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Abstract. Let σ be an automorphism of a field K with fixed field F . We study the

automorphisms of nonassociative unital algebras which are canonical generalizations of

the associative quotient algebras K[t;σ]/fK[t;σ] obtained when the twisted polynomial

f ∈ K[t;σ] is invariant, and were first defined by Petit. We compute all their automor-

phisms if σ commutes with all automorphisms in AutF (K) and n ≥ m − 1, where n is

the order of σ and m the degree of f , and obtain partial results for n < m − 1. In the

case where K/F is a finite Galois field extension, we obtain more detailed information

on the structure of the automorphism groups of these nonassociative unital algebras over

F . We also briefly investigate when two such algebras are isomorphic.

Introduction

Let D be a division algebra, σ an injective endomorphism of D, δ a left σ-derivation and
R = D[t;σ, δ] a skew polynomial ring (for instance, c.f. [16, § 3.4]). For an invariant skew
polynomial f ∈ R, i.e. when the ideal Rf is a two-sided principal ideal, the quotient alge-
bra R/Rf appears in classical constructions of associative central simple algebras, usually
employing an irreducible f ∈ R to get examples of division algebras, e.g. see [15].

In 1967, Petit [22, 23] introduced a class of unital nonassociative algebras Sf , which
canonically generalize the quotient algebras R/Rf obtained when factoring out an invariant
f ∈ R of degreem. The algebra Sf = D[t;σ, δ]/D[t;σ, δ]f is defined on the additive subgroup
{h ∈ R |deg(h) < m} of R by using right division by f to define the algebra multiplication
g ◦ h = gh modrf . The properties of the algebras Sf were studied in detail in [22, 23], and
for D a finite base field (hence w.l.o.g. δ = 0) in [20].

Even earlier, the algebra Sf with f(t) = t2 − i ∈ C[t; ], the complex conjugation,
appeared in [8] as the first example of a nonassociative division algebra.

Although the algebras themselves have received little attention so far, the right nucleus
of Sf (the eigenspace of f ∈ R) already appeared implicitly in classical constructions by
Amitsur [2, 3, 4], but also in results on computational aspects of operator algebras; they
are for instance used in algorithms factoring skew polynomials over Fq(t) or finite fields, cf.
[11, 12, 13, 14]. The role of classical algebraic constructions in coding theory is well known
(cf. [16, Chapter 9], [17, 1, 7]).

Moreover, recently space-time block codes, coset codes and wire-tap codes were obtained
employing the algebras Sf over number fields, cf. [9, 10, 21, 24, 27, 28, 29], and they also
appear useful for linear cyclic codes [25, 26].
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If K is a finite field, F the fixed field of σ, K/F a finite Galois field extension and
f ∈ K[t;σ] = K[t;σ, 0] irreducible and invariant, the Sf are Jha-Johnson semifields (also
called cyclic semifields) [20, Theorem 15], and were studied for instance by Wene [35] and
more recently by Lavrauw and Sheekey [20]. The main motivation for our paper comes from
the question how the automorphism groups of Jha-Johnson semifields look like. The results
presented here are applied to some Jha-Johnson semifields in [6].

The structure of this paper is as follows: In Section 1, we introduce the terminology and
define the algebras Sf . We limit our observations to the algebras which are not associative.
Given a field extension K, σ ∈ Aut(K) of order n with fixed field F , such that σ com-
mutes with all τ ∈ AutF (K), and f ∈ K[t;σ] of degree m not invariant, we compute the
automorphisms of Sf in Section 2. We obtain all automorphisms for n ≥ m − 1 and some
partial results for n < m − 1 (Theorems 4 and 5). For n ≥ m − 1, the automorphisms in
AutF (Sf ) are canonically induced by the F -automorphism G of R = K[t;σ] which satisfy
G(f(t)) = af(t) for some a ∈ K×, and on K restrict to an automorphism that commutes
with τ .

The automorphisms groups of Sf where f(t) = tm−a ∈ K[t;σ], a ∈ K \F , play a special
role, as for all nonassociative Sg with g(t) = tm−

∑m−1
i=0 bit

i ∈ K[t;σ] and b0 = a, AutF (Sg)
is a subgroup of AutF (Sf ) when n ≥ m− 1.

We then focus on the situation that K/F is a finite Galois field extension such that σ
commutes with all τ ∈ Gal(K/F ). In many cases, either AutF (Sf ) ∼= Gal(K/F ) or is trivial
(Theorem 10). Necessary conditions for extending Galois automorphisms τ ∈ Gal(K/F )
to Sf are studied in Sections 3 and 4. The existence of cyclic subgroups of AutF (Sf ) is
investigated in Section 5.

For f(t) = tm − a ∈ K[t;σ] and K/F a cyclic field extension of degree m, the algebra
Sf is also called a nonassociative cyclic algebra and denoted by (K/F, σ, a). These algebras
are canonical generalizations of associative cyclic algebras, but also generalizations of the
algebras in [3, 15]. The automorphisms of nonassociative cyclic algebras are investigated
in Section 6. All the automorphisms of A = (K/F, σ, a) extending idK are inner and
form a cyclic subgroup of AutF (A) isomorphic to ker(NK/F ). In some cases, this is the
whole automorphism group, e.g. if F has no mth root of unity. In these cases, every
automorphism of A leaves K fixed and is inner. We explain when the automorphism group
of a nonassociative quaternion algebra A (where m = 2) contains a dicyclic group and when
it contains a subgroup isomorphic to the semidirect product of two cyclic groups.

In Section 7 we briefly investigate isomorphisms between two algebras Sf and Sg.
This work is part of the first author’s PhD thesis [5] written under the supervision of

the second author. For results on the automorphisms of the more general algebras defined
using f ∈ D[t;σ], or a more detailed study and the (less relevant) cases left out in this
paper the reader is referred to [5]. For examples of applications of the associated classical
constructions the readers are referred to [1, 7, 16, 17].

1. Preliminaries
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1.1. Nonassociative algebras. Let F be a field and let A be an F -vector space. A is an
algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x · y, denoted simply
by juxtaposition xy, the multiplication of A. An algebra A is called unital if there is an
element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only consider
unital algebras from now on without explicitly saying so.

Associativity in A is measured by the associator [x, y, z] = (xy)z − x(yz). The left
nucleus of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus of A is
Nucm(A) = {x ∈ A | [A, x,A] = 0} and the right nucleus of A is defined as Nucr(A) = {x ∈
A | [A,A, x] = 0}. Nucl(A), Nucm(A), and Nucr(A) are associative subalgebras of A. Their
intersection Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A.
Nuc(A) is an associative subalgebra of A containing F1 and x(yz) = (xy)z whenever one of
the elements x, y, z lies in Nuc(A). The center of A is C(A) = {x ∈ A |x ∈ Nuc(A) and xy =
yx for all y ∈ A}.

An F -algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left
multiplication with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are
bijective. If A has finite dimension over F , then A is a division algebra if and only if A
has no zero divisors [31, pp. 15, 16]. An element 0 6= a ∈ A has a left inverse al ∈ A, if
Ra(al) = ala = 1, and a right inverse ar ∈ A, if La(ar) = aar = 1.

An automorphism G ∈ AutF (A) is an inner automorphism if there is an element m ∈ A
with left inverse ml such that G(x) = (mlx)m for all x ∈ A. Given an inner automorphism
Gm ∈ AutF (A) and some H ∈ AutF (A), then clearly H−1 ◦Gm ◦H ∈ AutF (A) is an inner
automorphism. [34, Lemma 2, Theorem 3, 4] generalize to any nonassociative algebra:

Proposition 1. Let A be an algebra over F .
(i) For all invertible n ∈ Nuc(A), Gn(x) = (n−1x)n is an inner automorphism of A.
(ii) If Gm is an inner automorphism of A, then so is Gnm(x) = ((mln

−1)x)(nm) for all
invertible n ∈ Nuc(A).
(iii) If Gm is an inner automorphism of A, and a, b ∈ Nuc(A) are invertible, then Gam =
Gbm if and only if ab−1 ∈ C(A).
(iv) For invertible n,m ∈ Nuc(A), Gm = Gn if and only if n−1m ∈ C(A).

The set {Gm |m ∈ Nuc(A) invertible} is a subgroup of AutF (A). For each invertible
m ∈ Nuc(A) \C(A), Gm generates a cyclic subgroup which has finite order s if ms ∈ C(A),
so in particular if m has order s.

Note that if the nucleus is commutative, then for all invertible n ∈ Nuc(A), Gn(x) =
(n−1x)n is an inner automorphism of A such that Gn|Nuc(A) = idNuc(A).

1.2. Twisted polynomial rings. Let K be a field and σ an automorphism of K. The
twisted polynomial ring K[t;σ] is the set of polynomials a0 + a1t+ · · ·+ ant

n with ai ∈ K,
where addition is defined term-wise and multiplication by ta = σ(a)t for all a ∈ K. For
f = a0 + a1t + · · · + ant

n with an 6= 0 define deg(f) = n and put deg(0) = −∞. Then
deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it is not a unit and it
has no proper factors, i.e. if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such
that f = gh.
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R = K[t;σ] is a left and right principal ideal domain and there is a right division algorithm
in R: for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R with deg(r) < deg(f), such that
g = qf + r. There is also a left division algorithm in R [15, p. 3 and Prop. 1.1.14]. (Our
terminology is the one used by Petit [22] and Lavrauw and Sheekey [20]; it is different from
Jacobson’s, who calls what we call right a left division algorithm and vice versa.) Define
F = Fix(σ).

1.3. Nonassociative algebras obtained from skew polynomial rings. Let K be a
field, σ an automorphism of K with F = Fix(σ), and f ∈ R = K[t;σ] of degree m. Let
modrf denote the remainder of right division by f . Then then additive abelian group
Rm = {g ∈ K[t;σ] |deg(g) < m} together with the multiplication g ◦ h = gh modrf is a
unital nonassociative algebra Sf = (Rm, ◦) over F0 = {a ∈ K | ah = ha for all h ∈ Sf}. F0

is a subfield of K [22, (7)] and it is straightforward to see that if f(t) = tm−
∑m−1
i=0 ait

i and
a0 6= 0 then F0 = F [25, Remark 9]. The algebra Sf is also denoted by R/Rf [22, 23] if we
want to make clear which ring R is involved in the construction. In the following, we call
the algebras Sf Petit algebras and denote their multiplication simply by juxtaposition.

Using left division by f and the remainder modlf of left division by f instead, we can
analogously define the multiplication for another unital nonassociative algebra on Rm over
F0, called fS. We will only consider the Petit algebras Sf , since every algebra fS is the
opposite algebra of some Petit algebra [22, (1)].

Theorem 2. (cf. [22, (2), (5), (9)]) Let f(t) ∈ R = K[t;σ].
(i) If Sf is not associative then Nucl(Sf ) = Nucm(Sf ) = K and Nucr(Sf ) = {g ∈ R | fg ∈
Rf}.
(ii) The powers of t are associative if and only if tmt = ttm if and only if t ∈ Nucr(Sf ) if
and only if ft ∈ Rf.
(iii) Let f ∈ R be irreducible and Sf a finite-dimensional F -vector space or free of finite
rank as a right Nucr(Sf )-module. Then Sf is a division algebra.
Conversely, if Sf is a division algebra then f is irreducible.
(iv) Sf is associative if and only if f is invariant. In that case, Sf is the usual quotient
algebra.
(v) Let f(t) = tm −

∑m−1
i=0 ait

i ∈ R = K[t;σ]. Then f is invariant if and only if σm(z)ai =
aiσ

i(z) for all z ∈ K, i ∈ {0, . . . ,m− 1} and ai ∈ F for all i ∈ {0, . . . ,m− 1}.

Note that if f is not invariant, then the nucleus of any Sf = K[t;σ]/K[t;σ]f is a subfield
of K = Nucl(Sf ). If Nuc(Sf ) is larger than F , then {Gm | 0 6= m ∈ Nuc(A)} is a non-trivial
subgroup of AutF (Sf ) and each inner automorphism Gm in this subgroup extends idNuc(A)

by Proposition 1.

Proposition 3. Let f(t) ∈ F [t] = F [t;σ] ⊂ K[t;σ].
(i) F [t]/(f(t)) is a commutative subring of Sf and F [t]/(f(t)) ∼= F ⊕ Ft ⊕ · · · ⊕ Ftm−1 ⊂
Nucr(Sf ). In particular, then ft ∈ Rf which is equivalent to the powers of t being associative,
which again is equivalent to tmt = ttm.
(ii) If f(t) is irreducible in F [t], F [t]/(f(t)) is an algebraic subfield of degree m contained
in the right nucleus.
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Proof. Sf contains the commutative subring F [t]/(f(t)). If f(t) is irreducible in F [t], this
is an algebraic field extension of F . This subring is isomorphic to the ring consisting of the
elements

∑m−1
i=0 ait

i with ai ∈ F .
Clearly F ⊂ Nucr(Sf ). For all a, b, c ∈ K, i, j ∈ {0, . . . ,m − 1} we have [ati, btj , t] =

(aσi(b)ti+j)t − (ati)(btj+1) = aσi(b)ti+j+1 − aσi(bc)ti+j = 0. Thus t ∈ Nucr(Sf ) which
implies that F ⊕ Ft ⊕ · · · ⊕ Ftm−1 ⊂ Nucr(Sf ), hence the assertion. The rest is obvious.

�

We will assume throughout the paper that deg(f) = m ≥ 2 (since if f is constant then
Sf ∼= K) and that σ 6= id. Without loss of generality, we only consider monic polynomials
f , since Sf = Saf for all non-zero a ∈ K.

2. Automorphisms of Sf

2.1. Let K be a field, σ an automorphism of K of order n (which may be infinite), F =
Fix(σ), and f(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] a twisted polynomial which is not invariant.

Theorem 4. Suppose σ commutes with all τ ∈ AutF (K). Let n ≥ m − 1. Then H is an
automorphism of Sf if and only if H = Hτ,k with

Hτ,k(
m−1∑
i=0

xit
i) = τ(x0) + τ(x1)kt+ τ(x2)kσ(k)t2 + · · ·+ τ(xm−1)kσ(k) · · ·σm−2(k)tm−1,

where τ ∈ AutF (K) and k ∈ K× is such that

(1) τ(ai) =
(m−1∏
l=i

σl(k)
)
ai

for all i ∈ {0, . . . ,m− 1}.

Proof. Let H : Sf → Sf be an automorphism. Since Sf is not associative, Nucl(Sf ) = K

by Theorem 2 (i). Since any automorphism preserves the left nucleus, H(K) = K and so
H|K = τ for some τ ∈ AutF (K). Suppose H(t) =

∑m−1
i=0 kit

i for some ki ∈ K. Then we
have

(2) H(tz) = H(t)H(z) = (
m−1∑
i=0

kit
i)τ(z) =

m−1∑
i=0

kiσ
i(τ(z))ti

and

(3) H(tz) = H(σ(z)t) =
m−1∑
i=0

τ(σ(z))kiti

for all z ∈ K. Comparing the coefficients of ti in (2) and (3) we obtain

(4) kiσ
i(τ(z)) = kiτ(σi(z)) = τ(σ(z))ki = kiτ(σ(z))

for all i ∈ {0, . . . ,m − 1} and all z ∈ K. This implies ki(τ
(
σi(z) − σ(z)

)
) = 0 for all

i ∈ {0, . . . ,m− 1} and all z ∈ K since σ and τ commute, i.e.

(5) ki = 0 or σi(z) = σ(z)

for all i ∈ {0, . . . ,m− 1} and all z ∈ K.
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Since σ has order n ≥ m − 1, which means σi 6= σ for all i ∈ {0, . . . ,m − 1}, i 6= 1, (5)
implies ki = 0 for all i ∈ {0, . . . ,m − 1}, i 6= 1. Therefore H(t) = kt for some k ∈ K×.
Furthermore, we have H(zti) = H(z)H(t)i = τ(z)(kt)i = τ(z)

(∏i−1
l=0 σ

l(k)
)
ti for all i ∈

{1, . . . ,m− 1} and z ∈ K. Thus H has the form

(6) Hτ,k(
m−1∑
i=0

xit
i) = τ(x0) +

m−1∑
i=1

τ(xi)
i−1∏
l=0

σl(k)ti,

for some k ∈ K×. Moreover, with tm = ttm−1, also

(7) H(tm) = H
(m−1∑
i=0

ait
i
)

=
m−1∑
i=0

H(ai)H(t)i = τ(a0) +
m−1∑
i=1

τ(ai)
( i−1∏
l=0

σl(k)
)
ti

and H(ttm−1) = H(t)H(tm−1) = H(t)H(t)m−1, i.e.

(8) H(t)m = H(t)H(t)m−1 = kσ(k) · · ·σm−1(k)tm = kσ(k) · · ·σm−1(k)
m−1∑
i=0

ait
i.

Comparing (7) and (8) gives τ(ai) =
(∏m−1

q=i σ
q(k)

)
ai for all i ∈ {0, . . . ,m− 1}. Thus H is

as in (6) where k ∈ K× is such that (1) holds for all i ∈ {0, . . . ,m− 1}.
The Hτ,k are indeed automorphisms of Sf : Let G be an automorphism of R = K[t;σ].

Then for h(t) =
∑r
i=0 bit

i ∈ K[t;σ] we have G(h(t)) = τ(b0) +
∑m−1
i=i τ(bi)

∏i−1
l=0 σ

l(k)ti for
some τ ∈ Aut(K) such that σ ◦ τ = τ ◦ σ and some k ∈ K× (the proof of [20, Lemma 1]
works for any R = K[t;σ], or cf. [18, p. 75]). It is straightforward to see that Sf ∼= SG(f)

(cf. [20, Theorem 7], the proof works for any R = K[t;σ]). In particular, this means that
if k ∈ K× satisfies (1) then G(f(t)) =

(∏m−1
l=0 σl(k)

)
f(t) = af(t) with a ∈ K× being

the product of the σl(k), and so G induces an isomorphism of Sf with Saf = Sf , i.e. an
automorphism of Sf . The automorphisms of AutF (Sf ) are therefore all canonically induced
by the F -automorphisms G of R = K[t;σ] which satisfy (1). �

The assumption that n ≥ m − 1 is needed in (4) to conclude that ki = 0 for i =
0, 2, 3, . . . ,m− 1 and so H(t) = kt. If n < m− 1 we still obtain:

Theorem 5. Suppose σ commutes with all τ ∈ AutF (K). Let n < m− 1.
(i) For all k ∈ K× satisfying (1) for all i ∈ {0, . . . ,m− 1}, the maps Hτ,k from Theorem 4
are automorphisms of Sf and form a subgroup of AutF (Sf ).
(ii) Let H ∈ AutF (Sf ) and N = Nucr(Sf ). Then H|K = τ for some τ ∈ AutF (K),
H|N ∈ AutF (N) and H(t) = g(t) with g(t) = k1t+k1+nt

1+n+k1+2nt
1+2n+ . . .+k1+snt

1+sn

for some k1+ln ∈ K, 0 ≤ l ≤ s. Moreover, g(t)i is well defined for all i ≤ m − 1, i.e., all
powers of g(t) are associative for all i ≤ m− 1, and g(t)g(t)m−1 =

∑m−1
i=0 τ(ai)g(t)i. Thus

H(
m−1∑
i=0

xit
i) =

m−1∑
i=0

τ(xi)g(t)i.

Proof. (i) is straightforward, using the relevant parts of the proof of Theorem 4. Note that
the inverse of Hτ,k is Hτ−1,τ−1(k−1) and Hτ,k ◦Hρ,b = Hτρ,τ(b)k.

(ii) Let H : Sf → Sf be an automorphism. As in Theorem 4, H|K = τ for some τ ∈
AutF (K), and H|N ∈ AutF (N). Suppose H(t) =

∑m−1
i=0 kit

i for some ki ∈ K. Comparing
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the coefficients of t in H(tz) = H(t)H(z) = H(σ(z)t) we obtain (5) for all i ∈ {0, . . . ,m−1}
and all z ∈ K. Since σ has order n < m− 1, here, (5) only implies ki = 0 for i ∈ {0, . . . , n},
i 6= 1. ThereforeH(t) = k1t+

∑m−1
i=n+1 kit

i for some ki ∈ K. However, σi(z) = σ(z) for all z ∈
K if and only if i = nl+1 for some l ∈ Z since σ has order n. Therefore (5) implies ki = 0 for
every i 6= 1+nl, l ∈ N0, i ∈ {0, . . . ,m− 1}. Thus H(t) = k1t+k1+nt

n+1+. . .+k1+snt
1+sn for

some s, sn < m− 1. Furthermore, H(tm) = H(
∑m−1
i=0 ait

i) =
∑m−1
i=0 τ(ai)(k1t+ k1+nt

1+n +
. . . + k1+snt

1+sn)i and H(tm) = (k1t + k1+nt
1+n + . . . + k1+snt

1+sn)m. Similarly, H(t)i =
(k1t+ k1+nt

1+n + . . .+ k1+snt
1+sn)i. Together these imply the assertion. �

A closer look at the proof of Theorems 4 and 5 reveals that in fact the following holds
without requiring σ to commute with all τ ∈ AutF (K):

Proposition 6. (i) For every k ∈ K× satisfying (1) for all i ∈ {0, . . . ,m − 1} for τ = id,
Hid,k is an automorphism of Sf and generates a subgroup of AutF (Sf ).
(ii) If any H ∈ AutF (Sf ) restricts to some τ ∈ AutF (K) such that τ ◦ σ = σ ◦ τ then
H = Hτ,k with k ∈ K× as in Theorem 4. Moreover, {Hτ,k | τ ∈ AutF (Sf ), τ ◦ σ = σ ◦ τ, k ∈
K× with τ(ai) = (

∏m−1
l=i σl(k))ai for all i ∈ {0, . . . ,m− 1}} is a subgroup of AutF (Sf ).

(iii) If m = 2, H ∈ Aut(Sf ) if and only if H = Hτ,k with τ ◦ σ = σ ◦ τ , τ(a0) = kσ(k)a0,

and τ(a1) = σ(k)a1.

2.2. The automorphisms groups of Sf for f(t) = tm−a ∈ K[t;σ], a ∈ K\F , are crucial in the
understanding of the automorphism groups of all the algebras Sg, as for all nonassociative
Sg with g(t) = tm −

∑m−1
i=0 bit

i ∈ K[t;σ] such that b0 = a, AutF (Sg) is a subgroup of
AutF (Sf ):

Theorem 7. Suppose σ commutes with all τ ∈ Gal(K/F ). Let n ≥ m − 1 and g(t) =
tm −

∑m−1
i=0 bit

i ∈ K[t;σ] not be invariant.
(i) If f(t) = tm − b0 ∈ K[t;σ], b0 ∈ K \ F , then AutF (Sg) ⊂ AutF (Sf ) is a subgroup.
(ii) Let f(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] not be invariant and assume bi ∈ {0, ai} for all
i ∈ {0, . . . ,m− 1}. Then AutF (Sg) ⊂ AutF (Sf ) is a subgroup.

Proof. (i) Let H ∈ AutF (Sg). By Theorem 4, H has the form H(
∑m−1
i=0 xit

i) = τ(x0) +∑m−1
i=1 τ(xi)

∏i−1
l=0 σ

l(k)ti, where τ ∈ AutF (K) and k ∈ K× satisfy τ(bi) =
(∏m−1

j=i σj(k)
)
bi

for all i = 0, . . . ,m − 1. In particular, τ(b0) = kσ(k) · · ·σm−1(k)b0 and so H is also an
automorphism of Sf , again by Theorem 4.
(ii) The proof is analogous to (i). �

Similarily, for n < m− 1 employing Theorem 5 we obtain:

Theorem 8. Suppose σ commutes with all τ ∈ AutF (K). Let n < m − 1 and g(t) =
tm −

∑m−1
i=0 bit

i ∈ K[t;σ] not be invariant.
(i) If f(t) = tm − b0 ∈ K[t;σ], b0 ∈ K \ F , then {H ∈ AutF (Sg) |H = Hτ,k} is a subgroup
of {H ∈ AutF (Sf ) |H = Hτ,k}.
(ii) Let f(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] not be invariant such that bi ∈ {0, ai} for all
i ∈ {0, . . . ,m− 1} Then {H ∈ AutF (Sg) |H = Hτ,k} is a subgroup of {H ∈ AutF (Sf ) |H =
Hτ,k}.
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The automorphism groups of Sf with f(t) = tm − a ∈ K[t;σ] are therefore particularly
relevant.

3. Necessary conditions for extending Galois automorphisms to Sf

From now on we restrict ourselves to the situation that R = K[t;σ] and F = Fix(σ),
where K/F is a finite Galois field extension and σ of order n.

We take a closer look at Equality (1), which gives necessary conditions on how to choose
the elements k ∈ K× used to extend τ ∈ Gal(K/F ) to AutF (Sf ). These become more
restrictive for the choice of the elements k, the more coefficients in f(t) are non-zero. Let
NK/F : K → F be the norm of K/F . All monic polynomials f considered in the following
are assumed to not be invariant and of degree m.

Proposition 9. Suppose that σ and τ commute. Let f(t) = tm −
∑m−1
i=0 ait

i ∈ K[t;σ] and
k ∈ K× such that

(1) τ(ai) =
(m−1∏
l=i

σl(k)
)
ai

for all i ∈ {0, . . . ,m− 1}. Then:
(i) For all i ∈ {0, . . . ,m− 1} with ai 6= 0, NK/F (k) is an (m− i)th root of unity.
In particular, if a0 6= 0 (e.g., if f(t) is irreducible) then NK/F (k) is an mth root of unity,
and if am−1 6= 0 then NK/F (k) = 1.
If am−1 ∈ Fix(τ)× then k = 1.
(ii) If τ 6= id and there is some i such that ai is not contained in Fix(τ), then k 6= 1.
(iii) Suppose that there is some ai 6= 0 and F does not contain any non-trivial (m − i)th
roots of unity. Then NK/F (k) = 1.
(iv) If there is an i ∈ {0, . . . ,m − 1} such that ai ∈ Fix(τ)×, then 1 =

∏m−1
l=i σl(k). In

particular, if n = m, σ generates Gal(K/F ), and a0 ∈ Fix(τ)× then k ∈ ker(NK/F ).
(v) Suppose τ = idK . Then for all i ∈ {0, . . . ,m − 1} with ai 6= 0, 1 =

∏m−1
l=i σl(k). In

particular, if n = m, σ generates Gal(K/F ) and a0 6= 0 then k ∈ ker(NK/F ). In this case,
the automorphisms extending idK are in one-one correspondence with those k ∈ ker(NK/F )
satisfying (1).

Proof. (i) Equality (1) states that τ(ai) =
(∏m−1

l=i σl(k)
)
ai for all i ∈ {0, . . . ,m− 1}. Thus

NK/F (ai) =
∏m−1
l=i NK/F (σl(k))NK/F (ai) (apply NK/F to both sides of (1)), and there-

fore NK/F (ai) = NK/F (k)m−iNK/F (ai) for all i ∈ {0, . . . ,m − 1} is a necessary condition
on k. For all ai 6= 0, this yields 1 = NK/F (k)m−i therefore NK/F (k) ∈ F× must be an
(m − i)th root of unity, for all i ∈ {0, . . . ,m − 1}, with ai 6= 0. Hence if am−1 6= 0 then
τ(am−1) = σm−1(k)am−1, thus NK/F (am−1) = NK/F (k)NK/F (am−1), i.e. NK/F (k) = 1. If
even am−1 ∈ Fix(τ)× then am−1 = σm−1(k)am−1 means σm−1(k) = 1, i.e. k = 1.
(ii) k = 1 implies τ(ai) = ai, i.e. ai ∈ Fix(τ) for all i ∈ {0, . . . ,m− 1}.
(iii) By (i), NK/F (k) ∈ F× is an (m − i)th root of unity, for all i ∈ {0, . . . ,m − 1} with
ai 6= 0. If F does not contain any non-trivial (m− i)th roots of unity, then NK/F (k) = 1.
(iv) If there is an i ∈ {0, . . . ,m − 1} such that ai ∈ Fix(τ)×, then (1) becomes 1 =∏m−1
l=i σl(k). In particular, if a0 ∈ Fix(τ)×, m = n and σ generates Gal(K/F ), then
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NK/F (k) = 1 is a necessary condition on k.
(v) Here, (1) becomes 1 =

∏m−1
l=i σl(k) for all i ∈ {0, . . . ,m− 1} with ai 6= 0. In particular,

if n = m, σ generates Gal(K/F ) and a0 6= 0 (which happens if f(t) is irreducible) then
NK/F (k) = 1 is a necessary condition on k. �

For instance, Proposition 9 (i) yields that k = 1 if am−1 ∈ Fix(τ)× and so Theorems 4
and 5 become:

Theorem 10. Suppose σ commutes with all τ ∈ Gal(K/F ) and f(t) = tm −
∑m−1
i=0 ait

i ∈
K[t;σ] is not invariant with am−1 ∈ F×.
(i) Let n ≥ m − 1. If ai 6∈ Fix(τ) for all τ 6= id and all non-zero ai, i 6= m − 1, then
AutF (Sf ) = {id}.
If f(t) ∈ F [t;σ], any automorphism H of Sf has the form Hτ,1 where τ ∈ Gal(K/F ), and
AutF (Sf ) ∼= Gal(K/F ).
(ii) Let n < m − 1. If f(t) ∈ F [t;σ] is not invariant, the maps Hτ,1 are automorphisms of
Sf for all τ ∈ Gal(K/F ) and Gal(K/F ) is isomorphic to a subgroup of AutF (Sf ).

Proof. (i) H is an automorphism of Sf if and only if H has the form Hτ,k, where τ ∈
Gal(K/F ) and k ∈ K× is such that τ(ai) =

(∏m−1
l=i σl(k)

)
ai for all i ∈ {0, . . . ,m − 1}.

Since am−1 ∈ F× we have am−1 ∈ Fix(τ)× for all τ which forces k = 1 as the only possibility
for any τ ∈ Gal(K/F ) by Proposition 9 (i). This in turn means that any extension Hτ,k has
the form Hτ,1. In particular, the existence of an extension Hτ,k, τ 6= id, implies τ(ai) = ai

for all non-zero ai, i 6= m− 1, that is ai ∈ Fix(τ) for all non-zero ai.
Thus if ai 6∈ Fix(τ) for all τ 6= id and all i ∈ {0, . . . ,m− 2} then there is no non-trivial τ

that extends to an automorphism of Sf and AutF (Sf ) = {Hid,1} = {id}.
If f(t) ∈ F [t;σ] then AutF (Sf ) = {Hτ,1} ∼= Gal(K/F ).

(ii) follows from (i) and Theorem 8. �

Note that indeed Condition (1) heavily restricts the choice of available k to k = 1 in most
cases.

Corollary 11. Suppose σ commutes with all τ ∈ Gal(K/F ). Let n ≥ m − 1 and f(t) =
tm − a0 ∈ K[t;σ], a0 ∈ K \ F .
(i) H ∈ AutF (Sf ) if and only if H = Hτ,k where k ∈ K× is such that τ(a0) =

(∏m−1
l=0 σl(k)

)
a0.

In particular, here NK/F (k) is an mth root of unity.
(ii) For all g(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] with a0 ∈ K \ F , AutF (Sg) is a subgroup of
AutF (Sf ).

Proof. (i) follows from Theorem 4 and Proposition 9.
(ii) follows from Theorem 7. �

For f(t) = tm − a0 ∈ K[t;σ], a0 ∈ K \ F , the automorphisms Hid,k extending idK thus
are in one-to-one correspondence with those k satisfying

∏m−1
l=0 σl(k) = 1 (in particular, we

have NK/F (k)m = 1). Analogously, we still obtain for n < m− 1 employing Theorem 5 and
Theorem 8:
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Corollary 12. Suppose σ commutes with all τ ∈ Gal(K/F ). Let n < m − 1 and f(t) =
tm − a0 ∈ K[t;σ], a0 ∈ K \ F .
(i) For all k ∈ K× with NK/F (k) an mth root of unity and τ(a0) =

(∏m−1
l=0 σl(k)

)
a0, the

maps Hτ,k are automorphisms of Sf .
(ii) For all g(t) = tm −

∑m−1
i=0 ait

i ∈ K[t;σ] with a0 ∈ K \ F , {H ∈ AutF (Sg) |H = Hτ,k}
is a subgroup of {H ∈ AutF (Sf ) |H = Hτ,k}.

For m = n and K/F a cyclic field extension, the algebras considered in Corollary 11 are
called nonassociative cyclic algebras of degree m, as they can be seen as canonical general-
izations of associative cyclic algebras. These algebras are treated in Section 6.

4. Automorphisms extending idK when K/F is a cyclic field extension

Let f(t) = tm−
∑m−1
i=0 ait

i ∈ K[t;σ] not be invariant. In general, we know that if Sf has
nucleus K then every inner automorphism Gc with c ∈ K×, extends idK . Conversely, an
extension Hid,k of idK is inner for the right choice of k:

Lemma 13. Let k = c−1σ(c) with c ∈ K×, then Hid,k ∈ AutF (Sf ) is an inner automor-
phism.

Proof. A simple calculation shows that Gc
(∑m−1

i=0 xit
i
)

=
(
c−1

∑m−1
i=0 xit

i
)
c = x0 +∑m−1

i=1 xic
−1σi(c)ti = Hid,k

(∑m−1
i=0 xit

i
)
. �

Let now K/F be a cyclic Galois field extension of degree n with Gal(K/F ) = 〈σ〉 and
norm NK/F : K → F, NK/F (k) = kσ(k)σ2(k) · · ·σn−1(k). By Hilbert’s Theorem 90,
ker(NK/F ) = ∆σ(1), where ∆σ(l) = {σ(c)lc−1 | c ∈ K×} is the σ-conjugacy class of l ∈ K×

[19].

Theorem 14. (i) Every automorphism Hid,k ∈ AutF (Sf ) such that NK/F (k) = 1 is an
inner automorphism.
(ii) If n ≥ m − 1 and am−1 6= 0, or if n = m, ai = 0 for all i 6= 0 and a0 ∈ K \ F , then
these are all the automorphisms extending idK .

Proof. (i) Suppose there is Hid,k ∈ AutF (Sf ) with NK/F (k) = 1, then by Hilbert 90, there
exists c ∈ K× such that k = c−1σ(c). Thus Hid,k = Hid,c−1σ(c) for c ∈ K× and so Gc = Hid,k

by Lemma 13.
(ii) By Theorem 4 and Proposition 9 (i), these are all the automorphisms extending idK

when n ≥ m− 1 if am−1 6= 0. The remaining assertion is proved analogoulsy. �

5. Cyclic subgroups of AutF (Sf )

For any Galois field extension K/F and σ ∈ Gal(K/F ) of order n, we now give some
conditions for AutF (Sf ) to have cyclic subgroups.

Theorem 15. Suppose F contains an sth root of unity ω. Suppose that either f(t) = ts−a ∈
K[t;σ] where a ∈ K \F , or f(t) = tsl−

∑l−1
i=0 aist

is ∈ K[t;σ] such that Sf is not associative.
Then 〈Hid,ω〉 is a cyclic subgroup of AutF (Sf ) of order at most s and of order s, if ω is a
primitive root of unity.
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Proof. (i) Let f(t) = ts−a. Then ωjσ(ωj) · · ·σs−1(ωj) = ωjs = 1 and so Hid,ωj ∈ AutF (Sf )
for all 0 ≤ j ≤ s− 1 by Proposition 6.
(ii) Let f(t) = tsl −

∑l−1
i=0 aist

is. Then we have
∏ls−1
q=is σ

q(ωj) = ωj(ls−is) = 1 for all i =

0, . . . , l−1. Hence ais =
(∏ls−1

q=is σ
q(ωj)

)
ais for all i = 0, . . . , l−1 and so Hid,ωj ∈ AutF (Sf )

for all 0 ≤ j ≤ s− 1 by Proposition 6.
In both (i) and (ii), 〈Hid,ω〉 is a cyclic subgroup of Aut(Sf ) of order less or equal to s, since
Hid,ωj ◦Hid,ωr = Hid,ωj+r for all 0 ≤ j, r ≤ sl − 1. �

Lemma 16. Let F have characteristic not two, m be even and f(t) = tm−
∑(m−2)/2
i=0 a2it

2i ∈
K[t;σ] not invariant. Then {Hid,1, Hid,−1} is a subgroup of Sf of order 2.

Proof. The maps Hid,1 and Hid,−1 are automorphisms of Sf by Proposition 6, and Hid,−1 ◦
Hid,−1 = Hid,1. �

If f ∈ F [t] ⊂ K[t;σ], we obtain:

Theorem 17. Suppose σ commutes with all τ ∈ Gal(K/F ), and f(t) = tm −
∑m−1
i=0 ait

i ∈
F [t;σ] ⊂ K[t;σ] is not invariant.
(i) 〈Hσ,1〉 ∼= Z/nZ is a cyclic subgroup of AutF (Sf ).
(ii) Suppose Gal(K/F ) = 〈σ〉, n = m is prime, a0 6= 0 and not all of a1, . . . , am−1 are zero.
Then AutF (Sf ) = 〈Hσ,1〉 ∼= Z/mZ.

Proof. Let j ∈ {0, . . . , n− 1}. Since τ(ai) = ai for all i, here (1) becomes

(9) ai =
(m−1∏
q=i

σq(k)
)
ai

for all i ∈ {0, . . . ,m− 1}.
(i) Clearly, (9) is satisfied for k = 1 and all i ∈ {0, . . . ,m− 1}, therefore the maps
Hτ,1 are automorphisms of Sf for all τ ∈ Gal(K/F ) by Theorems 4 and 5. We have
Hσj ,1 ◦Hσl,1 = Hσj+l,1 and Hσn,1 = Hid,1. Hence 〈Hσ,1〉 =

{
Hid,1, Hσ,1, . . . ,Hσm−1,1

}
is a

cyclic subgroup of order n.
(ii) By Theorem 4, the automorphisms of Sf are exactly the mapsHσj ,k where j ∈ {0, . . . , n− 1}
and k ∈ K× satisfies (9) for all i ∈ {0, . . . ,m− 1}. The maps Hσj ,1 are therefore automor-
phisms of Sf for all j ∈ {0, . . . , n− 1}. We prove that these are the only automorphisms of
Sf : a0 6= 0 and so NK/F (k) = 1 by (9). Therefore, by Hilbert 90, there exists α ∈ K such
that k = σ(α)/α. Let l ∈ {1, . . . ,m− 1} be such that al 6= 0. Then by (9),

1 =
m−1∏
q=l

σq(k) =
m−1∏
q=l

σq
(σ(α)
α

)
=

∏m
q=l+1 σ

q(α)∏m−1
q=l σ

q(α)
=

α

σl(α)
.

Thus α ∈ Fix(σj) = F since m is prime. Therefore k = σ(α)/α = α/α = 1 as required. �

This complements our results from Theorem 10, which in case Gal(K/F ) is cyclic of
degree n mean the following:

Corollary 18. Suppose Gal(K/F ) is cyclic of degree n and f(t) = tm−
∑m−1
i=0 ait

i ∈ F [t;σ]
not invariant with am−1 ∈ F×.
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(i) Let n ≥ m− 1 then for all τ ∈ Gal(K/F ) the maps Hτ,1 are exactly the automorphisms
of Sf and AutF (Sf ) ∼= Gal(K/F ) ∼= Z/nZ.
(ii) Let n < m− 1 then for all τ ∈ Gal(K/F ) the maps Hτ,1 are automorphisms of Sf and
Gal(K/F ) ∼= Z/nZ is isomorphic to a subgroup of AutF (Sf ).

6. Nonassociative cyclic algebras

6.1. Let K/F be a cyclic Galois extension of degree m with Gal(K/F ) = 〈σ〉 and f(t) =
tm−a ∈ K[t;σ]. Then (K/F, σ, a) = K[t;σ]/K[t;σ](tm−a) is called a nonassociative cyclic
algebra of degree m over F . It is not associative for all a ∈ K \ F and a cyclic associative
central simple algebra over F for a ∈ F×. We will only consider the case that a ∈ K \F . If
1, a, a2, . . . , am−1 are linearly independent over F then (K/F, σ, a) is a division algebra (cf.
[32], [30] for finite F ). In particular, if K/F is of prime degree then (K/F, σ, a) is a division
algebra for every a ∈ K \ F .

Theorem 19. Let A = (K/F, σ, a) be a nonassociative cyclic algebra of degree m.
(i) All the automorphisms of A which extend idK are inner automorphisms and of the form
Hid,l for all l ∈ K× such that NK/F (l) = 1.
The subgroup they generate in AutF (A) is isomorphic to ker(NK/F ).
(ii) An automorphism σj 6= id can be extended to H ∈ AutF (A), if and only if there is
some l ∈ K such that σj(a) = NK/F (l)a. In that case, H = Hσj ,l and if m is prime then
NK/F (l) = ω for an mth root of unity 1 6= ω ∈ F .
(iii) Let c ∈ K \ F and suppose there exists r ∈ N such that cr ∈ F×. Let r be minimal.
Then 〈Gc〉 is a cyclic subgroup of AutF (Sf ) of order r.

Proof. Theorem 4, Theorem 14 (ii), and Proposition 9 imply (i) and (ii).
(iii) Let c ∈ K \ F . Then Gc is an automorphism, because K is the nucleus of A. Since
Gc ◦ Gc = Gc2 , Gc ◦ Gc ◦ Gc = Gc3 and so on, we have Gcr = id if and only if cr ∈ F . If
r ∈ N is smallest possible then 〈Gc〉 is a cyclic subgroup of AutF (Sf ) of order r. �

Note that different roots of unity yield different l in Theorem 19 (ii). This yields:

Theorem 20. Let A = (K/F, σ, a) be a nonassociative cyclic algebra of degree m. Suppose
F contains a non-trivial mth root of unity ω.
(i) 〈Hid,ω〉 is a cyclic subgroup of AutF (A) of order at most m. If ω is a primitive mth root
of unity, then 〈Hid,ω〉 has order m.
(ii) If there is an element l ∈ K, such that NK/F (l) = ω for ω a primitive mth root of unity
and σ(d) = ωd, then the subgroup generated by Hσ,l has order m2.

Proof. (i) follows from Theorem 15.
(ii) Suppose σ can be extended to an F -automorphism H of A. Then by Theorem 19, there
is an element l ∈ K, such that NK/F (l) = ω, ω 6= 1 and σ(d) = ωd, and H = Hσ,l. (If
1 = NK/F (l), then σ(d) = d, contradiction.)

The subgroup generated by H = Hσ,l has order greater than m, since Hσ,l ◦ · · · ◦ Hσ,l

(m-times) becomes Hσm,b = Hid,ω with ω = NK/F (l). Hid,ω has order m, so the subgroup
generated by H = Hσ,l has order m2. �
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6.2. The case that m is prime. Let us now assume that the cyclic field extension K/F

has prime degree m = deg(f). Suppose that F contains a primitive mth root of unity, where
m is prime to the characteristic of F . Then K = F (d), where d is a root of an irreducible
polynomial tm − c ∈ F [t].

Lemma 21. (cf. [33, Lemma 6.2.7]) The eigenvalues of σj ∈ Gal(K/F ) are precisely the
mth roots of unity. Moreover, the only possible eigenvectors are of the form edi for some i,
0 ≤ i ≤ m− 1 and some e ∈ F .

Let f(t) = tm − a ∈ K[t;σ], a 6∈ F. Then we get the following strong restriction for
automorphisms of Sf :

Theorem 22. H is an automorphism of Sf extending σj 6= id if and only if H = Hσj ,k for
some k ∈ K×, where NK/F (k) is an mth root of unity and a = eds for some e ∈ F× and
some ds.

Proof. H is an automorphism of Sf if and only if H = Hσj ,k where j ∈ {0, . . . ,m− 1} and

k ∈ K× is such that σj(a) =
(∏m−1

l=0 σl(k)
)
a = NK/F (k)a. For all σj 6= id, by Lemma 21

this condition is equivalent to NK/F (k) being an mth root of unity and a = eds for some ds

and e ∈ F×, for all k ∈ K×. �

Applying Theorem 7, our results for the automorphisms of a nonassociative cyclic algebra
A = (K/F, σ, a) of degree m yield the following observations for more general algebras Sg:

Corollary 23. Suppose Gal(K/F ) = 〈σ〉 is cyclic of degree m and g(t) = tm−
∑m−1
i=0 ait

i ∈
K[t;σ] is not invariant with a0 ∈ K \ F . Suppose one of the following holds:

• F has no mth root of unity.
• m is prime and F contains a primitive mth root of unity, where m is prime to the

characteristic of F . Let K = F (d) as in Section 6.2 and a0 6= edi, e ∈ F×.

Then every F -automorphism of Sg leaves K fixed, is inner and AutF (Sg) is a subgroup of
ker(NK/F ), thus cyclic. In particular, if ker(NK/F ) has prime order, then either AutF (Sg)
is trivial or AutF (Sg) ∼= ker(NK/F ).

6.3. The automorphism groups of nonassociative quaternion algebras. Recall the
dicyclic group

(10) Dicl = 〈x, y | y2l = 1, x2 = yl, x−1yx = y−1〉

of order 4l. The semidirect product Z/sZ ol Z/nZ between the cyclic groups Z/sZ and
Z/nZ corresponds to a choice of an integer l such that ln ≡ 1 mod s. It can be described
by the presentation Z/sZ ol Z/nZ = 〈x, y | xs = 1, yn = 1, yxy−1 = xl〉.

We obtain the following result for the automorphism groups of nonassociative quaternion
algebras (where m = 2):

Theorem 24. Suppose K = F (
√
b) is a quadratic field extension of F , char(F ) 6= 2,

and consider the nonassociative quaternion algebra A = (K/F, σ, λ
√
b) for some λ ∈ F×.

Suppose there exists k ∈ K× such that kσ(k) = −1.
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For every c ∈ K \ F for which there is a positive integer j such that cj ∈ F×, pick the
smallest such j.
(i) If j is even then AutF (Sf ) contains the dicyclic group of order 2j.
(ii) If j is odd then AutF (Sf ) contains a subgroup isomorphic to the semidirect product
Z/jZ oj−1 Z/4Z. In particular, AutF (A) always contains a subgroup isomorphic to Z/4Z.

Proof. Since σ(
√
b) = −

√
b and kσ(k) = −1, Hσ,k ∈ AutF (Sf ) by Theorem 19. A simple

calculation shows that 〈Hσ,k〉 = {Hσ,k, Hid,−1, Hσ,−k, Hid,1}. 〈Gc〉 is a cyclic subgroup of
AutF (Sf ) of order j by Theorem 19 (iii).
(i) Suppose j is even and write j = 2l. We prove first that Gcl = Hid,−1. Write cl =
µ0 + µ1

√
b for some µ0, µ1 ∈ F . Then cj = c2l = µ2

0 + µ2
1b + 2µ0µ1

√
b ∈ F which implies

2µ0µ1 = 0. Hence µ0 = 0 or µ1 = 0. Since j is minimal, cl /∈ F so µ0 = 0 and cl = µ1

√
b.

We obtain

Gcl(x0 + x1t) = x0 + x1(µ1

√
b)−1σ(µ1

√
b)t

= x0 + x1µ
−1
1 b−1

√
b(−µ1

√
b)t

= x0 − x1t = Hid,−1(x0 + x1t)

which implies Gcl = Hid,−1. Next we prove (Hσ,k)−1GcHσ,k = G−1
c . Simple calculations

show (Hσ,k)−1 = Hσ,−k and G−1
c = Gσ(c). We have

Hσ,−k
(
Gc
(
Hσ,k

(
x0 + x1t

)))
= Hσ,−k

(
Gc
(
σ(x0) + σ(x1)kt

))
= Hσ,−k

(
σ(x0) + σ(x1)kc−1σ(c)t

)
= x0 − x1σ(k)σ(c−1)ckt

= x0 + x1σ(c−1)ct = Gσ(c)

(
x0 + x1t

)
and so (Hσ,k)−1GcHσ,k = G−1

c .
Thus H2

σ,k = Hid,−1 = Gcl = Glc, G
2l
c = id and (Hσ,k)−1GcHσ,k = G−1

c . Hence 〈Hσ,k, Gc〉
has the presentation (10) as required.
(ii) Suppose j is odd. Then 〈Gc〉 does not contain Hid,−1 as Hid,−1 has order 2 which implies
〈Hσ,k〉 ∩ 〈Gc〉 = {id}. Furthermore (Hσ,k)−1GcHσ,k = G−1

c = Gj−1
c = Gcj−1 can be shown

similarly as in (i). Note that (j− 1)4 = j4− 4j3 + 6j2− 4j+ 1 ≡ 1 mod (j). Thus AutF (Sf )
contains the subgroup 〈Gc〉oj−1 〈Hσ,k〉 ∼= Z/jZ oj−1 Z/4Z as required.
In particular, choose c =

√
b in (i), so that j = 2. This implies AutF (A) contains the dicyclic

group of order 4, which is the cyclic group of order 4. �

Example 25. (i) Let F = Q(i), K = F (
√
−3), σ(

√
−3) = −

√
−3 and A = (K/F, σ, λ

√
−3)

be a nonassociative quaternion algebra with some λ ∈ F×. Note that for k = i we have
iσ(i) = −1. Let c = 1+

√
−3. Then c2 = −2+2

√
−3 and c3 = −8 which implies j = 3 here.

Therefore AutF (Sf ) contains a subgroup isomorphic to the semidirect product Z/3Zo2Z/4Z
by Theorem 24.
(ii) Let F = Q(i), K = F (

√
−1/12), σ(

√
−1/12) = −

√
−1/12 and A = (K/F, σ, λ

√
−1/12)

be a nonassociative quaternion algebra for some λ ∈ F×. Again for k = i we have iσ(i) = −1.
Let c = 1 + 2

√
−1/12. Then c2 = 2/3 + 2i/

√
3, c3 = 8i/3

√
3, c4 = −8/9 + 8i/3

√
3,
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c5 = −16/9 + 16i/9
√

3 and c6 = −64/27. Hence c, c2, c3, c4, c5 ∈ K \ F and c6 ∈ F .
Therefore AutF (A) contains the dicyclic group of order 12 by Theorem 24.

7. Isomorphisms between Sf and Sg

The proofs of the previous sections can be adapted to check when two Petit algebras are
isomorphic and when not. This is not the main focus of this paper so we just point out how
some of the results can be transferred.

If K and L are fields, and Sf = K[t;σ]/K[t;σ]f(t) ∼= L[t;σ′]/L[t;σ′]g(t) = Sg, then
K ∼= L, Nucr(Sf ) ∼= Nucr(Sg), deg(f) = deg(g), and Fix(σ) ∼= Fix(σ′), since isomorphic
algebras have the same dimensions, and isomorphic nuclei and center.

If G is an automorphism of R = K[t;σ] which restricts to an automorphism τ on K which
commutes with σ, f ∈ R is irreducible and g(t) = G(f(t)), then G induces an isomorphism
Sf ∼= SG(g) [20, Theorem 7] (the proof works for any base field).

From now on let F be the fixed field of σ, σ have order n, and both f(t) = tm −∑m−1
i=0 ait

i and g(t) = tm −
∑m−1
i=0 bit

i ∈ K[t;σ] be not invariant. Then the following is
proved analogously to Theorem 4, Theorem 5 and Proposition 6:

Theorem 26. Suppose σ commutes with all τ ∈ AutF (K) and n ≥ m− 1. Then Sf ∼= Sg

if and only if there exists τ ∈ AutF (K) and k ∈ K× such that

(11) τ(ai) =
(m−1∏
l=i

σl(k)
)
bi

for all i ∈ {0, . . . ,m− 1}. Every such τ and k yield a unique isomorphism Gτ,k : Sf → Sg,

Gτ,k(
m−1∑
i=0

xit
i) = τ(x0) +

m−1∑
i=1

τ(xi)
i−1∏
l=0

σl(k)ti.

If n < m− 1 we still get a partial result:

Theorem 27. Suppose there exists τ ∈ AutF (K) and k ∈ K× such that τ ◦ σ = σ ◦ τ and
such that (11) holds for all i ∈ {0, . . . ,m− 1}. Then Sf ∼= Sg with an isomorphism given by

Gτ,k(
m−1∑
i=0

xit
i) = τ(x0) +

m−1∑
i=1

τ(xi)
i−1∏
l=0

σl(k)ti

as in Theorem 26.

Corollary 28. For every k ∈ K× such that ai =
(∏m−1

l=i σl(k)
)
bi for all i ∈ {0, . . . ,m−1},

Gid,k : Sf → Sg is an isomorphism.

As a direct consequence of Theorem 26 we obtain:

Theorem 29. Suppose σ commutes with all τ ∈ AutF (K) and n ≥ m−1. If Sf ∼= Sg, then
ai = 0 if and only if bi = 0, for all i ∈ {0, . . . ,m− 1}.

Proof. If Sf ∼= Sg then by Theorem 26, there exists j ∈ {0, . . . , n− 1} and k ∈ K× such

that τ(ai) =
(∏m−1

l=i σl(k)
)
bi for all i ∈ {0, . . . ,m − 1}. This implies ai = 0 if and only if

bi = 0, for all i ∈ {0, . . . ,m− 1}. �



16 C. BROWN AND S. PUMPLÜN

From now on we restrict ourselves to the situation that R = K[t;σ] and F = Fix(σ),
where K/F is a finite Galois field extension and σ of order n. We take a closer look at the
consequences of Equality (11):

Proposition 30. Let k ∈ K× such that τ(ai) =
(∏m−1

l=i σl(k)
)
bi for all i ∈ {0, . . . ,m−1}.

Then ai = 0 if and only if bi = 0 and:
(i) For all i ∈ {0, . . . ,m− 1} with ai 6= 0, NK/F (ai) = NK/F (k)m−iNK/F (bi).
(ii) If there is some i ∈ {0, . . . ,m − 1} such that ai ∈ Fix(τ)×, then ai/bi =

∏m−1
l=i σl(k).

In particular, if am−1 ∈ F× and bm−1 ∈ F×, then k ∈ F× and ai = km−ibi for all
i ∈ {0, . . . ,m− 1}.
(iii) If a0 ∈ Fix(τ)×, m = n and Gal(K/F ) = 〈σ〉 then a0 = NK/F (k)b0.

Proof. (i) Equality (11) implies that NK/F (ai) =
∏m−1
l=i NK/F (σl(k))NK/F (bi) (simply

apply NK/F to both sides of (11)), therefore NK/F (ai) = NK/F (k)m−iNK/F (bi) for all
i ∈ {0, . . . ,m− 1} is a necessary condition on k.
(ii) If there is an i ∈ {0, . . . ,m − 1} such that ai ∈ Fix(τ)×, then (11) implies that
ai =

(∏m−1
l=i σl(k)

)
bi, so that we obtain ai/bi =

∏m−1
l=i σl(k).

Alternatively, if am−1 ∈ F× and bm−1 ∈ F×, then am−1 = σm−1(k)bm−1 imply k ∈ F×,
hence ai = km−1−ibi for all i ∈ {0, . . . ,m− 1}.
(iii) In particular, if a0 ∈ Fix(τ)×, m = n and σ generates Gal(K/F ), then a0/b0 =∏m−1
l=0 σl(k) = NK/F (k) is a necessary condition on k. �

Corollary 31. Suppose σ commutes with all τ ∈ Gal(K/F ) and n ≥ m − 1. Assume that
one of the following holds:
(i) There exists i ∈ {0, . . . ,m− 1} such that bi 6= 0 and NK/F (aib−1

i ) 6∈ NK/F (K×)m−i;
(ii) m = n, a0 ∈ F× and b0 ∈ K \ F .
Then Sf � Sg.

Corollary 32. Suppose Gal(K/F ) = 〈σ〉 and n = m. Let f(t) = tm − a, g(t) = tm − b ∈
K[t;σ] where a, b ∈ K \ F .
(i) Sf ∼= Sg if and only if there exists τ ∈ Gal(K/F ) and k ∈ K× such that τ(a) = NK/F (k)b.
(ii) If σj(a) 6= NK/F (k)b for all k ∈ K×, j = 0, . . . ,m− 1, then Sf 6∼= Sg.

These follow from Proposition 30. Note that Corollary 32 canonically generalizes well-
known criteria for associative cyclic algebras.

References

[1] R. Alfaro, A. V. Kelarev, Recent results on ring constructions for error-correcting codes. Algebraic

Structures and their Representations, XV Coloquio Latinoamericano de Algebra (Cocoyoc, Morelos,

Mexico, July 20-26, 2003), Contemporary Math. 376 (2005), 1-12.

[2] A. S. Amitsur, Differential polynomials and division algebras. Annals of Mathematics, Vol. 59 (2) (1954)

245-278.

[3] A. S. Amitsur, Non-commutative cyclic fields. Duke Math. J. 21 (1954), 87-105.

[4] A. S. Amitsur, Generic splitting fields of central simple algebras. Ann. of Math. 62 (2) (1955), 8-43.

[5] C. Brown, PhD Thesis University of Nottingham, in preparation.

[6] C. Brown, S. Pumplün, A. Steele, Automorphisms and isomorphisms of Jha-Johnson semifields obtained

from skew polynomial rings. Online at arXiv:1703.02356 [math.RA]



THE AUTOMORPHISMS OF PETIT’S ALGEBRAS 17

[7] J. Cazaran, A. V. Kelarev, S. J. Quinn, D. Vertigan, An algorithm for computing the minimum distances

of extensions of BCH codes embedded in semigroup rings. Semigroup Forum 73 (2006), 317-329.

[8] L. E. Dickson, Linear algebras in which division is always uniquely possible. Trans. Amer. Math. Soc. 7

(3) (1906), 370-390.

[9] J. Ducoat, F. Oggier, Lattice encoding of cyclic codes from skew polynomial rings. Proc. of the 4th

International Castle Meeting on Coding Theory and Applications, Palmela, 2014.

[10] J. Ducoat, F. Oggier, On skew polynomial codes and lattices from quotients of cyclic division algebras.

Adv. Math. Commun. 10 (1) (2016), 79-94.

[11] M. Giesbrecht, Factoring in skew-polynomial rings over finite fields. J. Symbolic Comput. 26 (4) (1998),

463-486.

[12] M. Giesbrecht, Y. Zhang, Factoring and decomposing Ore polynomials over Fq(t). Proceedings of the

2003 International Symposium on Symbolic and Algebraic Computation, 127134, ACM, New York, 2003.
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