 ref-
erence points corresponding to skeletal joints and used them
to detect certain body gestures often found in children having
ADHD. For detecting such gestures, they used Dynamic
Time Warping [23]. By measuring the similarity between
a temporal sequence of images with a reference sequence of
a gesture, they demonstrated that they can recognize a set of
defined gestures related to ADHD indicators.

In [24], a system was developed for tracking people across
multiple cameras and sensors. They used depth measuring
cameras (Microsoft Kinect) to monitor the movement of
children in a classroom setting. The authors used agglomer-
ative hierarchical clustering to segment different objects and
tracked different individuals using covariance descriptors.
One of the applications they proposed for such a system
would be to record the motion tracks and velocity profiles
of people, to measure their activity level.

QbTest [18] is one of the most successful commercially
available systems for monitoring and diagnosis of ADHD.
It measures 3 main indicators of ADHD: hyperactivity,
inattention and impulsivity. It combines head motion tracking
with a computer based test. The head motion tracking is
designed to measure the hyperactivity of the subject. For this
purpose, the subject taking the test is required to wear a head
band which has a reflector attached to it. The camera in front
of the subject, tracks the movement of the reflector. However,
the system’s ability to capture the full facial information is
limited as it does not track the entire face thus ignoring
the 3D head pose and facial expression information. To
measure the inattention and impulsivity, the subject has to
take a computerised continuous performance test in which
the participant has to respond quickly and accurately to
certain geometrical shapes displayed on the screen. The
whole test lasts for 15-20 minutes and the head motion is
tracked during the entire time. After the test, the result is
compared to the norm data corresponding to the subject’s
age and gender and a report is generated for assessment by
clinicians.

B. Detection for ASD

One of the pioneering works in the field of ASD diagnosis
was done by Hashemi et al. [25]. In this work, the authors
developed computer vision based methods to identify certain
behavioural markers based on Autism Observation Scale
for Infants (AOSI) related to visual attention and motor
patterns. For assessing visual attention, they focused on 3
main behavioural markers, namely sharing interest, visual
tracking and disengagement of attention. These behavioural
markers were detected by estimating the head pose in the left-
right direction (yaw) and in the up-down direction (pitch).
The head pose was estimated by tracking the position of
certain facial features (eyes, nose, ear, etc.).



Fig. 2: Distribution of participants in KOMAA dataset.

In [26], the authors presented another computer vision
based approach for studying autism by retrieving social
games and other forms of social interactions between adults
and children in videos. They proposed to do this by defining
social games as quasi-periodic spatio-temporal patterns. In
order to retrieve such patterns from unstructured videos, the
authors represent each frame using a histogram of spatio-
temporal words derived from space-time interest points. The
frames are clustered based on their histograms to repre-
sent the video as a sequence of cluster (keyframes) labels.
The quasi-periodic pattern is found by searching for co-
occurrences of these keyframe labels in time.

In [27], the authors proposed an algorithm for detecting
self-stimulatory behaviour which is a common behavioural
marker in individuals with autism. They computed motion
descriptor using dominant motion flow in the tracked body
regions, to build a model for detecting self-stimulatory
behaviour in videos. Similarly, in [28], the authors measure
children’s engagement level in social interactions using low
level optical flow based features.

Most of the above mentioned works have concentrated on
detecting certain pre-defined behavioural markers which are
often associated with either ADHD or ASD in children. They
are preliminary works whose effectiveness in predicting the
actual ADHD and ASD diagnosis still remains to be seen.
On the other hand, this work poses the diagnosis of ADHD
and ASD, directly as a machine learning problem. Our
work is one of the first which attempts to learn models for
directly predicting conditions such as ADHD and ASD using
high level facial features which can be reliably computed
nowadays. This work also differs from other works in the
sense that it is mainly focusses on ADHD and ASD diagnosis
in adults rather than children.

III. DATA COLLECTION

We collected a dataset ’KOMAA’ (Kinect Data for Objec-
tive Measurement of ADHD and ASD) for the purpose of
evaluating our proposed method. The database consists of
video recordings from a total of 55 subjects. The length
of each video is approximately 12 min. and is recorded
using a Kinect 2.0 device which is capable of capturing high
resolution RGB and depth images. All the participants in the
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Fig. 3: Gender distribution and median age of participants
within different groups in the KOMAA dataset.

recording were adults over the age of 18 years. During the
recordings the subjects sit in front of a computer screen and
have to read and listen to a set of 12 short stories. Each story
is accompanied by 2-3 questions which the subjects have
to answer in their voice. These stories have been selected
from the ’Strange Stories’ task [29] which is often used as
psychological test for the diagnosis of ASD. The text of each
story along with the corresponding questions were displayed
on the screen. Additionally, a pre-recorded voice was played
reading out the story and the corresponding questions. Such
a setup was prepared so as to simulate the effect of an actual
person telling the story and asking the questions, but at the
same time keeping the setup as automated as possible.

The subjects in this database can be divided into four
different categories. The first category is the control group
which consists of subjects who show no symptoms of
ADHD/ASD and have never been diagnosed with either
ADHD or ASD. In order to make sure that the subjects
recruited in the control group do not have any chance of
having ADHD or ASD, each subject was asked to complete
2 screening questionnaires: Adult ADHD Self-Report Scale
(ASRS) [30]) and Autism Spectrum Quotient (AQ10) [31].
The ASRS is a screening measure for ADHD symptoms in
adults consisting of 18 items. It is based on DSM-IV items
for ADHD and is considered to have excellent reliability
and validity [32]. Similarly, AQ10 is a screening measure
for Autism symptoms consisting of 10 items and is widely
used to measure the degree to which an adult has autistic
traits. Only those participants who scored less than a certain
threshold value in each of the questionnaires, were selected
as a part of the control group. The threshold values for ASRS
(Part A) and AQ10 were set to be 4 and 6 respectively. The
other three categories include the ASD group (consisting
of subjects who have been diagnosed with ASD), ADHD
group (subjects who have been diagnosed with ADHD) and
ASD+ADHD group (subjects who have been diagnosed with
both ADHD and ASD.

The total number of subjects recruited into each category
is shown in Fig. 2. The gender distribution and the median
age of the participants in each category is also shown in
Fig. 3.

IV. METHODOLOGY

Training statistical machine learning based classifiers
which can automatically differentiate between subjects with



ADHD/ASD from healthy controls, is a difficult problem.
The problem becomes even more challenging when the
number of training examples are small. Deep learning based
approaches which directly use low level pixel information to
learn high level semantics, currently provide state-of-the-art
performance on a number of computer vision tasks. However,
using low level information on the limited number of training
examples in our case, can lead to severe overfitting.

Our approach to training the classifiers involves computing
high level feature descriptors corresponding to facial expres-
sions (facial AUs), head pose and motion, etc. To compute
the feature descriptors, each video is first divided into 12
segments corresponding to the 12 stories that the participants
have to read while they were recorded. This has been done
manually, but could easily be automated given that the timing
of the delivery of the stories is controlled by the researcher.

For each video segment, histogram based feature de-
scriptors are computed separately using pre-trained clas-
sifiers/regressors that detect individual behavioural cues.
Grouping these cues per story helps to preserve temporal
information which would otherwise be lost if histograms
would have been computed over all the frames in a video,
at a small price of multiplying the dimensionality of our
overall feature vector by a factor 12. The combined set of
feature descriptors from all segments in a recording are used
for used for training the ADHD/ASD classification models
(See Fig. 1). Below we describe the main components of our
approach in more detail.

A. Feature descriptors

Six different sets of features are computed from the recorded
video of each subject. Most of the features are computed on
a per-frame basis, which are then converted into multiple
histograms where each histogram is computed over all the
frames in a video segment. The feature descriptors used in
our approach are described below:

1) Dynamic Deep Learned Facial Action Units:
Facial action units (AU) are movement of individual or
group of facial muscles defined according to the Facial
Action Coding System (FACS)[33]. Anatomically based
descriptors of facial expressions, they can be a good
representative of the emotional and mental state of a person
and can encode a large number of social signals. Intensities
for a set of 6 AUs (AU1, AU2, AU4, AU12, AU15, AU20)
and occurrence for AU45 (blinks) were estimated for each
frame in video. For this purpose we used AU models
trained using a slightly modified version of the deep CNNs
described in [21]. The network architecture used for this
purpose is shown in Fig. 4. This network does not use
Bi-directional Long Short Term Memory (BLSTM) used
by the original work in [21]. Histograms of AU intensities
was computed over all the frames in a video segment. One
histogram was computed for each AU consisting of 10 bins
each. For AU45, the frequency of its occurrence and the
average duration of its activation were estimated in each
video segment. The histograms of all AU intensities and the

Fig. 4: Graphical overview of the CNN based approach used
for predicting facial AUs [21].

AU45 statistics were concatenated together resulting in a 62
dimensional AU vector Fau, for each video segment.

2) Kinect Animation Units:
The Kinect also provides Animation Units (AnUs),
geometry-based descriptors similar to mpeg-4 face animation
parameters (FAPs)[34]. While they are not based on muscle
actions and can not detect facial actions that only cause
appearance changes, the fact that they are obtained from
RGBD data makes them very reliable. The intensity of
a number of AnUs were estimated for each frame in the
video using the Kinect v2 library. In order to aggregate
the statistics over each video segment, a histogram of
ANU intensities was computed for each facial AnU. Each
histogram consisted of 10 bins resulting in a 10 dimensional
feature vector corresponding to each ANU. A total of 12
AnUs (6 corresponding to left and 6 to right part of the
face) were used. The histograms from all 12 AnUs were
concatenated, resulting in 120 dimensional AnU vector Fan,
for each video segment.

3) Head Pose:
One of the major challenges for people with ADHD is their
inability to do tasks which requires sustained attention. The
pose of the head (in 3D space) can provide valuable cues
about the attention state of a person at a certain instance
of time. Since the participants in our study were required
to complete the task by looking the computer screen, any
deviation of the head pose away from the computer screen
would indicate loss of attention.

The rotation of the head about the X, Y and Z axis (pitch,
yaw and roll) were estimated for each frame of the video
using the Kinect v2 software. The X, Y and Z axis are
defined in reference to the location of the Kinect device as
shown in Fig. 5. We assumed the median pose of the head
to be the most attentive state. Rotation of the head away
from the median pose were computed about the X, Y and
Z axis separately. Histograms of these rotation angles were
computed over the video segments for each axis separately.
Each histogram consisted of 18 bins with equally spaced
bin centres ranging from −45◦ to 45◦. This resulted in a 54
dimensional head pose vector Fhp, for each video segment.



Fig. 5: Kinect coordinate system.

4) Speed of head movement:
Dynamics of head motion has been a less researched aspect
in the field of psychological disorders. In order to investigate
the role head motion, we estimated the speed of head motion
at each frame of the video. For this purpose, we selected
a set of stable facial landmarks belonging to eye corners
and 4 points on the nose. The location of these stable facial
landmarks are invariant to changes in facial expressions and
hence suitable for estimating the motion of the head. The
motion of the head is estimated by computing the location
of the centroid Ci of the stable landmarks. The speed of head
motion Si at any frame i can be estimated by computing the
displacement of the centroid as given below:

Si = ||Ci − Ci−1|| ∗ f (1)

where f is the frame rate of the recorded video. In order
to make speed estimation more reliable and invariant to
any fluctuations in the frame rate, the estimated speed
was smoothed by computing a moving average over 20
consecutive frames.

A histogram of the estimated speeds was computed
to aggregate the statistics over each video segment. The
histograms consists of 10 bins resulting in a 10 dimensional
speed vector Fsp, for each video segment.

5) Cumulative Distance:
Hyperactivity is another major challenge associated with
ADHD, implying that individuals with ADHD tend to dis-
play much higher levels of motoric behaviour than healthy
individuals. The movement can be in the form of whole body
movement or smaller movements confined to head (rotation)
or hands and legs (fidgeting). To encode such information,
the cumulative distance Fcd moved by the head during an
entire video segment, was estimated by summing up the
displacements of the centroid Ci given below:

Fcd =

n∑
i=1

||Ci − Ci−1|| (2)

where n is the total number of frames in the video segment.

6) Response Times:
The time taken to respond to each set of questions in
the study was also used as features. Since there were 12
stories, each comprising a set of questions, a 12 dimensional
response time vector Frt was defined consisting of the
response times (in seconds) for each set of questions.

B. Feature pre-processing and training models

Normalization: Each set of features (except the Frt) were
divided by the total number of frames in the video segment,
to make them invariant to the length of video recording. The
final set of features F was obtained by concatenating all sets
of features (Fau, Fan, Fhp, Fsp, Fcd, Frt) from all video
segments. Each dimension in the resulting feature vector F
is further normalized by computing the Z-scores.
Feature selection and training models Due to the high
dimensionality of the resulting feature F compared to the
number of training examples, any classifier trained directly
on the entire feature-set is most likely to overfit the training
data. In order to avoid such problem, a greedy forward
feature selection was employed to capture the most relevant
features and reduce the dimensionality. The classification
models were trained using Support Vector Machines (SVM)
with a Radial Basis function kernel.

V. EXPERIMENTS AND DISCUSSION

Our approach was evaluated on the KOMAA dataset that
we collected for this purpose from a total of 55 participants
(see section III). The distribution of participants with ADHD,
ASD and healthy controls is shown in Fig. 2.

To evaluate the performance of our approach in classifying
each subject to the ASD, ADHD or the Control group, we
followed a a 2 step procedure: In the first step we trained a
classifier to distinguish between controls and condition group
(participants diagnosed with either ADHD, ASD or both). In
the second step, we trained another classifier to distinguish
between ASD only group and Comorbid (ASD+ADHD)
group. Since the ADHD only group was too small (only
4 participants), we did not had enough data to learn a robust
classifier for this group.

TABLE I: Classification results for Controls vs Condition
(ASD/ADHD) group.

Classifier Correct Incorrect
Controls 16 2

Condition 37 0

TABLE II: Classification results for Comorbid
(ADHD+ASD) vs ASD group.

Classifier Correct Incorrect
Comorbid 9 2
ASD only 22 0

Our approach was evaluated using a leave-one-subject-out
protocol, in which one subject is used for testing and the
rest of the subjects are used for training. This process is
repeated for each subject and the overall score is obtained
by averaging over each test subject. The classification per-
formance of our approach is shown in Table I and II. For
classification into Control and Condition group, we obtain
a very high classification accuracy of 96.4%. Similarly, for
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classification into Comorbid(ASD+ADHD) and ASD only
group, we obtain a high classification accuracy of 93.9%.

Looking at the individual contribution of different cues,
Fig. 6 and 7, show the class separation provided by some of
the important features selected by using the forward feature
selection approach. From these figures, we can observe that
for classification of Controls and Condition group, features
such as Speed of head motion (from video segment corre-
sponding to story 1 and 2) and Animation Unit 8 (lip-corner
depressor from video segment corresponding to story 10 of
’Stange Stories task’) were found to be most discrimina-
tive. For Comorbid vs ASD classification, AU1 (inner-brow
raiser), AnU6 (lip-corner puller) and head rotation about Y-
axis turn out be highly discriminative These features were
extracted from the video segment corresponding to story 1,
3 and 8 of the Strange stories task respectively. In Fig. 8
and Fig. 9, we also show a list of top 30 features (for both
classification problems) ranked according to their individual
classification power.

VI. CONCLUSIONS

We presented a novel method for making diagnostic
prediction of ADHD and ASD in test subjects through
automatic video analysis. Facial cues such as head motion,
facial expression and pose are used in learning models
which can accurately predict ADHD and ASD. The role of
facial expressions as a potential feature for classification of
individuals with these disorders from healthy controls, was
investigated. A high performance was achieved in terms of
classification accuracy, which indicates a high potential for
facial expressions and other facial gestures to be used for
making automatic predictions for ADHD, ASD and other
neurodevelopmental disorders.
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[29] Francesca GE Happé. An advanced test of theory of mind: Under-
standing of story characters’ thoughts and feelings by able autistic,
mentally handicapped, and normal children and adults. Journal of
autism and Developmental disorders, 24(2):129–154, 1994.

[30] Ronald C Kessler, Lenard Adler, Minnie Ames, Olga Demler, Steve
Faraone, EVA Hiripi, Mary J Howes, Robert Jin, Kristina Secnik,
Thomas Spencer, et al. The world health organization adult adhd
self-report scale (asrs): a short screening scale for use in the general
population. Psychological medicine, 35(02):245–256, 2005.

[31] Simon Baron-Cohen, Sally Wheelwright, Richard Skinner, Joanne
Martin, and Emma Clubley. The autism-spectrum quotient (aq):
Evidence from asperger syndrome/high-functioning autism, malesand
females, scientists and mathematicians. Journal of autism and devel-
opmental disorders, 31(1):5–17, 2001.

[32] Ronald C Kessler, Lenard A Adler, Michael J Gruber, Chaitanya A
Sarawate, Thomas Spencer, and David L Van Brunt. Validity of the
world health organization adult adhd self-report scale (asrs) screener in
a representative sample of health plan members. International journal
of methods in psychiatric research, 16(2):52–65, 2007.

[33] P. Ekman, W. V. Friesen, and J.C. Hager. Facial action coding system.
Salt Lake City, UT: Research Nexus, 2002.

[34] Igor S. Pandzic and Robert Forchheimer, editors. MPEG-4 Facial
Animation: The Standard, Implementation and Applications. John
Wiley & Sons, Inc., New York, NY, USA, 2003.


