
 Composing and Realising a Game-like Performance for
Disklavier and Electronics

Maria Kallionpää1, Chris Greenhalgh2, Adrian Hazzard2, David M. Weigl3 and Kevin R.
Page3 and Steve Benford2

1Music and Sound Knowledge Group, Aalburg University, Denmark, kallionpaa@hum.aau.dk
2Mixed Reality Laboratory, University of Nottingham, Nottingham, {first name.last name}@nottingham.ac.uk

3Oxford e-Research Centre, University of Oxford, Oxford, {first name.last name}@oerc.ox.ac.uk

ABSTRACT
“Climb!” is a musical composition that combines the ideas of a
classical virtuoso piece and a computer game. We present a
case study of the composition process and realization of
“Climb!”, written for Disklavier and a digital interactive
engine, which was co-developed together with the musical
score. Specifically, the engine combines a system for
recognising and responding to musical trigger phrases along
with a dynamic digital score renderer. This tool chain allows
for the composer’s original scoring to include notational
elements such as trigger phrases to be automatically extracted
to auto-configure the engine for live performance. We reflect
holistically on the development process to date and highlight
the emerging challenges and opportunities. For example, this
includes the potential for further developing the workflow
around the scoring process and the ways in which support for
musical triggers has shaped the compositional approach.

Author Keywords
Composition, musical codes, score, music information retrieval.

ACM Classification
H.5.2 [Information Interfaces and Presentation] User Interfaces–
Input devices and strategies, H.5.5 [Information Interfaces and
Presentation] Sound and Music Computing.

1. INTRODUCTION
In this paper we describe the composition and technical
realisation of “Climb!”, a non-linear musical work for
Disklavier and electronics by Maria Kallionpää. This charts an
ongoing collaboration between the composer and two research
institutions to develop an interactive system to support this
composition.
 Computers can have a profound impact on music composition
and performance, the works of Iannis Xenakis (1922-2001),
Karlheinz Stockhausen (1928-2007), Pierre Boulez (1925-
2016), and their many other contemporaries are illustrative
examples of this. Techniques dependent on electronics and
computers such as sound synthesis, algorithmic composition,
the realization of stochastic arrangements and score following
have been widely explored, as witnessed by the almost
unlimited variety of interactive systems seen in contemporary
performance. However, composers’ and performers’ wishing to
engage in such musical works must invest significant time and
resources in becoming ‘computer-literate’ or alternatively share
their artistic vision with technically-minded collaborators, both
of which may present barriers to use.
 A key aim in our collaborative development of “Climb!” is to

take steps to lower some of the technical barriers that can limit
composers’ and performers’ use of computers in their musical
practice. The interactive engine and supporting tools and
processes that we are developing seek to provide a flexible but
usable combination of features and capabilities. Specifically,
they include an interactive real-time score and support for non-
linear compositions that respond directly to the performer’s
playing. We begin by positioning our work against related work
in this area. We then describe the specific requirements of the
composition and our technical response to these, and chart the
parallel process of scoring and system development. We
highlight the key challenges arising and opportunities
encountered. We conclude with some further challenges.

2. Related Work
2.1 Performance Interactions and Systems
The work in this paper is positioned in contemporary music
composition and performance, which often incorporates a
mixture of human and computer performers, and the
exploration of electroacoustic, stochastic and open forms.
When such works also include a computer accompaniment the
“live” system resembles “an invisible chamber music partner”
[1] and, just like a human performer, an electronic system is
equally susceptible to making mistakes [2].
 Dannenberg et al. [3] observes two forms of interaction with
computers in live performance, namely autonomy and
synchronization. Our interest lies in the intersection of these
forms, where the performer sets in motion and then interacts
with actions that the system runs. Many such works employ
score following systems, which are numerous [4]–[6]. They
aim to synchronize the electronic accompaniment with the
human performer. Score following systems can be challenging
for both the performer and the listener, being prone to error,
which can disrupt synchronization [6]. Our interest is not to use
score following in performances of “Climb!”, but rather
employ other methods of computer listening less reliant on
continuous synchronization between performer and system.
 Electronic or electroacoustic repertoire may require the
performer to manage other activities other than just playing
their instrument, such as controlling facets of the system. A
range of contrasting solutions have previously been employed,
from the use of motion sensors to enable hands free control of
“physical [or virtual] knobs, sliders and switches” to more
mundane solutions, such as foot pedals, or moving to the next
setup in the piece by pressing the space bar of a laptop [8].

2.2 Real-time Score Display
Printed scores are inherently problematic when the performed
music is non-linear in structure. Unsurprisingly, the integration
of new technologies into the field of music performance has
driven the exploration of similarly interactive solutions for the
display of scores. Winkler outlines a set of characteristics for
their application [8], stating they need to be “generated in real-
time”; “projected directly onto a computer screen”; that ‘the
musicians can interactively influence the evolution of the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
NIME’17, May 15 – 18, 2017, Aalborg University Copenhagen,
Copenhagen, Denmark.
Copyright remains with the author(s).

piece”; and finally “that each performance creates only one
possible version of many”. Winkler also distinguishes between
a control score (real-time feedback on system state) and a
playing score (i.e. traditional notation) [8]. Winkler’s
characteristics of real-time score application neatly describe our
composer’s compositional intent.
 Hope and Vickery [9] classify real-time scores into four
types: ‘the scrolling score’, where the notation is rendered in
time under a fixed playhead; the ‘permutative score’, where
discreet musical fragments can be displayed in open
arrangements; the ‘transformative score’, where an already
displayed score can be transformed in real-time; and finally the
‘generative score’, which is constructed in real-time.
 There are numerous systems and approaches for creating and
rendering real-time scores, one such example can found in
InScore [10] an interactive score viewer whose rendering
actions are driven by OSC messages. In addition to displaying
standard western notation, InScore “extends the traditional
music score to arbitrary heterogeneous graphic objects”[10].
For instance this might include rendering graphical elements
such as the coloured highlighting of specific measures.
 The “Climb!” composition is constructed around a series of
musical fragments designed to be navigated through in a
variety of directions, which suggests a primarily permutative
approach, although with transformative elements where key
phrases in the score can be dynamically highlighted.

2.3 Structuring Music Information
While music is typically delivered in a linear rendition, its rich
conceptual structure can be viewed as hyperstructures which
can encode branching compositions and incorporate other
multimedia elements and annotations [11]. Earlier systems
expressed relationships anchored to surface level
representations: music is typically anchored to a timeline
expressed in milliseconds, beat instances, or MIDI clock ticks,
or to a sequence of (pitch-derived) chroma features e.g. [12];
digitized images of musical notations are referenced by spatial
coordinates describing relevant regions, perhaps obtained via
Optical Music Recognition [13].
 The Synchronized Multimedia Integration Language1 (SMIL)
provides a means of specifying hypermedia linking structures,
including grouping of elements and temporal ordering but
requires the use of coordinated timelines ultimately expressed
in terms of milliseconds. The commonly used MIDI format
encodes pitch sequences, durations, and other control
information, but is impoverished from a musicological
standpoint; for example it cannot represent simple structural
features, such as repeats or jump instructions, or note stem
directions, beams, slurs, and other aspects of musical notation.
MusicXML [14] can handle all these features but is
predominantly designed to support score rendering consistency
across different software tools, and consequently valuable
musicological information is omitted [16].
 The Music Encoding Initiative (MEI) [16] provides an
alternative XML schema with a focus on capturing the
semantics of musical content. This enables the clean separation
of content from presentation [17] and provides a rich, cohesive,
and detailed representation of musical structure in which
identifiers can be assigned to notational elements at any level of
the musical hierarchy. The Verovio2 renderer generates
beautiful engravings of the musical score, closely mirroring the
MEI input structure. It also perpetuates the identifiers in the
MEI into its SVG output such that each visual element is
universally addressable.

1 https://www.w3.org/TR/REC-smil/
2 http://www.verovio.org/index.xhtml

3. Design
We now describe “Climb!” from the perspective of the
composer and the audience. In the subsequent sections we will
consider its technical realisation.

3.1 Composer’s Vision
From the composer’s perspective “Climb!” explores how best
to maximise the capabilities of both the performer and their
musical instrument. The goal was to contribute to the ongoing
development of contemporary piano repertoire by creating an
innovative virtuoso composition that could offer new
perspectives both for the concert audience and for the
musicians who play it. The original intention was to design a
system, an interactive ‘music engine’, that could be used in the
context of various compositions. This would then provide a
means of multiplying the performer´s instrumental skills by
providing them access to technical possibilities that would not
be achievable by a human performer on a regular concert
instrument (including, for example, faster tempi, changing the
tuning in the middle of the performance, playing multiple
octave ranges simultaneously, or one performer playing “a
duet” by him/herself). Furthermore, the composer also wanted
to challenge the concept of ‘form’ in a classical composition,
which is why they decided to compose this piece in the form of
a game. This approach references the tradition of musical dice
games in the works of C.P.E. Bach and W.A. Mozart or John
Cage’s compositions based on chess play.

3.2 Performance Elements
“Climb!” is written for a Disklavier grand piano and
electronics. The Disklavier is played by both a human
performer and at times automatically, alongside the pianist, as
driven by a MIDI input. Electronics here denotes digital signal
processing effects (e.g. filtering, reverberation, delay) applied
to the Disklavier’s audio signal. Accompanying projected
visuals complete the range of media envisaged for the work. A
key purpose of the supporting visuals is to give the audience a
view into the interactive nature of the performance, something
that may be otherwise hidden within the system.
 The stage setup consists of the piano, with two microphones
capturing its sound. This is routed through an audio interface
into the ‘music engine’ laptop. MIDI in and out is also routed
between the Disklavier and the system laptop. The traditional
printed score is replaced with a tablet or second display
attached to the system laptop showing the real-time score. This
is connected to a foot pedal that actions the next page of the
score. The decision to place control of digital page turns over to
the pianist means they can control the timing of turns within the
performance of continuous musical passages and transitions
between sections, where a pause may be placed (commonplace
practice between movements of a piano concerto). Visuals are
displayed on a large screen behind the piano and performer.

3.3 Open [game] form
“Climb!” uses an open form, designed so that the performer´s
real-time actions define the progression through a branching
compositional structure (see Figure 1). This describes the game
like approach to the work: a demanding climb up a mountain
where the pianist is faced with a number of challenges that
steer the trajectory of their climb. “Climb!” consists of three
‘macro compositions’ each of them symbolizing a path leading
from ‘Basecamp’ to the ‘Summit’ (i.e. Path A, Path B, Path C).
These ‘paths’ contain a number of ‘events’ (i.e. micro
compositions, see Figure 1) that may branch to other paths
depending on how the performer meets their particular
challenges. These challenges are realized as specifically scored
musical material that is technically demanding for the pianist,

such as phrases, sequences or rhythms. If played correctly the
pianist will remain on course, continuing along the same path,
but if articulated inaccurately the system will then steer the
pianist over to another path.

Figure 1: Branching structure of “Climb!”

 All the micro-compositions are fully scored for both the
pianist and automated Disklavier using traditional western
notation, with the exception of occasional requests stated in the
score for improvised, or semi-improvised musical statements.

3.4 Example Interactions
By way of an example, we now offer a walk-through
description of a series of composed performance interactions
from “Climb!”. Each performance commences at ‘Basecamp’
(see Figure 1). At the end of this micro-composition the
performer is presented with a choice of one of three alternative
endings to play. Their choice will determine which path they
commence their climb along (e.g. ending 1 = Path A or Ending
2 = Path B). The musical material in these endings, as is the
case with key phrases in the other micro-compositions have an
extra-musical functionality. Specifically they are codes that
when played by the pianist trigger subsequent interactions, such
as determining the next micro-composition along the path, or
triggering of a Disklavier accompaniment, or changing the
audio effects or cueing visual images.
 If, for example, the performer chooses Ending 2 and performs
it accurately the system (music engine) will queue up the next
micro-composition, in this case ‘Event 1b – The Stones’ (see
Figure 1). The performer initiates the start of ‘The Stones’ by
advancing the score via the foot pedal. This triggers an
automated Disklavier accompaniment. In the ‘The Stones’ our
climber is faced with falling stones on the mountainside. This
event finds the pianist dodging a flurry of phrases performed
automatically by the Disklavier, and the audio signal is treated
with a digital delay effect to mimic the rattling sound of the
falling stones. Towards the end of ‘The Stones’ the performer
is again presented with another musical challenge, which also
functions as a musical code. If performed accurately they will
then progress to the next micro-composition along that path
entitled ‘Path B’ (Figure 1). Alternatively, if they fail the
challenge with an inaccurate performance of the musical code
they branch off to ‘Event 1c – Echo’.
 An additional interaction comes in the form of variable
weather conditions experienced by the climber as represented
by audio effects (i.e. MAX/MSP patch). Although partially
random, there are also controlled by the software system so that
some effects can only occur at certain stages of the piece.

 These examples illustrate the nature of the interactions
contained in a “Climb!’ performance. Given the open form and
elements of indeterminacy (i.e. branching structure and random
weather conditions) it is anticipated that each performance of
“Climb!” will deliver a unique reading.

4. Implementation
We now present the technical realisation of “Climb!” and
specifically the interactive engine that has been created to
support it. The architecture of the system is shown in figure 2,
and integrates and extends a combination of bespoke and
established software. The key software components are:
Muzicodes [18], which recognises and responds to the musical
trigger phrases played on the Disklavier and coordinates the
entire runtime engine; MELD, which handles and renders the
dynamic digital score; and MAX/MSP, which implements the
audio effects and sequences the Disklavier parts. These are
described in more detail below.

Figure 2: The “Climb!” runtime engine

4.1 Muzicodes
Muzicodes is a research system that enables composers and
performers to bestow musical gestures (e.g. melodies, rhythms,
or combination of both) with an extra-musical functionality,
namely to trigger a range of media interactions. A previous
version of the software is charted in [19], which provides a
system overview.
 The Muzicodes approach is distinct from Score Following in
that it does not seek continuous synchronization between
performer and system. Rather Muzicodes listens for pre-defined
musical statements, or musical gestures, we refer to as ‘codes’.
These codes can be defined as pitch strings (i.e. melody), a
group of delays between onsets (i.e. rhythms), by velocity or a
combination there of. Thus, musical motifs embedded within
the score can be identified as codes and then mapped to actions
that function as triggers for other performance media. This
approach can offer a great deal of flexibility for the
composer/performer. For example, the presentation of codes
can be performed at will, as there is no reliance on keeping to a
fixed sequence of events or time code. Furthermore, codes can
be absolute or, by using Regular Expressions (RegEx), ‘loose’
and flexible. RegEx characters can permit matching for ranges
of notes or repetitions or any inputted pitch or delay, thus
enabling a performer to extemporize around them. Finally,
conditional matching enables codes to become active under
prescribed conditions, for instance deactivated after first
presentation, or only active after other preceding codes have
been ‘heard’.

 Muzicodes can work with either audio or MIDI as input. The
latter is used in this instance as the Disklavier outputs all
keyboard interactions as MIDI events. MIDI provides a clean
signal for the system as it bypasses the feature extraction step.
Once a code is heard and any pre-conditions are fulfilled they
are then mapped to ‘actions’. These can be MIDI, OSC, URL
or text based messages outputted to other software or hardware.

4.2 MELD
The next core functionality required for “Climb!” is that of a
real-time score renderer. For this purpose we turned to another
piece of research software, the Music Encoding and Linked
Data (MELD) framework. The hierarchy of musical structure
encoded by an MEI version of the score provides a semantic
spine, through which elements of musical notation or
aggregations thereof – for instance, groupings of individual
notes and measures – are associated and annotated using Web
Annotations4. This enables MELD to associate information
with specific elements of the music regardless of performance
characteristics (e.g. tempo, structural decisions) or layout
decisions (e.g. page size, number of systems per page).
 MELD stores this information as a set of dynamically
updated RDF triples, external to the MEI source; then combines
the two on-demand in a web-based renderer, augmenting the
SVG score view produced by the Verovio renderer with custom
presentation or actions. The RDF triples encode semantic
annotations targeting notation element URIs. Action handlers
corresponding to each semantic tag are modularly defined, for
example to display the name of the next fragment in the queue
or to instruct Verovio to render the MEI corresponding to the
next segment. The rendering state is tracked using MELD
RESTful API, which also ensures that actions such as rendering
a new MEI source only occur at the appropriate time and that
refreshing the web-browser does not “break” the performance.
 Provenance information is generated during the creation of
each annotation, and on its actioning by the renderer. This
captures MELD’s ‘perspective’, allowing us to determine the
sequence of actions performed. We can use this information to
generate real-time or post-hoc descriptions of the performance,
which can be shared with the audience and performer.
 The digital score view contains two views in alignment with
Winkler [8], i.e. the playing score (MELD view) and a control
score (Muzicodes view). The former displays the traditional
western notation including the Disklavier part (where
appropriate). The latter displays the state of the Muzicodes
system: the incoming stream of note events, candidate codes
which, when performed, are progressively highlighted in red
and a preview/action window that display actioned codes.
However work is also in progress to integrate the control
information directly into the playing score, for example
dynamically highlighting triggered codes.

4.3 Other Components
The well-known commercial product MAX/MSP provides
supporting capabilities to the interactive engine. A simple patch
loads the Disklavier parts exported from the score and plays
(sequences) these when triggered by Muzicodes over an
internal MIDI connection. The treatment of audio effects on the
Disklavier are realized by a second MAX/MSP patch hosting a
number of Virtual Studio Technology (VST) effect plugins
(using the vst~ object). This patch is also controlled by MIDI
messages from Muzicodes that define the routing of the audio
signal through the VST’s. The projected visuals are intended to
show animated sequences, although to date system tests have

4 https://www.w3.org/ns/oa

used static images. This display is directly controlled by
Muzicodes (using its “channel” system [18]).

5. Challenges and Solutions
Having presented the overall implementation of the interactive
engine that supports “Climb!”, we now consider some of the
key challenges that have emerged during development and how
they have been addressed.

5.1 System Integration
The first challenge was to achieve an effective integration of
the main technical elements, in particular Muzicodes and
MELD: the two systems need to coordinate closely throughout
a performance. While Muzicodes was capable of issuing a
range of actions in response to the recognition of performed
codes it lacked any other form of control input. So we extended
Muzicodes with a ‘Controls’ section that permits for actions in
Muzicodes to be associated with other inputs including buttons,
MIDI control messages and most importantly HTTP requests.
We also extended the range of actions available in Muzicodes
to include the ability to make HTTP requests to other software.
 Using these new HTTP interfaces we were able to integrate
and synchronise the operation of Muzicodes and MELD.
Specifically, MELD is responsible for displaying the digital
score, and it informs Muzicodes (over HTTP) each time the
performer advances the display to a new micro-composition.
Meanwhile, Muzicodes is responsible for detecting the musical
codes or trigger phrases and responding appropriately. In
particular Muzicodes informs MELD (again over HTTP) when
a new micro-composition should be queued as the next
fragment to display. The Muzicodes system also acts as a
bridge between the foot pedal and MELD, responding to pedal
presses by sending a page-turn annotation to MELD.
 These extensions to Muzicodes have begun to expand its role
beyond a music recognition system to one of a performance
management system, capable of integrating other diverse sub-
systems.

5.2 System Expressiveness
One of the key functions of this integrated system is the
triggering of actions to control “Climb!’s” various media
elements: the real-time interactive score display, automated
Disklavier accompaniment, routing of the audio signal through
digital signal processing and the synchronisation of visuals to
transitions between micro-compositions. These actions need to
respond to a number of competing considerations, namely to
compliment performance aesthetics, bestow system control to
both the performer and system in different circumstances, and
present a real-time view on the system state, across a number of
linked sub-systems. This required careful thought and
development so that in the performance system each musical
code or change of score can trigger any or all of the following
actions, initiated by Muzicodes:
• Queuing of the next appropriate score fragment in MELD.
• Asking MELD to highlight measures in the score in order

to give real-time feedback to the performer as to whether
the corresponding Muzicode has been triggered.

• Starting an automated Disklavier accompaniment (MAX
patch 1).

• Triggering a specific (predefined or random) audio effect
in MAX Patch 2.

• Switching the visual display to a new image or animation
(specified via a URL).

The development process also revealed a number of other
extensions to Muzicodes’ functionality required to realise the
composition as envisioned. In addition to the general support
for integration described above, it was also necessary to

introduce delayed actions in Muzicodes. Previously actions
were performed as soon as a code was recognized. Thus
composers and performers, when defining codes, had to
balance the needs of the music and the placement of the codes
against the desired moment of initiation of any resultant action.
By introducing a function to queue future actions (i.e. to delay
actions by a certain number of seconds), the composer has
more flexibility about where codes can be embedded within the
music. Note that this is effective when timings can be
prescribed and are consistent across multiple performances, but
less effective if this is uncertain. In the context of “Climb!”
those micro-compositions with Disklavier accompaniments
(driven by MIDI files) are fixed and therefore consistent in
tempo and duration, thus appropriate for delayed actions.
 In addition to delayed actions, support for randomized actions
has also been added. This was in response to the requirement
for random ‘weather conditions’ manifest by particular choices
of effect processing in MAX, so that each micro-composition
can trigger one of several possible effects at random.

5.3 Scoring and Annotation
The composition of “Climb!” has for the most part taken place
independently from the rest of team. Periodically the composer
presents new fragments and these are integrated into the music
engine. One theme of discussion has revolved around score
markings and annotations, specifically how to notate the codes
and other interactions beyond the piano keyboard. To this end,
the Disklavier has been notated on a separate staff, in keeping
with traditional practices. Codes are marked in two ways. First,
they are placed on an ossia, a breakout staff that appears above
or below the piano part in the score. Traditionally, ossias are
used to notate an alternative passage that can be played, or to
assist a performer in navigating their score after a period of rest
by indicating other currently playing instrument lines. Our
composer has adopted this engraving practice to draw attention
to the location of codes. Secondly, text has been used to
provide performance instructions (e.g. for ‘loose’ or semi-
improvised codes) and subsequent actions. These ossias are
only present in the full score, and as such they speak to the
composer, technician and the performer in rehearsal. They do
not appear in the real-time score used in a performance setting,
due in part to limited display space on the performer’s screen.
 Some of the audio effects have also been marked in the full
score. As with the above example, existing traditional score
markings have been re-purposed for this task, such as using
‘hairpins’ (normally used to express dynamics) to indicate the
fade in and out of audio effects. To clarify the function of the
marking the composer has again used accompanying text
descriptions. When scoring new or novel musical interactions
contemporary composers typically repurpose existing
markings, rather than invent new ones.
 Our composer’s approach to the nature of codes embedded
within the musical material has taken on a notable relevance. In
principle these codes do not need to be musically remarkable,
and can be indistinct to the human ear as long as they are
recognised by the system. Nonetheless, the composer aligned
the extra-musical codes with the principle musical themes of
the work, describing their function as the ‘keys’ by which the
piece is structured. While this is an artistic decision, as opposed
to one of necessity, it highlights how the Muzicodes approach
has promoted interdependency between the composition of
music and composition of interaction; specifically Muzicodes
has become a defining element of the compositional process.

5.4 Score Encoding and Rendering
Generating the version of the score for use in MELD presented
a number of challenges, specifically the conversion from

Sibelius to MEI. With no native MEI export, an available third-
party plugin created MEI files with many errors (sometimes
doubling note events and omitting many markings). We
compared these to musicXML encodings from Sibelius which
demonstrated a number of improvements. We discovered that
opening and re-exporting these as musicXML files in
MuseScore2 improved matters. These were then converted to
MEI, however further manual editing was still required to
rectify outstanding errors. This highlights a current challenge
for this and other such systems using the MELD approach, and
consequently represents an area for future work.

5.5 Workflow of Composition and
Performance
To date the collaborative realisation of “Climb!” has spanned a
7 month period including a number of focused development
sessions. Here we reflect on the process or workflow that has
been developed to support composition and performance.
Figure 3 illustrates an integrated workflow of three distinct
stages: composition and production, performance and post-
performance. Central to these stages is notation and annotation.
 The composition process is undertaken directly to a digital
score (i.e. in Avid Sibelius). Once codes are identified in the
score these are then added to the “Climb!” Muzicodes
experience (the file that contains all of the configuration
parameters for Muzicodes, such as codes, conditional matching
and actions). This is not necessarily a one-way process: the
needs of the extra-musical functionality of the codes can push
back on the creative decisions the composer makes. The
creation or configuration of other performance media, such as
the audio effects (DSP) and visuals also come into play here.

Figure 3: “Climb!” Music Engine Workflow

 Once scored, the notation is then converted into MEI for
MELD to use in the real-time rendering of score fragments.
The Disklavier parts in the score are also exported as MIDI
files to be sequenced by MAX Patch 1 (see Figure 3). The
performance stage is as described in section 4 and above.
 MELD also maintains a complete record of the history of the
dynamic score, allowing us to determine, for instance, the exact
time at which a Muzicode was triggered and when the next
piece of the composition was determined and subsequently
transitioned to. This information can be captured for every
performance of “Climb!” allowing each individual performance
to be documented and compared.
 Part of our ongoing intention is to make it easier for the
composer/performer to set up and configure the complete
performance system, especially valuable when a performance is
being reproduced by a different set of performers or when a
work is being adapted or modified. To this end we have created
an initial software tool to semi-automate the configuration
process. “Climb!” is a large-scale composition comprising

about 20 different micro-compositions, each with its own
musical code(s), accompaniment, visuals and choice of effects.
We have defined a simple Excel spreadsheet in which all of
these performance options can be specified. If the score is
changed or the settings for a micro-composition are modified
then the system can re-process the score MEI files, the
spreadsheet and the previous Muzicodes experience file to
create a new experience file with the correct codes, conditions
and actions. This tool also auto-generates all of the specific
controls and actions needed to link Muzicodes and MELD.

6. CONCLUSIONS
The integration of Muzicodes and MELD has created an
interactive performance system capable of supporting a broad
range of performance interactions linked to a dynamic score.
This is successfully supporting the composition and
performance of “Climb!”, whose musical challenges, branching
structure and stochastic elements draw inspiration from
computer games. Our long-term aim is to lower some of the
technical barriers to the integration of technologies in such
interactive performance works. This clearly references a wide
spectrum of tailoring and the work charted here represents an
initial exploration of a single mid-point example. We have
begun to develop additional software tools to support and
automate mechanical elements of the process of setting up and
configuring the software system. These permit for some
authoring and re-configuration outside of the software’s
‘code’. There is still more to be done about extracting further
detail from the score, where the composer’s annotations can
auto-configure other system interactions. Furthermore, our
MAX/MSP patches require significant handcrafting, which,
given our aim, raises a question as to whether and how one
might automate this process. Our vision is that a future version
of the system will be able to operate entirely from the
composer’s score notations together with a suitably structured
form of programme note, requiring minimal technical expertise.
 There are three further related challenges that are brought to
the fore by compositions such as “Climb!” which we are now
beginning to address. First, it is relatively difficult to rehearse a
piece such as this. Disklavier pianos (like many other unusual
musical instruments and interfaces) are not universally
available. Consequently initial testing of the system was done
using a MIDI keyboard which can mimic the sound of the auto-
accompaniment but not the mechanical and visual aspect of
keys being depressed. But even with this adjustment it can be
quite difficult and time-consuming to set up the performance
system, especially on a new computer. Second, it is relatively
difficult to perform the piece, for essentially the same reasons.
Dobrian and Koppelman [19] observe that it is commonplace in
contemporary performances, especially those that employ novel
music systems and interfaces for performers to have limited
time to get to grips with the instrument, with a direct impact on
performance virtuosity. Furthermore, if problems crop up with
the hardware or software then trouble-shooting typically
requires a high level of familiarity and expertise. Third, it is
relatively difficult to record a performance in all of its richness,
for example including the score notations and visual elements
in addition to the sound. And where such multi-faceted
recordings are created they are difficult to pass on, view,
interpret or analyse. We envisage that a set of related Digital
Music Objects (DMOs) could be defined that encapsulate the
diverse aspects of such a composition and/or its performances.
Associated software tools could then scaffold and at least
partially automate configuring, controlling, recording,
repurposing and reproducing such performances. We are using
the performances of “Climb!” to motivate, inform and drive the
initial development of such tools.

7. ACKNOWLEDGEMENTS
This work was supported by the UK Engineering and Physical
Sciences Research Council [grant number EP/L019981/1]
Fusing Semantic and Audio Technologies for Intelligent Music
Production and Consumption, and the Kone Foundation.

8. REFERENCES
[1] E. McNutt, ‘Performing electroacoustic music: a wider
view of interactivity’, Organised Sound, vol. 8, no. 3, pp. 297–
304, Dec. 2003.
[2] S. Berweck, ‘It worked yesterday: On (re-) performing
electroacoustic music’, University of Huddersfield, 2012.
[3] N. E. Gold et al., ‘Human-computer music performance:
From synchronized accompaniment to musical partner’, 2013.
[4] ‘antescofo [Antescofo]’. [Online]. Available:
http://repmus.ircam.fr/antescofo. [Accessed: 27-Jan-2017].
[5] M. Puckette and C. Lippe, ‘Score following in practice’, in
Proceedings of the International Computer Music Conference,
1992, pp. 182–182.
[6] N. Orio, S. Lemouton, and D. Schwarz, ‘Score following:
State of the art and new developments’, in Proceedings of the
2003 conference on New interfaces for musical expression,
2003, pp. 36–41.
[7] Q. Yang and G. Essl, ‘Augmented piano performance using
a depth camera’, Ann Arbor, vol. 1001, no. 2012, pp. 48109–
2121, 2012.
[8] G. E. Winkler, ‘The realtime-score: A missing link in
computer-music performance’, Sound and Music Computing,
vol. 4, 2004.
[9] C. Hope and L. Vickery, ‘Screen scores: New media music
manuscripts’, 2011.
[10] D. Fober, Y. Orlarey, and S. Letz, ‘Augmented
interactive scores for music creation’, in Korean Electro-
Acoustic Music Society’s 2014 Annual Conference, 2014, pp.
85–91.
[11] D. Byrd and T. Crawford, ‘Problems of music
information retrieval in the real world’, Information processing
& management, vol. 38, no. 2, pp. 249–272, 2002.
[12] V. Thomas, C. Fremerey, M. Meinard, and M. Clausen,
‘Linking Sheet Music and Audio - Challenges and New
Approaches’, Wadern: Schloss Dagstuhl - Leibniz-Zentrum für
Informatik GmbH., vol. 3, pp. 1–22, 2012.
[13] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. S. Marcal,
C. Guedes, and J. S. Cardoso, ‘Optical music recognition: state-
of-the-art and open issues’, International Journal of
Multimedia Information Retrieval, vol. 1, no. 3, pp. 173–190,
2012.
[14] M. Good and others, ‘MusicXML: An internet-friendly
format for sheet music’, in XML Conference and Expo, 2001,
pp. 3–4.
[15] T. Crawford and R. Lewis, Review: Music encoding
initiative. University of California Press Journals, 2016.
[16] A. Hankinson, P. Roland, and I. Fujinaga, ‘The Music
Encoding Initiative as a Document-Encoding Framework.’, in
ISMIR, 2011, pp. 293–298.
[17] L. Pugin, J. Kepper, P. Roland, M. Hartwig, and A.
Hankinson, ‘Separating Presentation and Content in MEI.’, in
ISMIR, 2012, pp. 505–510.
[18] Chris Greenhalgh, S. Benford, and A. Hazzard,
‘^muzicode$: Composing and Performing Musical Codes.’,
presented at the Audio Mostly, Norrköping, Sweden, 2016.
[19] C. Dobrian and D. Koppelman, ‘The’E’in NIME:
musical expression with new computer interfaces’, in
Proceedings of the 2006 conference on New interfaces for
musical expression, 2006, pp. 277–282.

