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There is more to quantum interferometry than entanglement
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Entanglement has long stood as one of the characteristic features of quantum mechanics, yet recent
developments have emphasized the importance of quantumness beyond entanglement for quantum foundations
and technologies. We demonstrate that entanglement cannot entirely capture the worst-case sensitivity in quantum
interferometry when quantum probes are used to estimate the phase imprinted by a Hamiltonian, with fixed energy
levels but variable eigenbasis, acting on one arm of an interferometer. This is shown by defining a bipartite
entanglement monotone tailored to this interferometric setting and proving that it never exceeds the so-called
interferometric power, a quantity which relies on more general quantum correlations beyond entanglement and
captures the relevant resource. We then prove that the interferometric power can never increase when local
commutativity-preserving operations are applied to qubit probes, an important step to validate such a quantity
as a genuine quantum correlations monotone. These findings are accompanied by a room-temperature nuclear
magnetic resonance experimental investigation, in which two-qubit states with extremal (maximal and minimal)
interferometric power at fixed entanglement are produced and characterized.
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I. INTRODUCTION

Entanglement is often perceived as the beating heart of
quantum technologies [1–3]. It is the power behind a wealth
of processes crucial for current innovations [4,5], including
quantum computing [6,7] and cryptography [8]. Moreover,
comprehending entanglement is of fundamental importance
for quantum foundations [3], helping to demarcate the ever
elusive boundary between classical physics and truly quantum
phenomena [9,10]. It is clear that what Schrödinger once
termed the characteristic trait of quantum mechanics is
central to our quantum journey [11]. However, the seemingly
indisputable role of entanglement has been recently challenged
by the idea of quantum correlations beyond entanglement
[12–16]. These more general correlations, accounting for the
inevitable disturbance caused by a local measurement on one
subsystem of a genuinely quantum state, can play their own
part in quantum enhanced processes, ranging from entangle-
ment distribution to quantum state merging [15,17–20].

Metrology, the science of high-precision measurement, is
one of the quintessential fields experiencing an advantage in
the presence of entanglement: it has long been appreciated
that measurements can be performed to greater precision by
using an entangled collection of probes [21–24]. Despite
this, the exact role of entanglement in the related task of
quantum interferometry, which has far-reaching applications
such as gravitational wave detection [25], remains unclear
[26]. The goal here is to precisely measure a phase shift ϕ by
passing two quantum probes in a bipartite state ρAB through
different arms of an interferometer [27,28]. One arm actively
imprints the phase ϕ onto probe A by a unitary transformation
U

ϕ

A = e−iϕHA , generated by the Hamiltonian HA, while the
other arm leaves probe B unchanged. An estimate ϕ̃ of
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the parameter is then constructed by carrying out suitable
measurements on ν copies of the output state of the probes
ρ

ϕ

AB = (Uϕ

A ⊗ IB)ρAB(Uϕ

A ⊗ IB)†.
This estimate has an associated precision given by the

mean-square error �2ϕ̃, quantifying the statistical distance
between ϕ̃ and ϕ. The objective is to reach the highest
precision possible, but this is always limited by the Cramér-
Rao bound �2ϕ̃ � [νF(ρAB,HA)]−1 [29], with F(ρAB,HA)
being the quantum Fisher information (QFI) [30,31]. In the
asymptotic limit ν → ∞, this bound can be saturated if
optimal measurements are performed on the probes. The QFI
thus stands as the relevant figure of merit in interferometry,
capturing the sensitivity of ρAB to phase imprinting with a
known Hamiltonian HA.

A recent series of works [32–36] investigated the scenario
where only the energy-level spectrum � (assumed to be
nondegenerate) of the Hamiltonian HA is fixed a priori, while
its eigenbasis is not known at the initial stage of preparation of
the probe state due, e.g., to environmental fluctuations or set
rules of a game. The family of possible Hamiltonians used
to imprint the phase ϕ is then H�

A = V diag(�)V † for all
unitaries V on subsystem A. In this setting, one is interested
in gauging the usefulness of a given probe state ρAB for
interferometry, regardless of the specific direction of phase
imprinting. Such an analysis may lead to the identification of
versatile probe states that can be useful as resources for precise
phase estimation in several different bases. In particular,
it becomes important to assess the worst-case sensitivity,
obtained when H�

A generates the nontrivial local dynamics
(compliant with the fixed spectral constraint) to which the
probe is the least sensitive. To test a probe state ρAB in such
unfavorable conditions, an adversarial referee is assumed to
operate the Hamiltonian H�

A in a black box. The referee then
reveals the selected eigenbasis only after the interaction, so that
the most informative measurement given the prior preparation
of ρAB and this posterior information on H�

A can be performed
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on the output state ρ
ϕ

AB in order to estimate ϕ. Then, the
relevant figure of merit for such a setup is the minimum QFI
over all H�

A , given by

P�
A(ρAB) = 1

4 min
H�

A

F
(
ρAB,H�

A

)
, (1)

including a convenient normalization factor. This quantity,
which captures the worst-case sensitivity to phase imprinting
within the family of Hamiltonians H�

A achievable by a probe
state ρAB , has been aptly baptized interferometric power (IP)
in [33]. Interestingly, the interferometric power vanishes if and
only if ρAB is a classical state [32,33] of the form

ρAB =
∑

i

pi |i〉〈i|A ⊗ ρ
(i)
B , (2)

with {|i〉A} being any orthonormal basis of A and ρ
(i)
B being

arbitrary states of B [15]. Notice that classical states of Eq. (2)
form a strict subset of separable states, which in turn can be
written as

ρAB =
∑

i

pi ρ
(i)
A ⊗ ρ

(i)
B , (3)

with ρ
(i)
A being arbitrary states of A. Therefore, the IP has

been suggested as a quantifier of quantum correlations beyond
entanglement in ρAB (with respect to probe A) [15,33]. Oper-
ationally, a signature of these more general correlations is, in-
deed, the sensitivity to phase imprinting with all possible local
Hamiltonian generators, that is, the ability to exhibit quantum
coherence [37] in all possible local bases for probe A [15].

It is therefore natural to wonder where entanglement comes
into play, if at all. In this paper, we shed light on this question
in quantitative terms by showing that entanglement, once
suitably quantified, accounts only for a partial contribution
to the available precision in quantum interferometry, hence
formalizing a hierarchy of quantum resources useful for this
task. In Sec. II we define a bipartite entanglement monotone,
the interferometric entanglement (IE), specifically motivated
from pure-state interferometry, and we show in Sec. III that
it never exceeds the IP for arbitrary mixed bipartite quantum
states. The IP is further proven in Sec. IV to never increase
when qubit probes are subjected to local commutativity-
preserving operations [38–40], which constitute a meaningful
set of free operations for the sought-after resource theory of
quantum correlations [15]. This realizes important progress
towards establishing the IP as a full-fledged and operationally
relevant quantum correlations monotone. In Sec. V we then
investigate the relationship between IP and entanglement
experimentally with a room-temperature liquid-state nuclear
magnetic resonance (NMR) implementation of a two-qubit
system, in which case our IE reduces to the tangle (squared
concurrence) [41–45] and the IP adopts a simple closed form
[33]. Rank-2 states with the largest and smallest IP for a fixed
tangle are generated and characterized, demonstrating that
highly mixed states containing extremal quantum correlations
additional to entanglement are accessible in the laboratory and
could be adopted as robust probes for black-box interferometry
experiments [33]. We draw our concluding remarks in Sec. VI.

II. INTERFEROMETRIC ENTANGLEMENT

We define the IE for any pure bipartite probe state
|ψ〉AB as

E�(|ψ〉AB) = min
H�

A

V
(|ψ〉AB,H�

A

)
, (4)

with the variance V(|ψ〉AB,H�
A ) = AB〈ψ |(H�

A )2 ⊗
IB |ψ〉AB − (AB〈ψ |H�

A ⊗ IB |ψ〉AB)2. For pure states,
the QFI reduces (up to a factor) to the variance, i.e.,
F(|ψ〉AB,H�

A ) = 4V(|ψ〉AB,H�
A ) [23,31], and so the IE is

equal to the IP.
For a general mixed state ρAB , we use the standard convex

roof construction to extend the definition of the IE as

E�(ρAB) = min
{pi ,|ψi 〉AB }

∑
i

piE�(|ψi〉AB), (5)

considering all decompositions of ρAB = ∑
i pi |ψi〉AB〈ψi |

into pure states. We get that the IE is a full convex
entanglement monotone, satisfying in particular the two key
requirements stemming from the mathematical theory of
entanglement as a resource [3,46]: (i) E�(ρAB) = 0 for all
separable states of Eq. (3), and (ii) E�(ρAB) �

∑
i qiE�(ρ(i)

AB),
with qi = Tr(KiρABK

†
i ) and ρ

(i)
AB = KiρABK

†
i /qi , meaning

that entanglement can never be generated or increased on
average through local operations and classical communication
(LOCC), where the product Kraus operators {Ki} describe
the action of a LOCC map, �LOCC(ρAB) = ∑

i KiρABK
†
i .

This holds by virtue of the convex roof extension [47],
given that the quantity in Eq. (4) is a LOCC monotone for
pure states [32]. Together with convexity, the properties
above imply standard LOCC monotonicity for the IE,
E�(ρAB) � E�(�LOCC(ρAB)) [48].

III. HIERARCHY OF INTERFEROMETRIC
FIGURES OF MERIT

The IE can be understood to quantify the worst-case
sensitivity from the family of generating Hamiltonians H�

A

if one were to perform interferometry using individual pure
probe states |ψi〉AB and then average the results with probabil-
ities pi . Conversely, the IP, as given by Eq. (1), represents
the worst-case sensitivity by using the mixed state ρAB =∑

i pi |ψi〉AB〈ψi | as a probe state directly. Furthermore, by
virtue of the convex-roof construction [49], the extension of
the IE to mixed states in Eq. (5) amounts to the largest convex
function which reduces to the worst-case sensitivity (that is, to
the IP) for pure states. This indicates that both quantifiers are
defined and physically motivated within the same operational
setting, which makes their comparison meaningful.

Intuitively, one may then expect that the interferometric
resource quantified by the IE can never exceed the figure of
merit given by the IP due to the extra minimization over all
pure-state decompositions of ρAB . We will now see that this
intuition is true [50]. The first ingredient to use is that the QFI
is (four times) the convex roof of the variance [51,52],

F
(
ρAB,H�

A

) = 4 min
{pi ,|ψi 〉}

∑
i

piV
(|ψi〉AB,H�

A

)
. (6)
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Using this fact and the definition of the IE, we can say that

F
(
ρAB,H�

A

) = 4 min
{pi ,|ψi 〉}

∑
i

piV
(|ψi〉AB,H�

A

)

� 4 min
{pi ,|ψi 〉}

∑
i

pi min
H�

A

V
(|ψi〉AB,H�

A

)

= 4 min
{pi ,|ψi 〉}

∑
i

piE�
(|ψi〉AB

)

= 4E�(ρAB), (7)

where in the inequality we minimize over H�
A and in the second

and third equalities we use the definition of IE in Eqs. (4) and
(5). Finally, using the definition of IP in Eq. (1), we have

P�
A(ρAB) = 1

4 min
H�

A

F
(
ρAB,H�

A

)
� min

H�
A

E�(ρAB) = E�(ρAB).

(8)

We thus construct the fundamental hierarchy of resources:

1
4F

(
ρAB,H�

A

)
� P�

A(ρAB) � E�(ρAB), ∀ ρAB,H�
A , (9)

where the leftmost inequality holds by construction [33], while
the rightmost inequality is our first main result. This shows that
entanglement (quantified by IE) does not entirely capture the
figure of merit in quantum interferometry, as it accounts only
for a portion of the relevant quantum correlations (quantified
by IP), which in turn provide a tighter lower bound to the QFI
for any H�

A . Note that any pure state saturates the rightmost
inequality. Equation (9) also succeeds in unifying different
nonclassical signatures under the operational umbrella of
interferometric phase estimation.

IV. INTERFEROMETRIC POWER AS A RESOURCE

In the following, we investigate the validation of the IP as
a measure of quantum correlations beyond entanglement. In
[33], the IP has been shown to obey the following properties:
(i) P�

A(ρAB) = 0 iff ρAB is a classical state of the form Eq. (2),
(ii) P�

A(ρAB) is invariant under local unitaries, (iii) P�
A(ρAB)

reduces to an entanglement monotone for pure states (here
identified as the IE), and (iv) P�

A(ρAB) is nonincreasing under
the action of any local operation on subsystem B. These
properties can be recognized as a set of necessary requirements
for any good quantifier of quantum correlations [15,32,53,54].
However, adopting a resource-theory perspective [55–57], one
should impose a more general monotonicity requirement, that
any measure of our resource should not increase when a
suitable set of free operations is applied to any state.

While LOCC are well established as the free oper-
ations for entanglement theory [3,46], the corresponding
set of free operations for more general quantum correla-
tions has remained elusive. Recent findings have identified
local commutativity-preserving operations (LCPO) as the
maximal set of local operations unable to create quantum
correlations from an initial classical state [38–40]. The
LCPO �LCPO = �A ⊗ IB preserve commutativity of local

states on A, i.e., [�A(ρA),�A(ςA)] = 0 ∀ ρA,ςA such that
[ρA,ςA] = 0 [58]. Monotonicity with respect to these oper-
ations has been proposed as an additional requirement for
any measure of quantum correlations [15], so it is crucial to
establish whether the IP has this property, i.e., if P�

A(ρAB) �
P�

A(�LCPO(ρAB)). We now prove that this is true when probe
A is a qubit.

Restricted to qubits on A, the commutativity-preserving
operations are of two types, completely decohering and
unital. The completely decohering operations map any state
to one diagonal in a fixed reference basis {|i〉A},�A(ρA) =∑

ipi(ρA)|i〉〈i|A, with pi(ρA) being probabilities dependent
on ρA, while unital operations preserve the identity, �A(IA) =
IA. Observing that local completely decohering operations
�A on A always return a classical state, i.e., �A(ρAB) is of
the form of Eq. (2) for any input ρAB , it trivially follows
that P�

A(ρAB) � P�
A(�A(ρAB)) = 0 in this case. We then need

to show monotonicity of the IP under LCPO with unital
operations �A on A to guarantee overall monotonicity for
qubit-qudit probes. The proof is provided in Appendix A.

When probe A has dimension dA > 2, the commutativity-
preserving operations can be completely decohering (as above)
or isotropic, �A(ρA) = t
(ρA) + (1 − t)IA/dA, where 
(ρA)
is either a unitary operation, i.e., 
(ρA) = UAρAU

†
A for

some unitary UA, or an antiunitary operation, i.e., 
(ρA) =
UAρT

AU
†
A, with ρT

A denoting the transpose of ρA. For �A(ρA)
to be completely positive, t is constrained to t ∈ [ −1

d2
A−1

,1]

when 
 is unitary, and t ∈ [ −1
dA−1 , 1

dA+1 ] when 
 is antiunitary.
We provide the operator-sum representation of �A(ρA) in
Appendix B. Since again the completely decohering operations
on A always return a classical state, investigating monotonicity
of the IP under LCPO when A is a qudit requires testing
monotonicity under isotropic operations �A on A. In Ap-
pendix C, we prove such monotonicity when 
 is unitary and
t ∈ [0,1], while the remaining cases are presently left as an
open question. These results show that the IP is a full quantum
correlations monotone for arbitrary qubit-qudit states and a
valid monotone under a subset of LCPO for general qudit-qudit
states.

V. EXPERIMENTAL INVESTIGATION OF EXTREMAL
STATES

We finally explore the interplay between IP and IE as
captured by Eq. (9) via an in-depth numerical analysis supple-
mented by an experimental two-qubit NMR implementation
using a BRUKER Ascend 600-MHz spectrometer at room
temperature.

For two-qubit probes and a standard equispaced spectrum
� = {−1,1} of our generating Hamiltonians H�

A (we will
drop the superscript � in what follows), the IE reduces to
the tangle T or squared concurrence [41–45], which is a
monotonic function of the entanglement of formation (see
Appendix D), while the IPPA also adopts a simple closed form
[33]. Focusing on probes ρAB with rank-2 density matrices, we
locate a family of states with the largest and smallest IP for
a given tangle. This family is parameterized by two angles
θ1,θ2 ∈ [0,π/2] and can be expressed in the computational

052313-3



THOMAS R. BROMLEY et al. PHYSICAL REVIEW A 95, 052313 (2017)

basis as an X state,

ρAB = 1

2

⎛
⎜⎝

c+(θ1,θ2) 0 0 d+(θ1,θ2)
0 s+(θ1,θ2) d−(θ1,θ2) 0
0 d−(θ1,θ2) s−(θ1,θ2) 0

d+(θ1,θ2) 0 0 c−(θ1,θ2)

⎞
⎟⎠,

(10)

with c±(θ1,θ2) = cos2( θ2
2 )[1 ± sin(θ1)], s±(θ1,θ2) = sin2( θ2

2 )
[1 ± sin(θ1)], and d±(θ1,θ2) = − cos(θ1)

2 [1 ± cos(θ2)].
One may calculate the tangle and IP of ρAB to be

T(ρAB) = cos2(θ1) cos2(θ2),

PA(ρAB) = min

{
cos(θ1)2,

3 − cos(2θ1) + 2 cos2(θ1) cos(2θ2)

4

}
. (11)

In particular, whenever θ1 = 0, we have that PA(ρAB) =
T(ρAB), identifying an extremal subset of rank-2 states
for which the rightmost inequality in Eq. (9) is saturated
(recall that this is also true for all pure states, i.e., rank-

FIG. 1. Comparison of the IP PA(ρAB ) versus the IE, alias tangle
T(ρAB ), for two-qubit rank-2 states ρAB . The lines correspond to the
family of rank-2 X states of Eq. (10) parameterized by θ1 and θ2

for two cases: PA(ρAB ) = T(ρAB ) (solid line), which is the smallest
IP for a given tangle, and PA(ρAB ) = 1

2 [1 + T(ρAB )] (dashed line),
which is identified numerically as the largest IP for a given tangle
among rank-2 states. The little squares depict 105 randomly generated
rank-2 states, which are always found within the region given by
T(ρAB ) � PA(ρAB ) � 1

2 [1 + T(ρAB )]. The triangles correspond to
experimental two-qubit states of the form of Eq. (10) prepared using
an NMR setup, with angles θ1 and θ2 given in Table I, to approach
the lower extremal boundary (downward triangles) and the upper
extremal one (upward triangles). Errors bars are calculated as detailed
in the text.

FIG. 2. NMR pulse sequence to prepare two-qubit states of the
form of Eq. (10) using qubits encoded in 1H and 13C nuclear spins of
chloroform. Following state preparation as described in the text, we
perform four-pulse quantum state tomography (QST) [68].

1 states). Furthermore, when θ1 = arccos (
√

1+T
2 ) and θ2 =

1
2 arccos (3 − 4

1+T
) for some T ∈ [0,1], it holds thatT(ρAB) =

T and PA(ρAB) = 1
2 [1 + T(ρAB)], which we conjecture to be

the maximum IP for a given tangle that can be reached among
all rank-2 states [59]. Figure 1 plots the IP and tangle for these
two cases. The conjecture is further supported by the numerical
investigation of 105 rank-2 states randomly drawn from the
uniform distribution according to the Hilbert-Schmidt measure
[60], whose corresponding points in the IP vs tangle plane
always lie in the triangular region between the two extremal
cases (see Fig. 1).

In our experiment, the two-qubit system was encoded on
1H and 13C spin-1/2 nuclei in a chloroform (CHCl3) enriched
with a 13C sample, allowing complete control of the amplitude
and phase of each qubit separately [61–63]. Applying the
pseudopure-state technique [1,64–67], the family of states in
Eq. (10) can be implemented easily in our NMR setup by trans-
formations in the deviation matrix of the thermal configuration.
These states are obtained from the NMR radio-frequency pulse
sequence described in Fig. 2, where the pseudopure state
|00〉〈00| is prepared as described in Ref. [67] (see Appendix E)
and the quantum operations are implemented by controlled
NOT (CNOT) [π

2 ]Cy → U [ 1
2J

] → [π
2 ]Cx → [π

2 ]C−y → [π
2 ]Cx →

[π
2 ]Cy → [π

2 ]H−y → [π
2 ]H−x → [π

2 ]Hy and Hadamard [π
2 ]Hy →

[π ]Hx [67]. In particular, states approximating the two extremal
rank-2 classes with maximum and minimum IP for a given
tangle were prepared by varying the angles θ1 and θ2 according
to Table I. After state preparation, we performed full four-pulse
quantum state tomography: ICIH ,[π

2 ]Cx ,[π
2 ]Cy ,[π

2 ]Hx [π
2 ]Cx , as

described in [68]. The resultant Uhlmann fidelity [69] with the
corresponding target state was found always to be larger than

TABLE I. Values of θ1 and θ2, applied with x phase, for
experimentally generated two-qubit states of Eq. (10), approximating
(a) lower extremal states with IP equal to tangle (θ1 = 0) and (b)
upper extremal states with the largest IP for a given tangle among
rank-2 states.

(a) θ2
π

14
π

7
3π

14
2π

7
5π

14
3π

7
π

2

θ1 0 7π

90
π

9
13π

90
8π

45
19π

90
11π

45(b)
θ2 0 π

10
π

10
7π

45
19π

90
3π

10
7π

18
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95%. Error bars were estimated by propagating the errors in
pulse calibration (smaller than 3% per pulse, as determined by
pulse-width fitting) for the entire pulse sequence and producing
statistics based on 100 computationally simulated runs per
each preparation. Further experimental details are available in
Appendix E.

VI. SUMMARY AND OUTLOOK

We reported results of fundamental and practical impact
on the quantification of resources for quantum enhanced
interferometry, advancing along three main paths.

First, we defined the IE, an entanglement monotone inspired
by the figure of merit in interferometry, and showed that
it can never exceed the IP, a quantifier of general quantum
correlations introduced in [33]; this establishes a hierarchical
relation between useful nonclassical resources, showing in
particular the inability of entanglement to fully capture the
precision available for estimating a phase ϕ imprinted by a
Hamiltonian with a fixed spectrum but variable eigenbasis.
We remark that this hierarchy exists specifically between
IE and IP (which can be rightfully compared because they
are derived from similar principles) and does not necessarily
extend to other pairs of measures of entanglement and quantum
correlations beyond entanglement. A worthwhile development
will be to extend this analysis to other phase-imprinting
operations besides unitaries, such as noisy phase-covariant
operations [36,70], which are the free operations in a resource
theory of quantum coherence viewed as asymmetry with
respect to time translations [37,71,72].

Second, the bona fide role of the IP in quantum information
theory has been further cemented by showing its mono-
tonicity (for all qubit-qudit states) under LCPO, a postulated
meaningful set of free operations for a resource theory of
quantum correlations [15]. Further developments may identify
a different set of free operations, possibly motivated from
additional physical restrictions. However, since LCPO form
the maximal set of local operations unable to create quantum
correlations [38–40], any such possible set of free operations
must lie within LCPO, and monotonicity of the IP will remain.
Our next steps will be to investigate the full monotonicity of
the IP under LCPO when operating locally on probes with
dimension higher than 2, which will be the focus of future
work.

Third, we investigated how far quantum correlations can
go beyond entanglement [73,74] in two-qubit systems. We
identified classes of extremal rank-2 states with maximum
and minimum IP at given IE and prepared instances of such
states experimentally using a room-temperature NMR setup.
This shows that bipartite probe states offering substantial
extra gain in performance for interferometry given a fixed
degree of entanglement are accessible in the laboratory.
While maximum performance is always reached on pure
maximally entangled states, finitely entangled states with
extremal quantum correlations can be valuable whenever
access to pure-state preparations is precluded. It will be inter-
esting to further explore the practical usefulness of quantum
correlations beyond entanglement in technological settings
such as quantum interferometry, metrology, and discrimination
[15,26,75], possibly with different experimental setups.
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APPENDIX A: MONOTONICITY OF THE IP UNDER
LOCAL UNITAL MAPS FOR QUBIT-QUDIT SYSTEMS

We will prove that P�
A(ρAB) � P�

A(�A ⊗ IB(ρAB)) for
qubit-qudit states ρAB and unital operations �A acting on A,
i.e., where �A preserves the identity. Consider the dilation
τABC of �A ⊗ IB(ρAB) into a larger space including an extra
ancillary system C, such that TrC[τABC] = �A ⊗ IB(ρAB)
[76]. The following inequality holds:

P�
A(τABC) � P�

A(TrC[τABC]) = P�
A(�A ⊗ IB(ρAB)) (A1)

since the IP never increases under any operation on subsystems
other than A [33]. It is then sufficient to prove thatP�

A(ρAB) �
P�

A(τABC) to arrive at the desired inequality. To do this, we use
the fact that any unital qubit operation can be equivalently
written as a convex combination of unitaries (or random
unitary channel) [77], i.e.,

�A(ρA) =
∑

i

piU
(i)
A ρA

(
U

(i)
A

)†
(A2)

for some mixture of unitaries {U (i)
A } with probabilities {pi}

acting on subsystem A in the state ρA. This can be used to
explicitly write the dilated state as

τABC = UABC(ρAB ⊗ |α〉〈α|C)U †
ABC, (A3)

with

UABC =
∑

i

U
(i)
A ⊗ IB ⊗ |i〉〈i|C,

|α〉C =
∑

i

√
pi |i〉C. (A4)

We now make use of the explicit form of the IP for qubit-
qudit states given in [33], P�

A(ρAB) = α2 min {λi}, where {λi}
are the eigenvalues of the 3 × 3 matrix

M = 1

2

∑
m,n:qm+qn 
=0

(qm − qn)2

qm + qn

〈φm|�σA ⊗ IB |φn〉

× 〈φn|�σT
A ⊗ IB |φm〉, (A5)

with qm and |φm〉AB being the eigenvalues and normalized
eigenvectors of ρAB and �σA being the vector of the three
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Pauli matrices. We write any two-level spectrum as � = {β −
α,β + α}, with α,β ∈ R. For convenience, in the following
we set α = 1 and β = 0 and consider the standard equispaced
spectrum {−1,1}, but the proof holds for any α and β. The
task is then to calculate the matrix M ′ corresponding to τABC .

The eigenvalues of τABC are the same as those of ρAB , while
the eigenvectors are given by

|
m〉ABC = UABC |φm〉AB ⊗ |α〉C. (A6)

We can then write

M ′ = 1

2

∑
mn

(qm − qn)2

qm + qn

〈
m|�σA ⊗ IBC |
n〉〈
n|�σT
A ⊗ IBC |
m〉

= 1

2

∑
mn

(qm − qn)2

qm + qn

〈φm|AB ⊗ 〈α|CU
†
ABC �σA ⊗ IBCUABC |φn〉AB ⊗ |α〉C〈φn|AB ⊗ 〈α|CU

†
ABC �σT

A ⊗ IBCUABC |φm〉AB ⊗ |α〉C

= 1

2

∑
mn

(qm − qn)2

qm + qn

〈φm|
∑

i

pi

(
U

(i)
A

)† �σAU
(i)
A ⊗ IB |φn〉〈φn|

∑
j

pj

(
U

(j )
A

)† �σT
A U

(j )
A ⊗ IB |φm〉, (A7)

where we have used the fact that UABC |α〉C = ∑
i

√
piU

(i)
A ⊗

IB |i〉C . From the well-known correspondence between the
special unitary group SU(2) and special orthogonal group
SO(3), we can see that for each i there exists an orthogonal
matrix Ri such that (U (i)

A )† �σAU
(i)
A = Ri �σA. We thus obtain

M ′ = LMLT , (A8)

where L = ∑
i piRi is a real matrix such that LT L � I.

Finally, let us consider the eigenvalues of M ′. If L is
noninvertible, we know that M ′ has a zero eigenvalue, and
hence P�

A(ρAB) � P�
A(τABC) = 0. Instead, if M ′ is invertible,

consider the unit vector |v〉 constructed by

|v〉 = (LT )−1|v〉0

||(LT )−1|v〉0||
, (A9)

where |v〉0 is the eigenvector of M corresponding to the
smallest eigenvalue λmin ≡ min{λi} of M . It is then simple
to see that

λ′
min � 〈v|M ′|v〉 = λmin

||(LT )−1|v〉0||2
� λmin, (A10)

where λ′
min is the minimum eigenvalue of M ′ and we have used

the fact that ||(LT )−1|v〉0|| � 1 since LT L � I. Combined
with Eq. (A1), we then have that

P�
A(ρAB) = λmin � λ′

min = P�
A(τABC) � P�

A(�A ⊗ IB(ρAB)),

(A11)

establishing the monotonicity of the IP under qubit unital
operations on probe A.

APPENDIX B: OPERATOR-SUM REPRESENTATION OF
ISOTROPIC OPERATIONS

Here we provide explicitly the Kraus decomposition of the
isotropic operations [38]

�A(ρA) = t
(ρA) + (1 − t)
IA

d
(B1)

for the two cases of unitary 
 and antiunitary 
, with d

being the dimension of system A. In particular, we shall
provide the Kraus decomposition when UA = IA. To find the

Kraus decomposition for a general UA, one simply needs to
transform the following Kraus operators by Ki → UAKi . Note
that quantum correlations are invariant under local unitary
transformations UA, so for our purposes it is sufficient to treat
only the case UA = IA.

Let us denote by {Ki} the Kraus operators for the operator-
sum representation of �A,

�A(X) =
∑

i

KiXK
†
i , (B2)

where the condition
∑

i K
†
i Ki = IA must be satisfied for �A

to be completely positive and trace preserving. In the following
we shall first determine the allowed range of the parameter t for
both the unitary and antiunitary cases by imposing positivity
of the Choi state. We introduce an ancilla A′ which is a copy
of A; for brevity we shall indicate the computational basis of
the joint AA′ system as |k,l〉 ≡ |k〉A ⊗ |l〉A′ . The Choi state is
then given by

τ = �A ⊗ IA′(|�+〉〈�+|), (B3)

where |�+〉 = 1√
d

∑d−1
k=0 |k,k〉 and I indicates the identity

superoperator. Having imposed τ � 0, we will then report
the Kraus operators of �A and verify their completeness.

1. Unitary case

First, we consider the unitary 
 case. We need concern
ourselves only with maps featuring UA = IA. For any bipar-
tite state ρAA′ we thus have �A ⊗ IA′(ρAA′) = tρAA′ + (1 −
t) IA

d
⊗ TrA(ρAA′). The corresponding Choi state reads

τ = t |�+〉〈�+| + 1 − t

d2
IA ⊗ IA′ . (B4)

From the above we easily conclude that the spectrum of τ

is {t + (1 − t)/d2,(1 − t)/d2}. Requiring the latter to be non-
negative, we obtain the allowed range

− 1

d2 − 1
� t � 1, (B5)

which is tighter than what was reported in [38]. We shall now
provide an explicit Kraus representation of the map. Consider
the d2 − 1 generalized Pauli matrices {γi}d2−1

i=1 [78], and fix
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the d-dimensional identity matrix as γ0 = IA. The d2 Kraus
operators {Ki}d2−1

i=0 are then

K0 =
√

1 + (d2 − 1)t

d2
γ0,

Ki =
√

1 − t

2d
γi ∀ i ∈ {1,2, . . . ,d2 − 1}. (B6)

We can now verify the condition
∑d2−1

i=0 K
†
i Ki = IA. Since

the Kraus operators are Hermitian and since γ 2
0 = IA and∑d2−1

i=1 γ 2
i = 2(d2−1)

d
IA, we have

d2−1∑
i=0

K
†
i Ki =

(∣∣∣∣1 + (d2 − 1)t

d2

∣∣∣∣ + 2(d2 − 1)

d
×

∣∣∣∣1 − t

2d

∣∣∣∣
)
IA

= 1

d2
[|1 + (d2 − 1)t | + (d2 − 1)|(1 − t)|]IA.

(B7)

Exploiting Eq. (B5), we may simplify |1 + (d2 − 1)t | = 1 +
(d2 − 1)t and |1 − t | = 1 − t ; hence

d2−1∑
i=0

K
†
i Ki = 1

d2
[1 + (d2 − 1)t + (d2 − 1)(1 − t)]IA

= IA. (B8)

2. Antiunitary case

Now we treat the more complicated case of 
 be-
ing antiunitary (again, fixing UA = IA). We thus have

�A ⊗ IA′(ρAA′) = tρ
TA

AA′ + (1 − t) IA

d
⊗ TrA(ρAA′), where TA

indicates partial transposition on system A. The corresponding
Choi state reads

τ = t

d

d−1∑
k,l=0

|k,l〉〈l,k| + 1 − t

d2
IA ⊗ IA′ . (B9)

By inspection we find that the eigenvectors of τ are in this
case |k,k〉, with k = 0, . . . ,d − 1, and 1√

2
(|k,l〉 ± |l,k〉) for

all pairs k < l. The spectrum of τ is then {(1 − t)/d2,t/d +
(1 − t)/d2, − t/d + (1 − t)/d2}, from which we derive the
constraint

− 1

d − 1
� t � 1

d + 1
. (B10)

As before, to write down a Kraus decomposition we can use the
generalized Pauli matrices {γi}d2−1

i=1 with the identity γ0 = IA.
Now, consider the set of vectorizations of the generalized
Pauli matrices, {�vi}d2−1

i=1 with �vi = vec(γi), where vec(X) =
(〈0|X|0〉,〈0|X|1〉, . . . ,〈0|X|d〉,〈1|X|0〉,〈1|X|1〉,. . .,〈d|X|d〉)
is the vectorization of a matrix. We can split the generalized
Pauli matrices into two categories based on their corresponding
vectorizations: (1) sgn(�vi · �vi) = 1 and (2) sgn(�vi · �vi) = −1.
There are (d + 2)(d − 1)/2 generalized Pauli matrices of
type 1 and d(d − 1)/2 of type 2, and we call the generalized
Pauli matrices of type 1 {γ (1)

i }(d+2)(d−1)/2
i=1 and those of type 2

{γ (2)
i }d(d−1)/2

i=1 . Now we can give the Kraus decomposition:

K0 =
√

1 + (d − 1)t

d2
γ0,

Ki =
√

1 + (d − 1)t

2d
γ

(1)
i ∀ i ∈

{
1,2, . . . ,

(d + 2)(d − 1)

2

}
,

Ki+ (d+2)(d−1)
2

=
√

1 − (d + 1)t

2d
γ

(2)
i ∀ i ∈

{
1,2, . . . ,

d(d − 1)

2

}
. (B11)

We can also consider the condition
∑d2−1

i=0 K
†
i Ki = IA. Since the Kraus operators are Hermitian and since

γ 2
0 = IA,

∑(d+2)(d−1)/2
i=1 (γ (1)

i )2 = d2+d−2
d

IA, and
∑d(d−1)/2

i=1 (γ (2)
i )2 = (d − 1)IA, we have

d2−1∑
i=0

K
†
i Ki =

(∣∣∣∣1 + (d − 1)t

d2

∣∣∣∣ + d2 + d − 2

d
×

∣∣∣∣1 + (d − 1)t

2d

∣∣∣∣ + (d − 1)

∣∣∣∣1 − (d + 1)t

2d

∣∣∣∣
)
IA

= 1

d2

(
|1 + (d − 1)t | + (d2 + d − 2)

2
|1 + (d − 1)t | + d2 − d

2
|1 − (d + 1)t |

)
IA

= 1

2d2
[(d2 + d)|1 + (d − 1)t | + (d2 − d)|1 − (d + 1)t |].

Then, we may use Eq. (B10) to simplify |1 + (d − 1)t | = 1 + (d − 1)t and |1 − (d + 1)t | = 1 − (d + 1)t , yielding∑d2−1
i=0 K

†
i Ki = IA.
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APPENDIX C: MONOTONICITY OF THE IP UNDER UNITARY ISOTROPIC OPERATIONS

We now will prove that P�
A(ρAB) � P�

A(�A ⊗ IB(ρAB)) when A has dimension larger than 2 and for isotropic operations with
unitary 
 and t ∈ [0,1]. For this range of t , we have that �A ⊗ IB(ρAB) is just a convex combination between UA ⊗ IBρABU

†
A ⊗

IB and IA/dA ⊗ TrA(ρAB). From the convexity of the QFI [52] it holds that

F
(
�A ⊗ IB(ρAB),H�

A ⊗ IB

) = F
(

tUA ⊗ IBρABU
†
A ⊗ IB + (1 − t)

IA

dA

⊗ TrA(ρAB),H�
A ⊗ IB

)

� tF
(
UA ⊗ IBρABU

†
A ⊗ IB,H�

A ⊗ IB

) + (1 − t)F
(
IA

dA

⊗ TrA(ρAB),H�
A ⊗ IB

)

= tF
(
UA ⊗ IBρABU

†
A ⊗ IB,H�

A ⊗ IB

)
� F

(
UA ⊗ IBρABU

†
A ⊗ IB,H�

A ⊗ IB

)
, (C1)

where in the second equality we use the fact that F( IA

dA
⊗ TrA(ρAB),H�

A ⊗ IB) = 0, which follows by noting that

[ IA

dA
⊗ TrA(ρAB),H�

A ⊗ IB] = 0. Using the above inequality, we arrive at the monotonicity of the IP,

P�
A(�A ⊗ IB(ρAB)) = 1

4 min
H�

A

F
(
�A ⊗ IB(ρAB),H�

A ⊗ IB

)
� 1

4 min
H�

A

F
(
UA ⊗ IBρABU

†
A ⊗ IB,H�

A ⊗ IB

)

= P�
A(UA ⊗ IBρABU

†
A ⊗ IB) = P�

A(ρAB), (C2)

where in the third equality we use the invariance of the IP
under local unitary transformations.

APPENDIX D: EQUIVALENCE BETWEEN THE IE AND
THE I-TANGLE FOR QUBIT-QUDIT STATES

It is now shown that the IE of Eq. (5) in the main text
reduces to the I -tangle defined in [44,45] when one considers
qubit-qudit states. In particular, for two-qubit states, the IE
becomes the standard tangle (squared concurrence) [41].

Consider the IE for pure states |ψ〉AB and set H�
A = �n · �σ

for some unit vector �n and the Pauli vector �σ , which is the
most general way to write a qubit Hamiltonian with spectrum
� equal to {−1,1}. We then have that

E�(|ψ〉AB) = min
H�

A

V
(|ψAB〉,H�

A

)

= min
H�

A

[〈ψAB |(H�
A

)2 ⊗ IB |ψAB〉

− 〈ψAB |H�
A ⊗ IB |ψAB〉2]

= min
H�

A

[
1 − 〈ψAB |H�

A ⊗ IB |ψAB〉2]

= 1 − max
H�

A

〈ψAB |H�
A ⊗ IB |ψAB〉2

= 1 − max
i

μi, (D1)

where in the third equality we use the fact that (H�
A )2 =

(�n · �σA)2 = IA and in the fifth equality we set μi to be the
eigenvalues of �r�rT , with �r = 〈ψAB |�σA ⊗ IB |ψAB〉 being the
local Bloch vector of |ψ〉AB on A. For any vector �v of unit
norm, �v · �r�rT · �v = (�v · �r)2 � ||�r||2, where the equality can be
saturated by choosing �v parallel to �r . Hence μmax ≡ maxi μi =
||�r||2, so that E�(|ψ〉AB) = 1 − ||�r||2.

Furthermore, it can be shown that

1 + ||�r||2
2

= Tr
(
ρ2

A

)
, (D2)

with ρA = TrB(|ψ〉〈ψ |AB) being the local state of subsystem
A. Overall, we then have

E�(|ψ〉AB) = 2
[
1 − Tr

(
ρ2

A

)]
, (D3)

which is (2 times) the local linear entropy of |ψ〉AB . The
I -tangle of [44,45] is defined for pure states as 2 times the
local linear entropy and for mixed states via the convex-roof
construction. Hence, it is clear that in the case of qubit-qudit
systems with a fixed spectrum {−1,1}, the IE is identical to
the I -tangle. For two-qubit systems, the I -tangle is equal to
the standard tangle [41,45]:

T(ρAB) = max{0,λ1 − λ2 − λ3 − λ4}2, (D4)

where {λi} are the eigenvalues of
√√

ρABρ̃AB
√

ρAB in
nonincreasing order, with ρ̃AB = (σy ⊗ σy)ρT

AB(σy ⊗ σy) and
σy being the second Pauli matrix.

APPENDIX E: NMR EXPERIMENTAL DETAILS

The two-qubit system was associated with the 1H and 13C
nuclear spins contained in a carbon-13-enriched chloroform
sample (CHCl3). This sample was prepared by mixing 100 mg
of 99% 13C-labeled CHCl3 in 0.7 mL of 99.8% CDCl3 (both
compounds were provided by Cambridge Isotope Laboratories
Inc.). The experiments were performed at room temperature
(around 25 ◦C) in a BRUKER Ascend 600-MHz spectrometer
located at the Brazilian Agricultural Research Corporation
(EMBRAPA Instrumentation, São Carlos, Brazil). The spec-
trometer was equipped with a 5-mm double-resonance probe
head with field gradient coils. In CHCl3, 1H and 13C are
subjected to a small scalar spin-spin coupling of J ≈ 215 Hz.

The thermal configuration of a NMR system is given by
the density operator, ρeq = 1

4 (IAB + ε σz ⊗ σz), where ε =
h̄ωL/4kBT ∼ 10−5. The deviation matrix �ρeq = 1

4σz ⊗ σz

is the term of interest, as all the unitary transformations affect
only this part. To prepare the state described in Eq. (10),
first a |00〉〈00| pseudopure state was prepared applying the
pulse sequence ρ00 − [π

3 ]Cx → Gz(τ ) → [π
4 ]Hx → U [ 1

2J
] →
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[π
4 ]H−y → Gz(τ ) to the thermal equilibrium state [67]. Here

Gz(τ ) corresponds to a gradient pulse applied for enough
time to eliminate off-diagonal terms of the density matrix,
and U (1/2J ) represents a free evolution under J coupling
for a period of 1/2J seconds. This step is followed by a
pulse sequence in which each combination of θ1 and θ2

(described in Table I) provides one of the experimental points
in Fig. 1. Hadamard and CNOT gates are implemented as

described in the main text, as is the quantum state tomography
procedure.

The error bars were estimated simulating the state prepa-
ration considering that each pulse was affected by an aleatory
error, which was evaluated by pulse width (smaller than 3%
for all pulses). The simulation was repeated 100 times, and the
error was given by the distance between the theoretical state
and the mean value of the error-affected states.
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