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field emissions from planar electromagnetic sources
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Abstract—Modelling the electromagnetic radiation from mod-
ern digital systems – acting effectively as extended, stochastic
sources as part of a complex architecture – is a challenging
task. We follow an approach here based on measuring and
propagating field-field autocorrelation functions (ACFs) after
suitable averaging. From the modelling side, we use the Wigner
transform of the ACFs to describe random wave fields in terms of
position and direction of propagation variables. An approximate
propagator for the components of the radiated magnetic field
is constructed for these ACFs based on a linear flow map.
Field-field ACFs at aperture level are obtained from scanning
measurements of complex sources. Distance and spatial resolution
of the scanning plane is less than a wavelength from the source
plane to capture the imprint of evanescent waves in the near-
field ACFs. Near-field scanning and efficient near-to-far field
propagation is carried out and compared with measurements.
Results of this study will be useful to assist far-field predictions,
source reconstruction, and emission source microscopy.

Index Terms—Statistical Electromagnetics, Near-field Scan,
Wigner Function, Correlation, Reverberation Chamber.

I. INTRODUCTION

The emission of statistical electromagnetic sources, includ-
ing printed circuit boards (PCBs) and integrated circuits (ICs),
configures as a stochastic radiation pattern that has complex
space-time behavior. The hallmarks of this class of sources
are: having large spatial extent, fast and quasi-random time-
domain transitions of inherent pin/track voltages, and low
average power of the local radiated fields [1]. This constitutes
a modelling challenge to be accounted for in existing and
ongoing standardisation procedures [2]. Information about
these sources can be obtained via Near-Field Scanning (NFS);
the focus has been here in practice mainly on obtaining field
emissions from time harmonic and deterministic sources [3],
[4], [5]. Measuring the radiated emissions from PCBs has been
used to study the electromagnetic fields in regions surrounding
integrated circuits (ICs) [6], to estimate the currents flowing
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through chips [7], and to extract effective dipole moments for
source reconstruction [8], [9], [10], [11], [12], [13].

The aim of this work is to demonstrate that an approach
introduced in [14] based on propagating ACFs from NFS
measured field data using the so-called Wigner transformation
is a viable alternative for stochastic field modelling. Near-to-
Far Field (NFF) propagation is a delicate task as its com-
putation, whether deterministic [15] or stochastic [16], [17],
is computationally intensive. Efficient strategies have been
proposed for deterministic sources using, e.g., the Boundary
Element Method (BEM) [18], [19], [20], [21], and Fast Mul-
tipole Methods (FMM) [22], [18]. In [16] the ACF of the
near field is expanded in eigenmodes through the Karhunen-
Loève theorem, and each eigenvalue is propagated by using
the canonical NFF transformations. A similar approach has
been revisited and expanded in view of the Principal and
Independent Component Analyses (PCA, ICA) for the field
radiated by Ultra Wide Band (UWB) sources [23], [13], [24],
[25]. In [26], the ACF approach has been used in source
reconstruction and localisation.

In contrast to these approaches, we do not expand the
(unknown) near-field ACF in a basis of modes. Rather, we
apply a Wigner Function (WF) transformation to the ACF
obtained from direct NFS measured fields: this gives a rep-
resentation of waves in the combined space of their position
and direction of propagation, or phase-space [27]. A NFF
transformation for the ACF is derived as a linear map of
functions on phase space, and compared against measured
ACFs of a test statistical source at increasing distances away
from the source. An aperture in a mode-stirred cavity is the
test source of emitted stochastic fields. Synthetic aperture
measurements on a plane close to the cavity backed aperture
are used as input to the method. The proposed method allows
for analysing the spatial ACF of a spatially continuous source
or a set of discrete sources. The latter may be a wire array,
for example, driven by voltages radiating partially correlated
field components [14]. The knowledge of the ACF within
planar surfaces at different distances from the source can
be useful to assist source reconstruction methods [28], [29],
[30], [31], far-field estimation [32], [33], as well as recently
introduced phase-resolved scanning [34] and Emission Source
Microscopy (ESM) methods [35]. Furthermore, the method
can be used in conjunction with Huygens box method - also
in its incomplete version when the radiation is suppressed
through some box faces [33] - to augment the information on
random field fluctuations. Alternative statistical methods have
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been proposed in [23], [34]. Full two-probe measurements
from PCBs can be propagated using the same approach upon
appropriate space-time averaging. Preliminary experimental
results indicating the non-stationary nature of massive memory
transfer events in Galileo controller PCBs have been reported
in [36].

The paper is organised as follows: in Section II, the WF
based propagator is derived for ACFs. In Section III, the
measurement set-up and the NFS procedure are explained
together with an experimental validation of the theory. In Sec
IV, we draw conclusions and offer future perspectives for the
work.

II. THEORY

Consider an extended planar source radiating a noisy and
quasi-random field. Field sampling is done at a spatial point
x = (x, y) at time t in a plane parallel to the source and at a
distance z from it. The measured field component is denoted

F (x, z; t) , t ∈ [0, T ], (1)

where T is the total observation time. We consider the
field F in (1) to be a stochastic process subject to spatial
fluctuations, assuming a time-harmonic exp(iωt) dependence.

A. Correlation and Wigner function

Starting from a stochastic radiated field, we define the
correlation function of the fields sampled at two different
spatial locations as

Cz (xa, xb; τ) = 〈F (xa, z; t+ τ)F (xb, z; t)〉

= lim
T→∞

1

T

∫ T

0

F (xa, z; t+ τ)F (xb, z; t) dt,
(2)

where 〈·〉 is an appropriate ensemble average. In the frequency
domain, this field-field ACF is represented by

Γz (xa, xb;ω) =

∫ ∞
−∞

e−iωτCz (xa, xb; τ) dτ. (3)

The averaging in (2) is performed on products of synchronised
fields at two different points xa and xb. It produces a function
independent of the time reference in the case of stationary
stochastic fields. For sources for which the signal is not
controlled by the experiment, such as a PCB under operational
conditions, a two-probe scanning system is used to measure
the field at pairs of spatial positions simultaneously. Here, one
probe is used to provide a stable phase reference [36], [30],
[35]. As in applications for NFS for deterministic sources, a
NFF transformation is required to propagate the ACF from
statistical sources. The physical problem that we solve is the
following: given the electromagnetic field measured in the near
field at the incomplete Huygens surface at z = 0, we predict
the field-field ACF at an arbitrary plane beyond the source
z > 0. We start by noting that the propagated fields at the plane
z can be predicted by the Stratton-Chu Boundary Integral
Equation (BIE) or the dyadic second Green’s identity [37], see
Sec. II-B. The boundary-value problem can thus be solved by
using the fields measured at z = 0 as boundary conditions.
In the following, we show that this solution can be achieved

conveniently by changing from a position representation, x,
of the electric and magnetic field components to a momentum
representation, defined in the frequency domain by

F̃ (p, z;ω) =

∫
e−ikp·xF (x, z;ω)dx (4)

and by a corresponding double Fourier transform being used
to define the ACF Γ̃z(pa,pb;ω), with pa and pb respectively
denoting the variables conjugate to xa and xb. Integration in
(4) is over a two-dimensional plane defined by fixing the
coordinate z. In practical implementations, this integration is
confined to the finite domain to be scanned, which is assumed
to be large enough that the function F (x, z;ω) is vanishingly
small outside (see discussion in Sec. III-B). The momentum
vector p = (px, py) has the geometrical meaning of the
components of the wave vector parallel to the source plane,
normalised so that

px = sin θ cosφ, (5)
py = sin θ sinφ, (6)

and |p| = sin θ where θ is the angle of the ray with respect to
the outward normal ẑ. ACFs of scalar fields radiated from
arbitrary complex sources can be propagated efficiently in
free-space through the WF approach [38], [14]. In this paper
we extend the method to a tensorial setting appropriate to
EM radiation. If the measurement is performed over N × N
spatial points distributed within a scanning area, and for each
field component of the EM field, the ACF can be naturally
represented as a 3N × 3N tensor Γ(xa, xb;ω). We focus on
one entry of this tensor. The WF has a direct connection with
the ACF, and allows it to be expressed as a function on phase
space, combining position and direction of the wave vector
[14]. For a single component F of the EM field, we can define
a scalar WF as

Wz (x,p) =

∫
e−ikp·s Γz (x, s) ds , (7)

where the function Γz (x, s) is obtained from (3) by a coordi-
nate transformation

x = (xa + xb)/2 ,
s = xa − xb ,

(8)

where x is the average position of a pair of field measurements,
and s is the displacement between them. Note that from here
we suppress dependence on frequency in notation for the
ACF and its various transforms. The WF treats position and
momentum variables symmetrically, and so (7) can be also
attained from

Wz (x,p) =

(
k

2π

)2 ∫
eikx·q Γ̃z (p,q) dq , (9)

where Γ̃z (p,q) is similarly obtained from Γ̃z (pa,pb;ω)
through the rotation

p = (pa + pb)/2,
q = pa − pb.

(10)
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B. Solution of the boundary-value problem

The transverse electric and magnetic fields are denoted E =
Exx̂+Ey ŷ and H = Hxx̂+Hy ŷ, respectively. In the notation
of the previous section we may assign F to be one of the
components Ex, Ey, Hx, or Hy . These can be propagated to
any plane parallel to (x, y, z = 0) with the knowledge of the
electric and magnetic fields at the boundary, E(x, y, z = 0)
and H(x, y, z = 0), through the second dyadic Green identity
[37]. One obtains for the electric field

E (x, z) =

∫ {
[−iωµ n̂×H (x′, 0)] ·G0 (x, x′, z)

+ [n̂× E (x′, 0)] · ∇ ×G0 (x, x′, z)
}
dx′

(11)

and for the magnetic field

H (x, z) =

∫ {
G0 (x, x′, z) · [iωε n̂× E (x′, 0)]

+∇×G0 (x, x′, z) · [n̂×H (x′, 0)]
}
dx′,

(12)

where G0(x, x′, z) denotes the free-space dyadic Green func-
tion from point x′ on the plane z = 0 to point x on the plane
labelled by z > 0.

A partial Fourier transform is performed to represent fields
Ẽ(p, z) and H̃(p, z) in momentum representation according
to the notation of (4). By exploiting translation invariance
of Green’s functions in free-space and using the convolution
property of the Fourier transform, this operation converts (11)
and (12) into algebraic equations

Ẽ (p, z) =
[
iωµn̂× H̃ (p, 0)

]
· G̃0 (p, z)

−
[
n̂× Ẽ (p, 0)

]
· G̃1 (p, z) ,

(13)

for the electric field and

H̃ (p, z) = iωε G̃0(p, z) ·
[
n̂× Ẽ (p, 0)

]
−G̃1 (p, z) ·

[
n̂× H̃ (p, 0)

] (14)

for the magnetic field, where

G̃0 (p, z) =
(
I − pp

)
G̃0 (p, z) , (15)

is the partial Fourier transform (to momentum space) of the
free-space dyadic Green’s function G0 and

G̃1 (p, z) =
(
ikp× I

)
G̃0 (p, z) (16)

is the partial Fourier transform of ∇×G0(x, 0). Here,

G̃0 (p, z) =
eikzT (p)

2ikT (p)
(17)

denotes the Fourier representation of the 3D scalar free-space
Green’s function ([39], page 342) and

T (p) =

{ √
1− p2 for p2 ≤ 1 ,

i
√
p2 − 1 for p2 > 1

(18)

(with p = |p|) represents the direction cosine of the wavevector
normal to the source plane, extended so that it applies to
evanescent (p2 > 1) as well as propagating (p2 ≤ 1) waves.

C. Propagation of ACFs

We next proceed to deriving a propagation rule for ACFs in
momentum space for individual Cartesian field components.
Without loss of generality, we form the dot product of (13)
and (14) with x̂, and use the boundary surface impedance at
z = 0 as described in the Appendix A. This yields a closed-
form (plane-wave) field propagator

Ẽx (p, z) = Ẽx (p, 0) eikzT (p) , (19)
H̃x (p, z) = H̃x (p, 0) eikzT (p) (20)

and analogous propagation rules hold for Ẽy(p, z) and
H̃y(p, z).

Since the Cartesian field components propagate indepen-
dently, one obtains the propagated ACF upon insertion of (19)-
(20) in (2), with F̃ = Ẽx, Ẽy, H̃x or H̃y . Then

Γ̃z (p,q) = eikz[T (p+q/2)−T∗(p−q/2)] Γ̃0 (p,q) , (21)

using the notation of (10). The z components of the elec-
tric and magnetic fields normal to the source plane can be
calculated from the transverse components. This can be seen
explicitly by forming the dot product between (13) and (14) by
ẑ, and using the boundary impedance obtained in the Appendix
A for multiple transverse components.

For propagating the ACF from the source plane into the
far-field it is advantageous to represent the ACF so that its
positional and directional dependences are evident. This can
be done through the WF transform. After inserting (21) into
(9), we obtain

Wz (x,p) =

∫∫
Gz (x,p, x′,p′) W0 (x′,p′) dx′ dp′ (22)

with a WF propagator given by

Gz (x,p, x′,p′) =

(
k

2π

)2

δ (p− p′)∫
e ik(x−x′)·q+ikz(T (p+q/2)−T∗(p−q/2)) dq . (23)

In [14], it is shown how the kernel Gz can be simplified
through a ray-based approximation. The rationale of this
approximation is that ACFs are smooth functions, and the
spatial variation in the source correlation is assumed to take
place on a scale that is larger than the wavelength. In this case,
significant contributions to (23) are obtained at small values
of q and approximate propagation is achieved by expanding
T (p + q/2) and T ∗(p−q/2) about q = 0. Retaining only the
leading order contribution, this yields a Dirac delta function

Gz (x, x′; p,p′) ≈ δ
(

x− x′ − zp
T (p)

)
δ (p− p′) (24)

for propagating waves and

Gz (x, x′; p,p′) ≈ e−2kz
√
p2−1 δ (p− p′) , (25)

for evanescent waves. Finally, using (24) and (25) in (22) reads

Wz (x,p) ≈

{
W0

(
x− z p

T (p) ,p
)
,

W0 (x,p) e−2kz
√
p2−1 ,

(26)
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Fig. 1: A 3D scanner system.

thus leading to a ray-tracing approach for propagating waves
and to a p-dependent damping rate for evanescent waves. This
approximation of the transport rule for WFs in phase-space
is obtained explicitly by retaining the leading order of the
series expansion of the exponent of Gz in (22) [38], [14]. It
is possible to go back to the ACF in configuration space by
an inverse Fourier transform. Interestingly, Wz (x,p) has the
physical meaning of a (local) average radiation pattern of a
statistical source. The propagation of the WF expressed in (26)
results in a linear flow map in phase-space [38]. The flow takes
a particular simple form in this approximation in free-space,
propagating field intensities along straight lines with a tangent
vector given by p from the source plane to the observation
plane at z.

III. EXPERIMENTAL VALIDATION

For the validation of the approximate field-field correla-
tion propagators in (26), a one-probe three-dimensional (3D)
scanning system has been realised to perform measurements
of a single field component radiated from the cavity backed
aperture in Fig. 1. The experiment is done at a fixed frequency
f = 3 GHz (λ = 0.1 m). The aperture has dimensions 8 cm ×
8 cm. The cavity is a metallic rectangular enclosure of dimen-
sions 1 m × 1 m × 0.5 m, with a mechanical mode stirrer in
the interior. This structure is used to randomise the radiation
from the monopole source inside the enclosure, forming a
reverberation chamber (RC). In order to suppress background
noise and external interferences in the measurement process,
the whole scanner system has been put inside an anechoic
chamber, as shown in Fig. 1.

A. Measurement set-up and parameters

The scanning rig performs measurements across a planar
surface (synthetic aperture) adjacent to the cavity backed
aperture as the device under test (DUT). A key component
of this system is the antenna used to pick up the field
radiated from the aperture, the Langer EMV-Technik RF R50-
1 magnetic field probe shown in Fig. 1. This probe is a loop

Fig. 2: Scanning grid followed by the loop probe in the
acquisition of field data. A subsampling raster of the actual
grid is shown.

Fig. 3: Box with the aperture panel removed to show the
monopole antenna and rotating paddle.

antenna of 1 cm diameter, with high magnetic field sensitivity
and immunity to the electric field. The NFS is performed with
sufficient spatial resolution, i.e., about 20 steps per wavelength,
to accurately capture the far-field. A number of authors have
studied the optimal choice of distance, spatial step, and width
of the NFS plane. In particular, the distance and width of the
scanning plane should be chosen so as to create a numerical
aperture of 80o [40], and the spatial resolution should be half
of the distance from the source [41]. This can be seen by
rearranging Eq. (11) in [42] and assuming a dynamic range
of 60 dB, resulting in an (in-plane) spatial step size ∆ ≈ z

2
at a scan height z � λ. We performed the NFS in a plane
at z = 1 cm from the aperture plane with a spatial step size
of ∆ = 0.5 cm over an area of 0.3 m × 0.3 m, yielding
N = 60 × 60 = 3600 scan points per plane. However,
measurements with larger spatial steps were also performed
to assess the convergence of the results with respect to ∆. We
have found that ∆ = 0.5 cm provides sufficient accuracy in a
reasonable time. The scan raster grid is shown in Fig. 2. The
DUT is depicted in Fig. 3 with the aperture plate removed
to show the interior of the RC, the field mixing mechanical
stirrer, and the wall mounted electric monopole antenna. Port
1 of the VNA was connected to the monopole; the field probe
was connected to port 2. An Agilent E5062A vector network
analyser (VNA) was used to measure the complex transmission
parameter S21 and provides the phase reference. The NFS
procedure is repeated at selected heights above the source
plane. According to the van Cittert-Zernike theorem [43], [14],
[23], it is expected that the correlation length increases, i.e., the
field becomes more correlated, as the scanning plane moves
away from the source plane. Specifically, at a distance z ≈ λ



5

Fig. 4: Measurement set-up showing the scanning probe above
the mode-stirred chamber: the radiation is randomized by the
presence of the stirrer in the interior.

Fig. 5: Cavity with an aperture scan in progress.

the correlation length becomes of the order of the wavelength
λ [44], [43], [14], [23].

B. Scanning process

The scanning process of N points per plane was carried
out at z = 1 cm, 5 cm, 10 cm, and 15 cm above the
source plane. The setup used is shown schematically in Fig. 4,
while Fig. 5 shows the scanning process in progress. The S21

measurements are performed for 36 different paddle positions
where the paddle position is increased by 10 degrees between
each measurement. The field-field ACF is calculated from the
ensemble average of the field data over all paddle positions,
from (2), at every spatial point for each selected height z. For
real sources, this correlation has a sensitive dependence on the
separation between measurement points, while it varies slowly
with the centre location of the measurement. Together with the
increase in the correlation length, this can be used to reduce
the number of measurements, as has been argued in [45], [31],
[30]. However, this has not been done in our experiments.

From the 3D measurements, both the ACF and the WF
follow, comprising of 4D data sets Γz(x1, y1, x2, y2) and
Wz(x, y, px, py), respectively. These provide a challenge for
visualisation of the data. As illustrated in Fig. 6, a 2D plot
can be achieved by fixing a reference frame (x1, y1) for one
field, and moving a scanning frame (x2, y2) for the other field
considered in the calculation of the ACF. Figs. 7a, 7b and 7c
show part of a 4D visualisation of the ACF and WF for scan

Fig. 6: 2D scanning grid containing sample fields. The ACF
depends on 4 coordinates. A 2D plot can be achieved by
fixing a reference frame (x1, y1), and moving a scanning frame
(x2, y2).

heights at 1 cm; the ACF is obtained here from direct field
measurements by ensemble averaging over 1, 16 and 36 stirrer
positions, respectively. The corresponding WFs serve as input
data W0 for the propagator (26). For each measurement point
and frequency we record S21 at 36 paddle positions. For each
paddle position, the 3600 scanned locations across four planes
give 14400 complex-valued data entries for S21. Across all 36
paddle positions, this produces 518400 entries.

The data shown in Figs. 7a - 7c are obtained by taking the
product between the field at the spatial points (x2, y2) and
(x1, y1). The point (x2, y2) is fixed at the center of the scan,
corresponding to x2 = y2 = 0, while the point (x1, y1) varies
from (−15,−15) cm to (15, 15) cm with a step-size of 1
cm in the plot. The absolute value of the ACF is shown. The
corresponding absolute value of the WF is located at (y, py) =
(0, 0) after Fourier transform of the displacement variables
x1 − x2 and y1 − y2.

The subplots in Fig. 8 show again the absolute value of
the WF as a function of x and px for fixed values of y
and py , that is, (y, py) = (0, 0), at z = 1 cm, 5cm, 10
cm, and 15 cm. The shearing of the WF for increasing z,
as implied by (26) and described in [14], is clearly observed.
The presence of multiple beams in the near-field WF in Fig. 8
is also interesting: these indicate local angular sectors where
the average emission is particularly strong. This is important
with a view towards defining emission patterns for statistical
sources [23]. Finally, the presence of non-zero energy outside
the interval −1 ≤ px ≤ 1 indicates the existence of complex
angles of propagation associated with evanescent waves, as
apparent from (26). The geometrical interpretation of WFs
provides an intuitive way of capturing reactive near fields. In
Fig. 8, the WF becomes concentrated within the area −1 <
px < +1 as the transport coordinate z increases beyond λ/2,
confirming that radiated energy is now carried by propagating
(far-field) waves. Note that the finite transverse spatial range
of measurement data taken further from the source truncates
the ACF. Therefore the WF computed from this data misses
detailed features that are expected from a simple propagation
of the source data as represented by (26). Nevertheless the
transformed data in Fig. 8 captures the shearing of phase space
represented by the underlying free-space ray dynamics. We
find good agreement (not shown) when the ACF propagated
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(a) Height z = 1 cm for one stirrer position. (b) Height z = 1 cm for 16 stirrer positions. (c) Height z = 1 cm for 36 stirrer positions.

Fig. 7: Plots show the absolute value of the field-field correlation function Γz(x1, y1, x2 = 0, y2 = 0) (left panels) and the
Wigner function Wz(x, px, y = 0, py = 0) (right panels) at selected heights z above the source plane (where the centre of the
aperture and scans is (x, y) = 0).

Fig. 8: Plots show the Wigner function at heights of 1 cm, 5
cm, 10 cm, and 15 cm (from top left to bottom right) obtained
by averaging field data over an ensemble of 36 uncorrelated
stirrer positions.

by (26) is truncated before evaluating the corresponding WF.

C. Theoretical and experimental comparison

The validation of the approximated NFF propagator is
performed through a four-step procedure:

1) the experimental ACF is calculated (for an ensemble of
36 paddle positions) at 4 heights;

2) the WF transformation is performed for these 4 in-plane
correlation data sets;

3) the theoretical WFs are estimated by propagating from
the plane z = 1 cm to the 3 other (larger) heights using
(26);

4) the inverse Wigner transformation of the propagated WF
is calculated to estimate the predicted ACFs at the 4
heights.

The near field WF at z = 1 cm in Fig. 7c acts as the initial
WF (note that here W0 = Wz=1 cm) to be propagated to
z = 5 cm, 10 cm, and 15 cm through (26). A comparison
between the propagated ACF and the ACF obtained from
direct measurement is reported in Fig. 9 for the 4 scanning
planes. The ACF is seen to be localized, as it represents the
correlation of one grid point with all the other grid points; the
correlation width increases linearly with z, as expected and
in qualitative agreement with Fig. 3 in [23]; its maximum

Fig. 9: ACF calculated from measured data (right plots) and
from approximated propagators in (26) (left plots).

value scales by a factor of about 10 for each investigated
plane. These three features are predicted accurately by the
approximate propagators.

A sub-range of the full 4D ACF can be visualised using
a mosaic-like plot (see Fig. 6), in which each individual tile
of the mosaic shows Γz(x1, y1, x2, y2) a fixed value of (x2,
y2), while (x1, y1) varies over the whole scan. Moving from
tile to tile in the x (or y) direction changes the value of x2
(or y2), by one measurement step of the probe, or 0.5 cm.
To be specific, we show 4 × 4 subplots for both measured
and propagated correlations at the three scanned heights in
Figs. 10, 11, and 12, in which x2 and y2 defining individual
tiles vary between probe positions numbered 28 to 31 (out of
a total of 60 measurements in each dimension). These plots
demonstrate that 4D ACFs can be propagated efficiently by
using (26). As a distinctive feature of the correlation behaviour
in the aperture, we notice that collective spreading - increase
of the correlation length - and peak scaling from the upper
left corner toward the lower right corner are tracked faithfully
by the theoretical predictions.

A better way of comparing measurements and predictions
can be obtained by projecting the WF onto the position
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Fig. 10: 4D visualisation of measured (a) versus propagated
(b) ACF at z = 5 cm.

Fig. 11: 4D visualisation of measured (a) versus propagated
(b) ACF at z = 10 cm.

coordinates x. This gives the local field intensity of the random
emission, and reduces the 4D representation to a 2D plot

I (x) =
k

2π

∫∫
Wz (x,p) dp = Γ (x, x) . (27)

The comparison between propagated and measured intensities
in Figs. 13a, 13b and 13c shows good agreement. The discrep-
ancies observed in the prediction of the average intensity are
more pronounced at distances z ≥ λ. They can be ascribed
to several artefacts of the measurement process, including
reduction of the signal-to-noise ratio of the field probe at
large distances from the source; absence of probe correction;
noise and EMI of the amplifier; other components in the
measurements layout. Whilst we have made our best efforts
at minimising the errors in the measurement process, potential
sources of discrepancy in the measurement are scattering from
the environment, including the scanner and the absorbers. The
measurement is somewhat invasive in that the local field will
be perturbed as the probe moves from one probe location to
another during the scan. Furthermore, since the source plane
is finite, diffraction by edges of the aperture will scatter fields
towards the scanning region.

Fig. 12: 4D visualisation of measured (a) versus propagated
(b) ACF at z = 15 cm.

IV. CONCLUSION

In this paper, a near-to-far field propagator for ACFs has
been derived based on a Wigner function representation. The
Wigner function propagator is independent of a modal expan-
sion of radiated fields and extracts both positional and direc-
tional information from the correlation as well as evanescent
(deep near-field) waves contributions. A proof-of-principle
experiment as a validation of this approach is presented for
a single magnetic field component radiated from a cavity
backed aperture, the cavity being a reverberation chamber
with monopole antenna. The cavity backed aperture has been
adopted as a model statistical source, as it is able to produce
a complex radiation pattern that changes in both space and
time. Synthetic aperture measurements have been performed
at different planes away from the aperture plane; the spatial
ACF has been derived from field data and compared with
the theory. Practical considerations on distance and resolution
of the scanning procedure have been made in connection
with the presence of sub wavelength detail, whose sampling
is important to predict far-field radiation accurately. Results
are useful to extend current near-to-far field methodologies,
to perform source reconstruction of arbitrary devices, and
to improve holographic source reconstruction methods, e.g.,
emission source microscopy.

APPENDIX

To solve the dyadic BIE and to obtain the field propagator
in momentum space, i.e., in the space of the direction of the
wave vector for Ex, we dot (13) by x̂ to get

Ẽx (p, z) = −iωµ
[
pxpyH̃x(p, 0)

+(1− p2x)H̃y(p, 0)
]
G̃0 (p, z)

+
(
ikT (p)Ẽx(p, 0)

)
G̃0 (p, z) .

(28)

With (17), the dyadic boundary surface impedance at z = 0
is specified by

Ẽx (p, 0) = −η0
[(

1− p2x
T (p)

)
H̃y(p, 0) +

(
pxpy
T (p)

)
H̃x(p, 0)

]
.

(29)
Using (29) to eliminate H̃x and H̃y in (28), this yields the
propagator (19). Similar surface impedance conditions can be
derived mutatis mutandis for the other fields components.
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