
1 INTRODUCTION

During the last decades, many studies claimed
that well maintained roads may help in reducing
costs due to the impact of pavement surface even-
ness and texture on vehicle fuel consumption (Sand-
berg, 1990, Laganier and Lucas, 1990, Beuving et
al., 2004, Zaabar & Chatti, 2010, among others). In
particular, in a recent study, Zaabar & Chatti (2010)
claimed that pavement evenness can impact approx-
imately 5% of the fuel consumption of road vehicles.
Considering the case of England, a hypothetical re-
duction of just 2% in fuel consumption may be able
to save up to £1 billion a year (Department for
Transport, 2015). Thus, a complete life cycle as-
sessment of road pavements including the impact of
road conditions on vehicle fuel consumption in the
use phase may lead to a review of the current road
maintenance strategies with significant cost savings
and reduction of greenhouse gas (GHG) emissions.

The main difference between this study and pre-
vious ones (e.g. Sandberg 1990, Zaabar & Chatti
2010, Haider et al. 2011) is that in the past con-
trolled experiments have been performed to collect
data. Previous research tested only limited vehicles,
repetitively driven at constant speed, in good weath-
er (no rain, low wind speed, etc.) on selected seg-
ments of road, with no gradient, etc. Therefore, their
conclusions may not be valid in general but only
within their experimental conditions.

In this study data collected routinely from sensors
installed as standard on trucks (SAE International,

2002) were analyzed. Modern trucks are fitted with
many sensors that, via the combination of an Elec-
tronic Control Unit (ECU) and a Controller Area
Network (CAN) bus, help fleet managers to control
vehicle operating performance and costs. It may be
feasible to use the same data to investigate the im-
pact of pavement condition on truck fleet fuel econ-
omy.

Using a multiple linear regression, a predictive
model for truck fleet fuel consumption including
pavement surface condition measurements has been
generated. This may be useful in future, to quantify
possible cost savings and reductions in GHG emis-
sions in pavement life cycle assessment (LCA) anal-
yses including the use phase of road pavements.

2 DATA

Data from 260 trucks for one week of travelling
along the M18 – a 42.6 km long motorway, part of
the Strategic Road Network (SRN) of England and
close to Doncaster – have been used for this study.
Only trucks having ~12900 cc Euro 6 engines, and 6
axles in total (3 for the tractor and 3 for the trailer)
have been considered due to the fact they represent
the most common vehicle model in the investigated
fleet.

Data records of various lengths and times (maxi-
mum 60 seconds or 1 mile (1.61 km)), travelled at
constant speeds (±2.5km/h), between 79 and 94
km/h, in gear 12, have been included in the analysis.

Using truck sensors for road pavement performance investigation

F. Perrotta, T. Parry, L. Neves
Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham,
University Park, Nottingham NG7 2RD, UK

ABSTRACT: Considering data from 260 articulated trucks, with ~12900 cc Euro 6 engines driving along a
motorway in England (M18), the study first shows how different approaches lead to the conclusion that road
pavement surface conditions influence fuel consumption of the considered truck fleet. Then, a multiple linear
regression for the prediction of fuel consumption was generated. The model shows that evenness and macro-
texture can impact the truck fuel consumption by up to 3% and 5%, respectively. It is a significant impact
which confirms that, although the available funding for pavement maintenance is limited, the importance of
limiting GHG emissions, together with the economic benefits of reducing fuel consumption are reasons to im-
prove road condition (Zaabar & Chatti, 2010).



The speed range includes the most common speeds
for trucks on motorways. This resulted in 1420 rec-
ords in total.

Data includes the vehicle profile (identifying a
specific truck and its model), the gross vehicle
weight (GVW, to the nearest 400 kg), the travelled
distance (m), the travel date with time, and the fuel
consumed (to the nearest 0.001 l). This data is anon-
ymized and is provided by Microlise Ltd, a company
that uses them to analyze fleet performance for their
clients, helping them to reduce operating costs.

Data concerning pavement condition comes from
the national road agency (Highways England) and
includes measurements of; road gradient (g, %), ra-
dius of the road (m), road crossfall (the transverse
gradient of the road, %), pavement evenness (LPV,
longitudinal profile variance at 3, 10 and 30 meters
wavelength, in mm2), and macrotexture (SMTD,
sensor measured texture depth, in mm). All data are
georeferenced. Table 1 summarizes the range of data
included in the analysis:

Data Mean Max Min St. Dev.

Fuel Consumption

(l/100km)

29.71 60.00 0.13 13.86

Gross Vehicle Weight

(kg)

40300 58400 26000 7700

Road Gradient (%) 0.46 2.91 -2.44 0.74

Vehicle Speed (km/h) 89.14 93.94 79.20 1.99

LPV 10m (mm2) 0.87 3.60 0.20 0.35

SMTD (mm) 1.20 1.86 0.46 0.21

Table 1 - Summary of the data included in the analysis.

3 METHOD

A multiple linear regression analysis to predict the
fuel consumption of vehicles among the considered
truck fleet has been performed.

Only independent variables – including the gross
vehicle weight (GVW), the road gradient, the road
crossfall, the road radius, LPV at 10 metres wave-
length and SMTD texture measurement – have been
considered in the data analysis.

Although LPV at 3 and 30 metres wavelength da-
ta is available, this has not been included in the anal-
ysis due to its high correlation with the LPV at 10
metres wavelength and therefore they are not inde-
pendent.

Because previous studies (e.g. Sandberg 1990)
highlighted difficulties in assessing the impact of
pavement surface conditions on vehicle fuel econo-
my results, different statistics - adjusted R2, the Ai-
kake Information Criterion (AIC), the forward varia-
ble selection statistic, and the Lasso regression -
have been used and the results compared. Similar re-
sults from different statistics give more confidence
in the final conclusions.

Only variables selected by the forward variables
selection and Lasso regression statistics are consid-
ered significant and thus included in the generated
model. Among all the possible models, the ones
showing higher adjusted R2 and lower AIC (Aikake
(1973)) are considered.

4 RESULTS

The generated model has the following formula:

FC = 62.42 + 0.00024 GVW + 14.84 g% – 0.57 s +

0.26 LPV10 + 0.87 SMTD; (1)

where:

FC = fuel consumption, in l/100km;
GVW = gross vehicle weight, in kg;
g% = road gradient, in %;
s = average vehicle speed, in km/h;
LPV10 = evenness of the pavement surface, in mm2;
and
SMTD = pavement surface macrotexture, in mm.

Results of the analysis of the adjusted R2, and the
AIC, shows that the gross vehicle weight, the road
gradient, and the vehicle speed are the variables that
explain most of the variance of the fuel consumption
for the considered truck fleet. Including LPV10 and
SMTD measurements in the analysis, results in
higher adjusted R2 and lower AIC coefficient. Road
crossfall and radius were not significant variables for
this study; including them in the analysis decreased
the adjusted R2 and increased the AIC.

Tables 2 and 3 report the results of the adjusted
R2 and the AIC. The asterisks highlight the variables
included in the possible prediction models. Higher
adjusted R2 shows higher significance of the varia-
bles included in the analysis.

adj-

R2

GVW

(kg)

g

(%)

s

(km/h)

radius

(m)

cross-

fall

(%)

LPV10

(mm2)

SMTD

(mm)

0.685 * * * *

0.682 * * * * *

0.676 * * * *

0.665 * * * *

0.663 * * * * *

0.661 * * *

0.604 * *

Table 2 – Summary of the analysis of the adjusted R2 for the

models.

For the AIC, lower values show higher signifi-
cance of the included variables.



AIC
GVW

(kg)

g

(%)

s

(km/h)

radius

(m)

crossfall

(%)

LPV10

(mm2)

SMTD

(mm)

2.93 * * *

4.51 * * * *

5.23 * * * * *

12.32 * *

23.55 * * * * *

25.03 * * * *

28.87 *

Table 3 – Summary of the analysis of the AIC for the models.

Table 4 shows the results of the forward variable se-
lection analysis. Asterisks highlight which variables
are considered. The lower the number of asterisks
and the higher is the significance of the considered
variables.

GVW

(kg)

g

(%)

s

(km/h)

radius

(m)

crossfall

(%)

LPV10

(mm2)

SMTD

(mm)

*

* *

* * *

* * * *

* * * * *

* * * * * *

* * * * * * *

Table 4 – Summary of the forward variable selection analysis.

In particular it is possible to see that the forward var-
iable selection highlights the road radius and the
road crossfall as the less significant variables for
predicting the vehicle fuel consumption. This statis-
tic also shows higher significance of the SMTD (the
texture) compared to the vehicle speed. However,
this might be due to the fact that this study only con-
siders a narrow range of speeds.

Finally, looking at the results of the Lasso regres-
sion* (Equation 2) it is possible to see that the coef-
ficients assigned to LPV10 and SMTD are low but
they are not reduced to zero by the algorithm due to
their significance.

FC = 0.14 GVW + 0.87 g% – 0.27 s + 0.02 LPV10

+ 0.02 SMTD; (2)

where:

FC = fuel consumption, in l/100km;
GVW = gross vehicle weight, in kg;
g% = road gradient, in %;
s = average vehicle speed, in km/h;
LPV10 = evenness of the pavement surface, in mm2;
and
SMTD = pavement surface macrotexture, in mm.

* In the Lasso regression data are normalized to z-
scores (minus the mean and divided by the standard

deviation) and this is why the parameters of Equa-
tion 2 are different from Equation 1.

5 DISCUSSION

From the analysis of the adjusted R2, the AIC coeffi-
cient, the forward variable selection, and the Lasso
regression it is not possible to exclude that pavement
surface conditions impact truck fleet fuel consump-
tion. Table 2 shows that high adjusted R2 is obtained
including gross vehicle weight, road gradient, vehi-
cle speed, pavement evenness and texture in the
model.

From the analysis of the AIC (Table 3) it is possi-
ble to see that gross vehicle weight, road gradient,
and vehicle speed are the most significant variables.
However, it can also be seen that LPV10 and SMTD
are highlighted as the next most important variables.
Including these variables in the model does not in-
crease the AIC coefficient significantly. Therefore,
the generated model includes LPV10 and SMTD
measurements.

Table 4 shows that the forward variable selection
considers the SMTD more important than the vehi-
cle speed and classifies the LPV10 as the 5th most
important variable to include in the generated model.
Also in this case it is highlighted that road radius and
road crossfall can be excluded from the predicted
vehicle fuel consumption of the truck fleet consid-
ered.

Finally, performing the Lasso regression we have
one more confirmation of our hypothesis. In fact, the
parameter of LPV10 and SMTD are not reduced to
zero by the algorithm. This means that it is not pos-
sible to exclude the LPV10 and SMTD when pre-
dicting the fuel consumption of the considered truck
fleet. It is also important to observe that road radius
and road crossfall are excluded from the model gen-
erated by the Lasso regression statistic due to their
low significance.

In the initial phase of this research (Perrotta et al.
2017) a similar model was generated for a different
population of similar trucks, using engine torque as a
surrogate for GVW, lower resolution fuel measure-
ments and considering only one speed (85km/h). The
correlation coefficient between predicted and meas-
ured fuel consumption for the model in this paper is
0.82. This value is significantly higher than that in
the initial phase (0.66) and this highlights the im-
portance of the GVW measurement on the truck fuel
consumption, confirming what previous studies have
found (Sandberg 1990, Beuving et al. 2004, and
Zaabar & Chatti 2010).

The generated model shows that the impact of
pavement evenness on fuel consumption for these
data records can be up to 3%, and up to 5% for ma-
crotexture, calculated by comparing the estimated
fuel consumption using the average values for gross



vehicle weight, gradient and speed, compared to that
by including in the estimate the maximum value for
the texture or evenness. This compares to an esti-

mate of ‘approximately 5%’ for the impact of even-
ness reported by Zaabar & Chatti (2010) for a study
in the US.

Figure 1- Comparison between predicted and measured fuel consumption.

This paper considers only one truck configuration
and only a restricted range of speeds, but it introduc-
es a general methodology that can be widely applied
to different truck types and conditions.

The generated model tends to overestimate low
fuel consumption and underestimate high fuel con-
sumption (Figure 1). This behavior was also shown
by Zaabar & Chatti (2010).

6 CONCLUSIONS

The generated model shows that the variables with
most impact on fuel consumption are the gross vehi-
cle weight, the road gradient, and the vehicle speed.
This was expected from the results of previous stud-
ies (Sandberg 1990, Beuving et al. 2004, Zaabar &
Chatti 2010).

This study confirms that pavement surface condi-
tions can significantly impact truck fleet fuel con-
sumption. The fact that different statistical ap-
proaches arrive at similar conclusions gives us
confidence that pavement surface conditions influ-
ence vehicle fuel economy. This confirms the find-
ings of previous studies using different approaches
(Sandberg 1990, Beuving et al. 2004, Zaabar &
Chatti 2010) and gives us confidence in this ‘Big
Data’ approach. The truck fleet performance and
road condition data used in this study have been col-

lected for other purposes and are widely available for
similar studies if road agencies and truck fleet opera-
tors choose to co-operate.

Although the study shows that the impact of
pavement surface condition on truck fleet fuel con-
sumption is significant for this data set, further work
is still needed. Validation of these conclusions, in-
cluding more vehicle models, the influence of
weather conditions (e.g. wind speed and direction), a
wider range of vehicle speeds, and road conditions,
will increase the applicability of the results. More
sophisticated predictive statistics may also help in
reducing bias and increase the reliability and preci-
sion of the final estimates.

AKNOWLEDGMENTS

The authors would like to thank all the partners in-
volved in the project. These are Alex Tam of High-
ways England for giving us permission to use data
from HAPMS, Mohammad Mesgarpour and Ian
Dickinson from Microlise Ltd for allowing us to use
an anonymized part of their truck telematics data-
base and for their help in the data analysis and inter-
pretation of results. Emma Benbow, David Peeling
and Helen Viner from TRL Ltd for their support in
this initial part of the research.



This project has received funding from
the European Union Horizon 2020 re-
search and innovation programme under

the Marie Skłodowska-Curie grant agreement No. 
642453 and it is part of the Training in Reducing
Uncertainty in Structural Safety project (TRUSS
ITN, www.trussitn.eu).

REFERENCES

Akaike H, 1973. Information theory and an extension of the
maximum likelihood principle. In Second International
Symposium on Information Theory, ed. B. N. Petrov and F.
Csaki, 267–281. Budapest: Akailseoniai–Kiudo.

Beuving E, De Jonghe T, Goos D, Lindhal T, and Stawiarski A,
2004. Environmental Impacts and Fuel Efficiency of Road
Pavements. Industry Report. Eurobitume & EAPA Brussels.

Chatti K and Zaabar I, 2012. Estimating the Effects of Pave-
ment Condition on Vehicle Operating Costs, National Co-
operative Highway Research Program, Report nr 720.
Washington, DC.

Department for Transport 2015. Transport energy and envi-
ronment statistics. Government of the United Kingdom,
UK.

Haider M, Conter M, and Glaeser KP 2011. Discussion paper
what are rolling resistance and other influencing parameters
on energy consumption in road transport, Models for Roll-
ing Resistance in Road Infrastructure Asset Management
Systems (MIRIAM), AIT, Austria.

Laganier R and Lucas J 1990. The Influence of Pavement
Evenness and Macrotexture on Fuel Consumption. ASTM
STP 1031 pp. 454-459.

SAE International 2002. Vehicle Application Layer – J1939-71
– Surface Vehicle Recommended Practice Rev. Aug. 2002.

Sandberg, USI. 1990. Road Macro- and Megatexture Influence
on Fuel Consumption. ASTM STP 1031 pp. 460-479.

Perrotta F, Trupia L, Parry T, and Neves L 2017. Route level
analysis of road pavement surface condition and truck fleet
fuel consumption. Pavement LCA Symposium 2017, Urba-
na-Champaign, Illinois (USA).

Zaabar I and Chatti K, 2010. Calibration of HDM-4 models for
estimating the effect of pavement roughness on fuel con-
sumption for U. S. conditions. Transportation Research
Record, (2155), pp.105–116.


