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Abstract: A simple regiospecific route to otherwise problematic substituted tetracenes is described. The diverse cores (E)-

1,2-Ar1CH2(HOCH2)C=C(CH2OH)I (Ar1 = Ph, 4-MePh, 4-MeOPh, 4-FPh) and (E)-1,2-I(HOCH2)C=C(CH2OH)I,  

accessed from ultra-low cost HOCH2C≡CCH2OH at multi-gram scales, allow the synthesis of diol libraries (E)-1,2-

Ar1CH2(HOCH2)C=C(CH2OH)CH2Ar2 (Ar2 = Ph, 4-MePh, 4-iPrPh, 4-MeOPh, 4-FPh, 4-BrPh, 4-biphenyl, 4-styryl; 14 

examples) by efficient Negishi coupling. Copper-catalysed aerobic oxidation cleanly provides dialdehydes (E)-1,2-

Ar1CH2(CHO)C=C(CHO)CH2Ar2 which in many cases undergo titanium(IV) chloride induced double Bradsher closure 

providing a convenient method for the synthesis of  regiochemically and analytically pure tetracenes (12 examples). The 

sequence is typically chromatography-free, scalable, efficient and technically simple to carry out.   

 

Introduction 

Of diverse utility in organic electronics[1] (including light emitting, transistor, sensor and solar cell applications) tetracene 

(1aa, Scheme 1), and its derivatives, must be synthesed[2] due to the lack of terrestrial sources.[3] This situation accounts 

for the 500-fold cost difference between anthracene and tetracene 1aa (ca. 7 cents/mmol vs. €35/mmol).[4] We sought a 

route to 1aa, and simple derivatives, which fulfilled the following characteristics: (i) minimised total step-count (ii) use 

of only low cost sustainable starting materials, (iii) diversity orientated intermediates facilitating the preparation of 

substituted tetracene libraries, (iv) simple (chromatography-free) work-up procedures providing analytically pure 

intermediates and final tetracenes, (v) applicability to gram scales without yield or purity degradation issues. While many 

elegant approaches to (substituted) tetracenes (1) are known[2] failures against one or more of the criteria (i)-(v) are 

unfortunately extremely commonplace. Traditional routes to tetracene derivatives typically involve unidirectional 

synthesis from ortho substituted phenylene units wherein only one ring is formed at a time (e.g. C-ring closure in the right 

of Scheme 1). The nice commercial (3M) process to 2-chlorotetracene of Gerlach is a good example of such a 

disconnection.[5] We thought to use bidirection synthesis, a powerful tool in natural product preparation,[6] but which is 

rarely used in accessing tetracenes[7] or indeed polyaromatics[8] in general. 

 

 

 

Scheme 1. The approach herein to tetracenes (1) using bidirectional[6] closure (B,C-ring formation) of highly soluble and 

crystalline bis-aldehydes (2) vs. an exemplary unidirectional synthesis. Adding substituents to the A/D phenyl groups 

allows access to acene derivatives.  
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The proposal on the left of Scheme 1 requires Bradsher[9] (hydroxyalklation) closure of both aldehydes in 2 directly 

forming the B and C rings of tetracenes 1 in a single pot. Such two-directional strategies have no exact precedent in 

tetracene synthesis as far as we can tell. Naphthalene formation from simple cis-1,2-substituted alkene(CHO)(CH2Ph) 

fragments (the closest analogue of the required B-ring formation in Scheme 1) is described in a handful of cases.[10] Less 

than a dozen papers describe ‘one-directional’ H+/Lewis acid closure of phenylene(CHO)(CH2Ph) units (the reaction most 

analogous to the required C-ring closure to tetracene). Anthracenes[11] and benzo[g](iso)quinolones,[12] a bis-

naphthothieno[2,3-d]thiophene,[8a] a trinaphthylene[8b] and one very recent tetracene[8c] have been prepared this way. 

Contemporary (2016-17) alternatives have highlighted gold[13] and Fe(III)[14] catalysed two-directional syntheses to 

dihydrotetracenes and various polyaromatics, respectively. However, preparation of some cyclisation precursors can be 

step/chromatographically intensive in such approaches.  Cyclisation promotors for tetracene formation in particular need 

careful selection:  H+ is commonly used to instigate Bradsher reactions,[8.9] but such conditions can also readily oxidise 

the tetracene products to unstable radical cations (that are known to subsequently decompose to complex mixtures).[15] 

The use of Lewis acid cyclisation is preferred, but in some cases even these are overly oxidising towards tetracenes.[16] 

However, if such issues are overcome core 2 is an attractive precursor for tetracene library synthesis as no post-cyclisation 

C-oxidation state manipulation is required (c.f. quinoid and dihydrotetracene routes to tetracenes[2]), water being formally 

the only by-product produced in the Bradsher aromatisation.   

 

Results and Discussion 

We proposed that all of the carbons in our tetracene synthesis should arise from low cost and sustainable 2-butyne-1,4-

diol (4 cents/g)[4] and benzyl chloride (3 cents/g)[4] or its simple derivatives via the diversity orientated iodides 3-4 (Table 

1). Copper-catalysed (CuBr·SMe2, 2 mol-%) direct addition of 4-(R1)C6H4CH2MgCl to HOCH2C≡CCH2OH proceeds, 

under our modified literature conditions, to the expected (-OMgCl directed[17]) (E)-carbomagnesiation intermediate which 

smoothly intercepts iodine providing the new diversity cores 3a-d (see Supporting Information). Acceptable to good (58-

72%) yields, on 10 g scales, are attained by direct crystallisation of the crude reaction products. In the case of 3c, removal 

of a Wurtz by-product is necessary prior to recrystallization but this too is straight forward, even at multi-gram levels. 

Increasing the carbomagnesiation reaction temperature to 50-55 oC is the key to attaining high conversion in these 

cabocuprations of lower reactivity benzylic Grignard reagents.[17] Equally conveniently, 4 directly precipitates as an off-

white solid from a simple reaction of 2-butyne-1,4-diol with iodine in CHCl3 on >10 g scales (90% yield), using our 

modified conditions.[18]  The simplicity of the preparations of 3-4 has encouraged us regarding their commercial 

availability.[19] 

Iodides 3-4 are potent precursors for straightforward Negishi-type couplings providing 5 efficiently and quickly (Table 

1). Previously, slow addition techniques and specialist ligands have been necessary to avoid competitive deprotonation 

in such unprotected alcohol substrates.[20] However, this is not the case for 5 and a wide range of asymmetric diols can be 

realised in excellent yields (85-99%) using a typical S-Phos biaryl ligand.[20] Simple non-proprietary 

tricyclohexylphosphine (PCy3) also provides equivalent yields (in all cases tested, Method I). These catalytic Negishi 

couplings show very strong ligand inhibition at L/Pd ratios of >1 but use of a slight deficiency of phosphine in the coupling 

prevents this becoming an issue. Isolation of the diols 5 is facilitated by their low solubility in Et2O, typically trituration 

in this solvent provides off-white solids (>98% pure) that can be used directly in subsequent transformations. Acetonitrile 

can be used to similar effect. Finally, the diols 5 are often highly crystalline and frequently attained as glinting colourless 

analytically pure needles from simple hot MeOH:EtOAc mixtures. By appropriate combination of 3 and benzyl zinc 

reagent the symmetric diols may also be readily achieved (i.e. 5aa is attained from 3a and PhCH2ZnCl in 87% yield). 

Alternatively, the symmetrical diols can also be attained from 4 and slight excesses of the appropriate benzylic zinc 

reagent (Method II). While the scope of this symmetrical coupling is not quite as wide as that from use of 3a-d (e.g. 

preparation of 5bb by Method II provides only 56% vs. 93% via method I) it does allow routine access to the symmetrical 

diols quickly. For example, 5aa could be prepared on a >10 g scale by such approaches within a day. 
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Table 1. Diversity orientated synthesis of the diol tetracene precursors 5.[a] 

 
 

Iodide used Method R1 R2 Diol 5 (%) Recrystallisation fromb m.p. (oC) 

3a I H H 5aa 87 1:1 MeOH/AcOEt 157-158 

4 II H H 5aa 62-72 - - 

3a I H Me 5ab 84 1:1 MeOH/AcOEt 150-151 

3a I H OMe 5ac 91 3:1 EtOAc/MeOH 131-132 

3a I H F 5ad 82 1:1 MeOH/AcOEt 139-140 

3a I H Ph 5ae 99 1:1 MeOH/AcOEt 154-155 

3b I Me Me 5bb 93 1:1 MeOH/AcOEt 180-181 

4 II Me Me 5bb 56 - - 

3b I Me iPr 5bf 87 1:1 MeOH/AcOEt 155-156 

3b I Me vinyl 5bg 96 iPrOH, -20 oC 161-164 

3b I Me Br 5bh 92 1:1 MeOH/AcOEt 153-154 

3c I OMe Me 5cb 93 3:1 EtOAc/MeOH 131-132 

3c I OMe OMe 5cc 85 MeCN, -20 oC 145-146 

3c I OMe F 5cd 85 3:1 EtOAc/MeOH, -20 oC 119-120 

3d I F F 5dd 82 MeCN, -20 oC 129-130 

4 II Br Br 5hh 65 MeCN, -20 oC 139-140 

 
[a] Typically reactions were carried out on ca. 6 mmol scales in THF (25 mL) over 15-20 min. Recrystallisation from 

refluxing solvent on cooling to 4 oC unless indicated otherwise. 

 

Oxidation of diols 5 to the aldehydes 2 is necessary prior to tetracene cyclisation (Scheme 1). This is sustainably 

attained by the aerobic CuI/TEMPO-based catalysts (Table 2), optimised by Stahl,[21] so that use of environmentally 

unsustainable stoichiometric oxidants is avoided. The slightly modified oxidation procedure used herein shows useful 

functional group tolerance: both C-Br and styryl functions are preserved even though oxidation procedure is radical 

driven.[21] Conveniently these oxidations are self-indicating: initiation of the catalyst commensurate with the immediate 

appearance of a dark orange-brown colour which becomes emerald green on completion of the oxidation (0.3-1 h). After 

isolation and drying under vacuum the dials 2 are attained as bright yellow solids in high yield and >98% purity allowing 

their direct use for immediate tetracene synthesis without any further purification. However, all are also easily 

recrystallized as glinting yellow flakes from iPrOH or iPrOH:EtOAc mixtures. Oxidation of the diols 5 at a gram scale is 

straightforward and further scale-up not an issue: e.g. 2aa could be attained on a 4 g level without the need for any 

chromatographic separations. Minor modification of the reaction temperature (to 40 oC) is necessary for diol 5ae to ensure 

full solubility and completion of reaction. 
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Table 2. Copper(I)-catalysed oxidation of diols 5 to aldehydes 2.[a] 

 
 

5 used R1 R2 2 (%) 5 used R1 R2 2 (%) 

5aa H H >99 5bg Me vinyl 87 

5ab H Me 87 5bh Me Br 98 

5ac H OMe 88 5cb OMe Me 95 

5ad H F 92 5cc OMe OMe >99 

5ae H Ph[b] 96 5cd OMe F 85 

5bb Me Me 93 5dd F F 89 

5bf Me iPr 89 5hh Br Br 93 

 
[a] Typically reactions were carried out on ca. 3 mmol scales in DMF (18 mL) over 1 h.  
[b] Reaction at 40 oC. 

 

Preliminary small scale Bradsher closure trials of dialdehyde 2aa with a library of 14 Lewis acids (Scheme 2, LA, see 

also Supporting Information) revealed that only In(OTf)3, BF3·OEt2 and TiCl4 were active towards tetracene (1aa) 

formation (Scheme 2). Therefore, these three promotors were all examined in detail. For In(OTf)3 (at 0.6 equivalents) 

significant conversion to the desired tetracene 1aa could only be achieved by prolonged heating at 83-115 oC (Supporting 

Information); the rate was insufficient for lower catalyst loadings to be viable at practical scales (necessary for viable use 

of such a poorly sustainable LA promotor). Two additional products: 6aa[22] and 7aa[13,23] (Scheme 2) could also be 

detected in these indium-promoted closures by comparison with their published 1H NMR data (independent samples of 

6aa can be prepared by much less efficient alternate chemistry[22]). Monitoring the reaction by 1H NMR spectroscopy 

also confirmed that 6aa is a genuine ‘half closure’ intermediate on route to tetracene 1aa. 

 

 

 

Scheme 2. An intermediate (6aa) and by-product (7aa) in Bradsher closures of aldehyde 2aa to tetracene (1aa). 

 

Stoichiometric BF3·OEt2 is much more attractive reagent for tetracene formation due to its low cost. With two 

equivalents of BF3·OEt2 at scales below 1 mmol (in 2aa), good yields (>80%) of tetracene 1aa are attained at 1,2-

dichloroethane reflux (83 oC) conditions within 5 h. Unfortunately, at larger scales (especially >3 mmol) these reactions 

become capricious, progressively less clean (with increasing scale) and result ultimately in negligible or no yields of 1aa. 

The water by-product of the Bradsher cyclisation is the cause of these issues. Efficiently minimised in small scale reaction 

mixtures by 1,2-dichloroethane azeotrope formation (b.p. 70.5 oC), in larger scale reactions water promoted H[HOBF3][24] 

formation competes leading to acid-induced oxidation of 1aa[15,24] providing 7aa (among many other radical cation 
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derived by-products). Control studies support this idea: deliberate addition of water (2 equiv.) to the reaction mixture at 

the outset, prior to BF3·OEt2 (2.0 equiv.) addition and subsequent reflux, leads to catastrophic reduction in the 1aa yield 

regardless of the scale of the reaction. Deployment of 4Å molecular sieves in the reaction headspace allows production 

of 1aa at a gram scale, but initiation of the cyclisation then becomes slow and equally capricious. Kinetic study of the 

BF3·OEt2 promoted cyclisation of 2aa (0.28 M) provides insights into these behaviours (see ESI†). Formation of 1aa (and 

disappearance of 6aa) follow an autocatalytic rate law over 4 h at 63 oC. Dial 2aa is rapidly converted to 6aa under these 

conditions, and fitting standard autocatalysis rate law forms[25] to the disappearance of 6aa provides k1 ~0 min-1 and k2 = 

0.3 M-1 min-1 where k1 and k2 are respectively estimates of the background and autocatalytic behaviour (see Supporting 

Information). This strong autocatalysis is the root cause of the reliability issues in larger scale preparations of 1aa using 

BF3·OEt2. Controlling the reactive H[HOBF3] concentration simply becomes impractical at any significant scale in 2aa. 

By using only one equivalent of BF3·OEt2 high yields of 6aa could be obtained at room temperature, again confirming it 

as an intermediate en route to 1aa. In 2015 the syntheses of three tetracenes using a BF3·OEt2 promoted (unidirectional) 

Bradsher process were disclosed.[11c] The colours described for these acenes (colourless to pale green) are not in accord 

with tetracene formation (which are all typically all brilliant orange). We believe the potential for decomposition effects 

during the reaction/workup of these reactions similar to the effects observed herein cannot be excluded. 

In an attempt to overcome the reproducibility issues associated with BF3-H2O autocatalysis we also screened the little 

used, low cost, TiCl4 Bradsher conditions of Tius (Method III, Table 3).[10c] To our great delight quench (of the most 

unpromising brown-green reaction mixtures) with 1:1 methanol:acetone resulted in spectacular orange precipitates of 

1aa. Despite the small particle size of the 1aa produced, very easy filtration is facilitated by use of Whatman glass 

microfiber filter paper (GF/A which is designed to collect particles sized down to 1.6 μm efficiently). The TiCl4 approach 

proved rather general for cyclisation of aldehydes 2, subject to the usual electronic effects on electrophilic aromatic 

substitution (Table 3). Partial closure products 6 could often be seen from the filtrates, especially when the donor/acceptor 

properties of R1/R2 were different. The initially precipitated tetracenes 1 are attained in purities (>95%) sufficient for 

immediate subsequent synthetic/materials application uses. Simple one-step sublimation (200-230 oC, 0.1-0.2 mbar, 1 h) 

easily provides analytically pure materials as brilliant orange mircocrystals. For electronically deactivated dialdehydes 

(e.g. 2ad) the use of larger excesses of TiCl4 (4 equiv.) under neat reaction conditions and longer reaction times (typically 

2 days) are required and low to modest yields are attained with these general conditions. Conversely, activated 2bg was 

extensively cross-linked on reaction with even one equivalent TiCl4 at room temperature providing an insoluble orange 

macromolecular material. Repeating this synthesis at -78 to -40 oC provides oligomeric 1+6bgn with n ~ 7-8 through 

controlled polymerisation of the vinyl side chain and mixed mono and di-Bradsher closure. For both the oligo and 

macromolecular 1+6bg characteristic tetracene spectroscopic bands can be identified in their UV-vis and IR spectra. 

Interestingly the monomeric tetracenes 1 all show intense refractive index matching in diamond anvil ATR-IR 

instruments. The resulting anomalous dispersion leads to the observation of apparent negative peaks around the diamond 

absorbance range (2100-2000 cm-1) which are a useful quick diagnostic for 1 (even in mixtures), especially if a diagnostic 

peak at ~905 cm-1 is also present. In line with this suggestion, no pseudo emission peaks are seen using Ge-crystal ATR 

instruments.  

 

Table 3. Method III: titanium(IV) chloride induced Bradsher cyclisations.[a] 

 

2 used R1 R2 X (eq.) Y (h), T 

(oC) 

1 (%) Lit. 1 

%[b] 

Ref. 6 (%) R3 R4 

2aa H H 2 3 (40) 72 51 (3) 26 - - - 

2aa H H 2 2 (40) 40 - - 6aa (50) H H 

2ab H Me 2 3 (40) 68 4 (1) 27 - - - 
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2ab H Me 2 1 (22) 27 - - 6ab (57) Me H 

2ac H OMe 2 3 (40) 56[c] 88 (4) 28 - - - 

2ad H F 4 60 (22) 9 56 (3) 29 6ad (37) H F 

2ae H Ph 2 3 (40) 71 - 30 - - - 

2bb Me Me 2 3 (40) 86 low (2) 31    

2bf Me iPr 2 3 (40) 86 - -    

2bg Me vinyl 2 Note [d]  62 - - 1+6bgn (65-

89) 

Oli[e] Oli[e] 

2bh Me Br 4 60 (22) 4 - - 6bh (45) Me Br 

2cb OMe Me 2 3 (40) 81 - - - - - 

2cc OMe OMe 2 3 (40) 86 - - - - - 

2cd OMe F 4 60 (22) 8 - - 6cd (39) OMe F 

2dd F F 4 60 (22) trace - - 6dd (63)   

2hh Br Br 4 60 (22) - 31 (3) 32 6hh (54) Br Br 

 
[a] Typically reactions carried out on 1.5 mmol scales in 1,2-dichloroethane (10 mL); TiCl4 added at 0 oC, and the mixture 

stirred at the required temperature. Electronically deactivated substrates (ad, cd, dd, hh) were run in neat TiCl4 (see ESI†).  
[b] The highest/best analogous literature (substituted)tetracene procedure we could identify and (in parentheses) the 

number of steps needed to prepare the required precursor from commercial (<0.1£ mmol-1) materials.  
[c] Higher solubility limits precipitated yield.  
[d] Reactions carried out at 22 oC afford a low solubility high polymer containing both tetracene and aldehyde groups. 

Reaction at -78 to -40 oC leads to a soluble oligomer.  
[e] ‘Oli’ indicates product is a (CHCH2)n oligomer with n ~ 7-8 generated by polymerisation of the vinyl sidechain 

providing a telechelic oligomer with both tetracene and aldehyde pendant groups present (see Supporting Information). 

 

Conclusions 
The synthetic sequence to 1 from the iodides 3-4 constitutes an effective and practical route for the formation of 2- and 

2,8-substituted tetracenes in high analytical purities atypical to most other literature approaches. All of the tetracenes 1 

prepared showed the expected spectroscopic properties and have solubilities in CH2Cl2 ranging from ca. 10-6 M (2bh) to 

~10-3 M (2ac and fluorine containing tetracenes).  The lower solubilities, in part, account for the success of our direct 

precipitation work-up strategy. From Table 3 it is clear that the approach described herein is complimentary, and in the 

case of electron-rich substituted tetracenes, advantageous to existing methodology. In particular, the ability to prepare 

tetracene libraries of various substituents at significant scales quickly and without the use of chromatography is attractive 

for their subsequent use in materials science at larger preparative scales. The electronic properties of the tetracenes 

attained are also in line with predictions. For example, 2-methyltetracene (2ba) shows an measured Eg(opt) of 2.50 eV 

which is close to the calculated HOMO-LUMO gap by time dependant DFT of 2.76 eV [CAMB3LY-6-31G(d,p) level of 

theory] and the accepted value for the parent 1aa (2.61 eV) [Eg(calc) is typically greater than Eg(opt), see Supporting 

Information]. For the tetracenes prepared herein we could control Eg(opt) in the range 2.54-2.43 eV by substituent effects. 

Such ability to easily and systematically vary the HOMO and LUMO energies of tetracenes are central to their use in 

organic electronic applications and the approach herein simplifies the synthetic effort required to enact the required 

substituents at useful scales in many cases.  

 

Experimental 
Representative example 2-isopropyl-8-methyltetracene (1bf): Prepared from 2-(4-Isopropylbenzyl)-3-(4-

methylbenzyl)fumaraldehyde 2bf (403.1 mg, 1.26 mmol) by treatment with TiCl4 (0.29 mL, 2.62 mmol. 2.1 eq) in 1,2-

dichloroethane (8.5 mL) at 40 oC (3 h). Quenching the green reaction mixture with methanol/acetone (1:1, 10 mL) yielded 

1bf as an orange powder (308 mg, 1.08 mmol, 86%) which could be sublimed (215-225 oC, 0.1 mbar) affording a brilliant 

orange powder. M.p. >250 oC; UV/Vis (CH2Cl2, 10-5 M): λmax/nm 475, Eg(opt) 2.49 eV;  1H NMR (500.1 MHz, CS2 

external DMSO-d6 lock): δ 8.18 (s, 1H, H-5), 8.17(5) (s, 1H, H-11), 8.15 (s, 1H, H-12), 8.12 (s, 1H, H-6), 7.57 (d, J = 9.0 

Hz, 1H, H-4), 7.56 (d, J = 8.9 Hz, 1H, H-10), 7.38 (s plus unresolved meta coupling, 1H, H-1), 7.37 (s plus unresolved 

meta coupling, 1H, H-1), 6.97, (dd, J = 8.9, 1.5 Hz, 1H, H-3), 6.89 (dd, J = 8.8, 1.3 Hz, 1H, H-9), 2.79 (sept, J = 6.9 Hz, 

1H, H-1’), 2.28 (s, 3H, H-1”), 1.15 (d, J = 6.9 Hz, 6H, H-2”); 13C NMR (124.7 MHz, CS2, external DMSO-d6 lock): δ 

143.8 (C), 133.4 (C), 131.0 (2 × C overlap), 130.1 (C),  129.7 (C), 129.6 (C), 129.5 (C), 127.9 (CH), 127.7 (CH), 127.5 
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(CH), 125.9 (CH), 125.4 (CH), 125.3(5) (CH), 123.3 (CH), 125.1 (CH), 124.7 (CH), 122.9 (CH), 34.1 (CH), 23.1 (CH3), 

21.8 (CH3); MS (+EI) 284 (M); Anal: Calcd. for C22H20 C, 92.91; H, 7.09; found C, 92.65; H, 7.18%. Full details for the 

preparation of 1-7 and their propoerties are given in the Supporting Information. 

 

 

Acknowledgments 
This work was initiated under funding from the European Union’s Seventh Programme for research, technological 

development and demonstration under grant agreement No 308768. One of us JR is grateful to European Thermodynamics 

Ltd and the Engineering Physical Sciences Research Council (EPSRC) for provision of a studentship. SW, LB and JR 

thank EPSRC’s National Service for Computational Chemistry (NSCCS) for computational facilities until its closure in 

2017. MA thanks the Swiss-European Mobility Programme (SEMP) and is grateful to Prof Steve Howdle and Ms Liv 

Monaghan for advice and help with GPC analyses. MRG is grateful for the award of an Appalachian College Association 

Fellowship for sabbatical leave support from Berea College, Kentucky, USA. We are indebted to Dr Callum Welsh 

(University of Nottingham) and Prof Jens Pflaum (Universität Würzburg) for helpful discussions on refractive index 

matching and anomalous dispersion effects in diamond anvil ATR-IR spectroscopic studies of tetracenes. We thank Dr 

Magdalena Foreiter for sample collaboration with Key Organics Ltd and Nottingham Research Chemicals. 

 

 

Footnotes and References 

 
[1] Key overviews of tetracene, and other acenes, in organic electronic applications: (a) M. Bendikov, F. Wudl, D. 

F. Perepichka, Chem. Rev. 2004, 104, 4891-4946; (b) J. E. Anthony, Chem. Rev. 2006, 106, 5028-5048. 

[2] Key overviews of tetracene, and other acene, synthetic strategies: (a) H. Qu, C. Chi, Cur. Org. Chem. 2010, 14, 

2070-2108; (b) M. Watanabe, K.-Y. Chen, Y. J. Chang, T. J. Chow, Acc. Chem. Res. 2013, 46, 1606-1615; (c) R. 

Dorel, A. M. Echavarren, Eur. J. Org. Chem., 2017, 14-24. 

[3] Tetracene is a member of the family of poly aromatic hydrocarbons (PAH) which are responsible for the IR 

emission detected from numerous galactic and extragalactic objects: (a) L. J. Allamandola, D. M. Hudgins, S. A. 

Sandford, Astrophys. J., 1999, 511, L115-L119; (b) A. Candian and P. J. Sarre, MNRAS, 2015, 448, 2960-2970. 

[4] Direct cost comparison for gramme quantities of 97-98% purity material as supplied by Sigma-Aldrich, April 

2017. 

[5] C. P. Gerlach, F. B. McCormick, U.S. Patent 20060105199 [3M Innovative Properties Company, USA], 2006, pp. 

17 [Chem. Abs. 2006, 144, 477358]. The vast majority of the approaches of ref. 2 are also unidirectional. 

[6] S. R. Magnuson, Tetrahedron 1995, 51, 2167-2213. 

[7] Two-directional elaboration of bis-benzyne precursors, in the seminal work of Hart and Gribble and the 2014 

contribution of Krische were identified: (a) A. Sy, H. Hart, J. Org. Chem. 1979, 44, 7-9; (b) G. W. Gribble, R. B. 

Perni, K. D. Onan, J. Org. Chem. 1985, 50, 2934-2939; (c) L. M. Geary, T.-Y. Chen, T. P. Montgomery, M. J. 

Krische, J. Am. Chem. Soc. 2014, 136, 5920-5922. 

[8] We could identify the closure of a 2,5-dibenzyl-3,6-diformyl-thieno[3,2-b]thiophene under acid catalysis to a 

6,6,5,5,6,6 ring system in undisclosed yield as one near analogue: (a) J. Il Park, E. J. Jung, S. Y. Lee, U.S. Patent 

20090043113 [Samsung Electronics Co. Ltd., South Korea], 2009, pp. 14 [Chem. Abs. 2009, 150, 20093]; one tri-

directional synthesis: (b) N. Saino, T. Kawaji, T. Ito, Y. Matsushita, S. Okamoto, Tetrahedron Lett. 2010, 51, 

1313-1316 and one tetracene in a wider recent study: (c) T. Fujita, I.Takahashi, M. Hayashi, J. Wang, K. Fuchibe, 

J. Ichikawa, Eur. J. Org. Chem. 2017, 262-265. 

[9] C. K. Bradsher, Chem. Rev. 1987, 87, 1277-1297. 

[10] (a) J. N. Chatterjea, S. K. Roy, J. Indian Chem. Soc., 1957, 34, 155-162. (b) M. P. Reddy, G. S. K. Rao, J. Org. 

Chem., 1981, 46, 5371-5373; (c) M. A. Tius, J. Gomez-Galeno, Tetrahedron Lett. 1986, 27, 2571-2574; (d) M.-

R. Tsai, T.-C. Hung, B.-F. Chen, C. C. Cheng, N.-C. Chang, Tetrahedron, 2004, 60, 10637-10644.  

[11] (a) X. Yu, X. Lu, Ad. Synth. Catal., 2011, 353, 569-574. (b) Y. Kuninobu, T. Tatsuzaki, T. Matsuki, K. Takai, 

Kazuhiko, J. Org. Chem. 2011, 76, 7005-7009. (c) S. M. Rafiq, R. Sivasakthikumaran, J. Karunakaran, A. K.  

Mohanakrishnan, Eur. J. Org. Chem. 2015, 5099-5114.  

[12] (a) A. P. Krapcho, T. P. Gilmor, J. Heterocyclic. Chem. 1998, 35, 669-674; (b) A. P. Krapcho, T. P. Gilmor, J. 

Heterocyclic. Chem. 1999, 36, 445-452. 

[13] R. Dorel, P. R. McGonigal, A. M. Echavarren, Angew. Chem., Int. Ed. 2016, 55, 11120-11123. 



Manuscript for Chemistry Eur. J.: Woodward, et al. 

Page 8 of 8 

 

[14] C. C. McAtee, P. S. Riehl, C. S. Schindler, J. Am. Chem. Soc. 2017, doi: 10.1021/jacs.7b01114 

[15] P. A. Malachesky, L. S. Marcoux, R. N. Adams, J. Phys. Chem. 1966, 70, 2064-2065. 

[16] A. S. Dworkin, L. L.  Brown, A. C. Buchanan, G. P. Smith, Tetrahedron Lett. 1985, 26, 2727-2730. 

[17] Y. Ishino, K. Wakamoto, T. Hirashima, Chem. Lett. 1984, 765-768. These room temperature conditions are 

inefficient for benzylmagnesium chlorides, higher temperatures (50-60 oC) are needed for high yield 

transformation within 1-2 h.  

[18] L. Luo, D. Resch, C. Wilhelm, C. N. Young, G. P. Halada, R. J. Gambino, C. P. Grey, N. S. 

Goroff, J. Am. Chem. Soc. 2011, 133, 19274-19277. 

[19] Compounds 3a-c and 4 (gram quantities) are available at from Key Organics (www.keyorganics.net) via their 

Nottingham Research Chemicals range. A range of analytical tetracene standards 1 will also be added. 

[20] G. Manolikakes, M. A. Schade, C. M. Hernandez, H. Mayr, P. Knochel, Org. Lett. 2008, 10, 2765-2768. 

[21] S. D. McCann, S. S. Stahl Acc. Chem. Res. 2015, 48, 1756-1766 (overview); (b) J. M. Hoover, B. L. Ryland, S. S. 

Stahl, J. Am. Chem. Soc. 2013, 135, 2357-2367 (mechanism). 

[22]  H. H. Tso, T. K. Hwang, Y. J. Chen, Bull. Inst. Chem., Academia Sinica 1994, 41, 25-32. 

[23] Z. Liang, W. Zhao, S. Wang, Q. Tang, S.-C. Lam Q. Miao, Org. Lett. 2008, 10, 2007-2010. 

[24] For use of pre-prepared and in situ use of BF3-H2O mixtures see: (a) G. K. S. Prakash, C. Panja, A. Shakhmin, E. 

Shah, T. Mathew, G. A. Olah, J. Org. Chem. 2009, 74, 8659-8668;  (b) S. Zhang, X. Zhang, X. Ling, C. He, R. 

Huang, J. Pan, J. Lia, Y. Xiong, RSC Adv. 2014, 4, 30768-30774. 

[25] F. Mata-Perez, J. F. Perez-Benitol, J. Chem. Edu. 1987, 64, 925-927. 

[26] L. M. Geary, T.-Y. Chen, T. P. Montgomery, M. J. Krische, J. Am. Chem. Soc. 2014, 136, 5920-5922 [Tetracene 

1aa is widely and well characterised, ref. 26 gives: 1H and 13C NMR spectra, an IR and HRMS].  

[27] E. A. Coulson, J. Chem. Soc. 1935, 77-83 [Only an approximate m.p. and very poor analytical data have ever been 

reported for 1ab]. 

[28] W. von E. Doering, K. Sarma, J. Am. Chem. Soc. 1992, 114, 6037-6043 [The m.p., IR, 1H and 13C NMR spectra 

of 1ac are reported]. 

[29] B. Hilti, C. W. Mayer, US Patent 4601853 A1 (to Ciba-Geigy Corporation), 1986, pp. 6 [Chem. Abs. 1986, 104, 

100547; only UV-vis data and a low resolution MS are available].  

[30] The compound has been claimed as a starting material but no details of its preparation or properties are given: B. 

A. Hess, L. J. Schaad, W. C. Herndon, D. Biermann, W. Schmidt, Tetrahedron 1981, 37, 2983-2988. 

[31]  E. A. Coulson, J. Chem. Soc. 1934, 1406-1412 [Only an approximate m.p. and very poor analytical data have ever 

been reported for 1bb]. 

[32] J. Zhang, Z. Chen, L. Yang, F.-F. Pan, G.-A. Yu, J. Yin, S. H. Liu, Nature Sci. Rep. 2016, 6, 36310. 

[33] J.-L. Bredas, Mater. Horiz. 2014, 1, 17-19. 

 

 

Graphical Abstract and Table of Contents text 

 

 
 

Keywords:  
 

Arenes • Aldehydes • Aromaticity • C-C coupling • Acenes • Bradsher cyclisation • Efficient 

A simple procedure for the preparation of 

substituted tetracenes from low cost ArCH2Cl 

and HOCH2CCCH2OH. 


