
Causality, Responsibility and Blame in Team Plans

Natasha Alechina
University of Nottingham
nza@cs.nott.ac.uk

Joseph Y. Halpern
∗

Cornell University
halpern@cornell.edu

Brian Logan
University of Nottingham

bsl@cs.nott.ac.uk

ABSTRACT
Many objectives can be achieved (or may be achieved more effec-
tively) only by a group of agents executing a team plan. If a team
plan fails, it is often of interest to determine what caused the failure,
the degree of responsibility of each agent for the failure, and the de-
gree of blame attached to each agent. We show how team plans can
be represented in terms of structural equations, and then apply the
definitions of causality introduced by Halpern [11] and degree of
responsibility and blame introduced by Chockler and Halpern [3]
to determine the agent(s) who caused the failure and what their de-
gree of responsibility/blame is. We also prove new results on the
complexity of computing causality and degree of responsibility and
blame, showing that they can be determined in polynomial time for
many team plans of interest.

Keywords
Causality; responsibility; blame; team plans

1. INTRODUCTION
Many objectives can be achieved (or may be achieved more ef-

fectively) only by a coalition or team of agents. In general, for
the actions of the agents in the team to be successful in achiev-
ing the overall goal, their activities must be coordinated by a team
plan that specifies which task(s) should be performed by each agent
and when they should be performed. As with single-agent plans,
team plans may fail to achieve their overall objective: for example,
agents may fail to perform a task they have been assigned. When
a failure occurs, the inter-dependencies between tasks in the team
plan can make it difficult to determine which agent(s) are responsi-
ble for the failure: did the agent simply not perform the task it was
assigned, or was it impossible to perform the task due to earlier fail-
ures by other agents? For example, suppose that a major highway
upgrade does not finish by the deadline, causing significant traffic
problems over a holiday weekend. Many agents may be involved
in the upgrade, each executing steps in a large, complex team plan.
Which agents are the causes of the work not being completed on
time? To what extent are they responsible or to blame?

∗Supported in part by NSF grants IIS-0534064, IIS-0812045, IIS-
0911036, and CCF-1214844, and by AFOSR grants FA9550-08-1-
0438, FA9550-09-1-0266, and FA9550-12-1-0040, and ARO grant
W911NF-09-1-0281.

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Determining which agents are responsible for the failure of a
team plan is a key step in recovering from the failure, determin-
ing which commitments may have been broken [22] (and hence
which sanctions should be applied), and whether agents should be
trusted in the future [8]. Identifying those agents most responsi-
ble/blameworthy for a plan failure is useful for (re)assigning tasks
when recovering from the failure (e.g., we may prefer to exclude
agents with a high degree of blame); if resources are limited, we
may wish to focus attention on the agents most responsible for the
failure (e.g., to discover the reasons for their failure/try to change
their behaviour). However, there has been relatively little work in
this area. Work in plan diagnosis has focussed on determining the
causes of failures in team plans (e.g., [19, 25]); it typically has not
considered the question of degree of responsibility of agents for the
failure (an exception is the notion of primary and secondary failures
in, e.g., [4, 18]). Another strand of work focusses on the problem
of how to allocate responsibility and blame for non-fulfilment of
group obligations (e.g., [1, 5, 9, 10, 15, 16]). However, the def-
initions of causality and responsibility used in these work do not
always give answers in line with our intuitions (see, e.g., [12] for
examples of what can go wrong).

In this paper, we present an approach to determining the degree
of responsibility and blame of agents for a failure of a team plan
based on the definition of causality introduced by Halpern [11]
(which in turn is based on earlier definitions due to Halpern and
Pearl [13, 14]). One advantage of using the Halpern and Pearl def-
inition of causality is that, as shown by Chockler and Halpern [3],
it can be extended in a natural way to assign a degree of respon-
sibility to each agent for the outcome. Furthermore, when there is
uncertainty about details of what happened, we can incorporate this
uncertainty to talk about the degree of blame of each agent, which
is just the expected degree of responsibility.

We show that each team plan gives rise to a causal model in a nat-
ural way, so the definitions of responsibility and blame can be ap-
plied without change. In addition, it turns out that the causal models
that arise from team plans have a special property: the equations
that characterise each variable are monotone, that is, they can be
written as propositional formulas that do not involve negation. For
such monotone models, causality for a monotone formula can be
determined in polynomial time, while determining the degree of re-
sponsibility and blame is NP-complete. This contrasts with theDp-
completeness of determining causality in general [11] and the Σp2-
completeness of determining responsibility (a result proved here).
For postcondition minimal plans (where preconditions of each step
are established by a unique combination of previous steps), the
causal models that arise have a further property: they are conjunc-
tive: that is, the equations can be written as monotone conjunction
(so that they have neither negations nor disjunctions). In this case,

both causality and degree of responsibility can be determined in
polynomial time. These complexity results may be of independent
interest. For example, conjunctive and monotone formulas are of
great interest in databases; indeed, it has already been shown that
for the causal models that arise with databases (which are even sim-
pler than the conjunctive models that we consider here), computing
causality for conjunctive formulas can be done in polynomial time
[17]. (However the notion of causality considered by Meliou at
al. is closer to the original Halpern-Pearl definition [13], and thus
not quite the same as that considered here.) This reduction in com-
plexity can be useful in many settings, for example, where causal-
ity, responsibility and blame must be determined at run-time.

The remainder of the paper is structured as follows. In Section
2 we recall the definitions of causality, responsibility and blame
from [3, 11]. In Section 3 we define our notion of team plan, and
in Section 4 we show how team plans can be translated into causal
models. As noted above, the resulting causal models are monotone;
in Section 5 we prove general results on the complexity of checking
causality, degree of responsibility, and degree of blame for mono-
tone and conjunctive causal models. We conclude in Section 6.

2. CAUSALITY, RESPONSIBILITY, AND
BLAME

In this section we briefly review Halpern’s definitions of causal-
ity [11] and Chockler and Halpern’s definition of responsibility and
blame [3]; see [3, 11] for further details and intuition. Much of the
description below is taken from [11].

The Halpern and Pearl approach (hereafter HP) assumes that the
world is described in terms of variables and their values. Some vari-
ables may have a causal influence on others. This influence is mod-
elled by a set of modifiable structural equations. It is conceptually
useful to split the variables into two sets: the exogenous variables,
whose values are determined by factors outside the model, and the
endogenous variables, whose values are ultimately determined by
the exogenous variables. The structural equations describe how the
outcome is determined.

Formally, a causal model M is a pair (S,F), where S is a sig-
nature that explicitly lists the endogenous and exogenous variables
and characterises their possible values, and F is a function that as-
sociates a structural equation with each variable. A signature S is
a tuple (U ,V,R), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with every vari-
able Y ∈ U ∪ V a nonempty set R(Y) of possible values for Y
(i.e., the set of values over which Y ranges). F associates with
each endogenous variable X ∈ V a function denoted FX such that
FX : (×U∈UR(U)) × (×Y ∈V−{X}R(Y)) → R(X). Thus, FX
defines a structural equation that determines the value of X given
the values of other variables. Setting the value of some variable X
to x in a causal model M = (S,F) results in a new causal model,
denoted MX←x, which is identical to M , except that the equation
for X in F is replaced by X = x.

Given a signature S = (U ,V,R), a primitive event is a formula
of the form X = x, for X ∈ V and x ∈ R(X). A causal formula
(over S) is one of the form [Y1 ← y1, . . . , Yk ← yk]ϕ, where

• ϕ is a Boolean combination of primitive events,

• Y1, . . . , Yk are distinct variables in V , and

• yi ∈ R(Yi).

Such a formula is abbreviated as [~Y ← ~y]ϕ. The special case
where k = 0 is abbreviated as ϕ. Intuitively, [Y1 ← y1, . . . , Yk ←
yk]ϕ says that ϕ would hold if Yi were set to yi, for i = 1, . . . , k.

Following [11, 14], we restrict attention here to what are called
acyclic models. This is the special case where there is some total
ordering ≺ of the endogenous variables (the ones in V) such that
if X ≺ Y , then X is independent of Y , that is, FX(~z, y, ~v) =
FX(~z, y′, ~v) for all y, y′ ∈ R(Y). If X ≺ Y , then the value of X
may affect the value of Y , but the value of Y cannot affect the value
of X . If M is an acyclic causal model, then given a context, that
is, a setting ~u for the exogenous variables in U , there is a unique
solution for all the equations: we simply solve for the variables in
the order given by ≺.

A causal formula ψ is true or false in a causal model, given a
context. We write (M,~u) |= ψ if the causal formula ψ is true
in causal model M given context ~u. The |= relation is defined
inductively. (M,~u) |= X = x if the variable X has value x in the
unique (since we are dealing with acyclic models) solution to the
equations in M in context ~u (i.e., the unique vector of values for
the exogenous variables that simultaneously satisfies all equations
in M with the variables in U set to ~u). The truth of conjunctions
and negations is defined in the standard way. Finally, (M,~u) |=
[~Y ← ~y]ϕ if (M~Y=~y, ~u) |= ϕ. Thus, [~Y ← ~y]ϕ is true in (M,~u)

if ϕ is true in the model that results after setting the variables in ~Y
to ~y.

With this background, we can now give the definition of causal-
ity. Causality, like the notion of truth discussed above, is relative
to a model and a context. Only conjunctions of primitive events,
abbreviated as ~X = ~x, can be causes. What can be caused are arbi-
trary Boolean combinations of primitive events. Roughly speaking,
~X = ~x is a cause of ϕ if, had ~X = ~x not been the case, ϕ would
not have happened. To deal with many well-known examples, the
actual definition is somewhat more complicated.

DEFINITION 2.1. ~X = ~x is an actual cause of ϕ in (M,~u) if
the following three conditions hold:

AC1. (M,~u) |= (~X = ~x) and (M,~u) |= ϕ.

AC2m. There is a set ~W of variables in V and settings ~x′ of the
variables in ~X and ~w of the variables in ~W such that (M,~u) |=
~W = ~w and

(M,~u) |= [~X ← ~x′, ~W ← ~w]¬ϕ.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1 and
AC2m.

AC1 just says that for ~X = ~x to be a cause of ϕ, both ~X =
~x and ϕ have to be true. AC3 is a minimality condition, which
ensures that only the conjuncts of ~X = ~x that are essential are parts
of a cause. AC2m (the “m” is for modified; the notation is taken
from [11]) captures the counterfactual. It says that if we change the
value of ~X from ~x to ~x′, while possibly holding the values of the
variables in some (possibly empty) set ~W fixed at their values in
the current context, then ϕ becomes false. We say that (~W, ~x′) is
a witness to ~X = ~x being a cause of ϕ in (M,~u). If ~X = ~x is
a cause of ϕ in (M,~u) and X = x is a conjunct of ~X = ~x, then
X = x is part of a cause of ϕ in (M,~u).

In general, there may be multiple causes for a given outcome.
For example, consider a plan that requires performing two tasks,
t1 and t2. Let M be a model with binary endogenous variables
T1, T2, and Fin, and one exogenous variable U . Ti = 1 if task
ti is performed and 0 otherwise; Fin = 1 if the plan is success-
fully completed, and 0 otherwise; U determines whether the tasks
were performed. (In what follows, we consider more sophisticated

models where the agents’ intentions to perform their tasks are de-
termined by U .) The equation for Fin is Fin = T1 ∧ T2. If t1
is not performed while t2 is, T1 = 0 is the cause of Fin = 0. If
T1 = 0 and T2 = 0, then both together are the cause of Fin = 0.
Indeed, let u be the context where the two tasks are not performed.
AC1 is satisfied since (M,u) |= T1 = 0 ∧ T2 = 0 ∧ Fin = 0.
AC2m is satisfied since (M,u) |= [T1 ← 1, T2 ← 1](Fin = 1).
Moreover, flipping the value of just T1 or T2 alone does not change
the outcome, so AC3 is satisfied. If the completion of the plan
depended on n tasks instead of two, and none of them were per-
formed, the cause would consist of the n non-performed tasks. We
would like to say that each of the non-performed tasks was “less”
of a cause of Fin = 0 than in the case when plan failure is due
to a single task not being performed. The notion of degree of re-
sponsibility, introduced by Chockler and Halpern [3], is intended
to capture this intuition. Roughly speaking, the degree of responsi-
bility X = x for ϕ measures the minimal number of changes and
number of variables that have to be held fixed in order to make ϕ
counterfactually depend on X = x. We use the formal definition
in [12], which is appropriate for the modified definition of causality
used here.

DEFINITION 2.2. The degree of responsibility of X = x for
ϕ in (M,~u), denoted dr((M,~u), (X = x), ϕ), is 0 if X = x is
not part of a cause of ϕ in (M,~u); it is 1/k if there exists a cause
~X = ~x of ϕ and a witness (~W, ~x′) to ~X = ~x being a cause of
ϕ in (M,~u) such that (a) X = x is a conjunct of ~X = ~x, (b)
| ~W | + | ~X| = k, and (c) k is minimal, in that there is no cause
~X1 = ~x1 for ϕ in (M,~u) and witness (~W ′, ~x′1) to ~X1 = ~x1 being
a cause of ϕ in (M,~u) that includes X = x as a conjunct with
| ~W ′|+ | ~X1| < k.

This definition of responsibility assumes that everything relevant
about the facts of the world and how the world works is known. In
general, there may be uncertainty both about the context and about
the causal model. The notion of blame takes this into account.
We model an agent’s uncertainty by a pair (K,Pr), where K is a
set of causal settings, that is, pairs of the form (M,~u), and Pr is
a probability distribution over K. We call such a pair an epistemic
state. Note that once we have such a distribution, we can talk about
the probability that ~X = ~x is a cause of ϕ relative to (K,Pr): it
is just the probability of the set of pairs (M,~u) such that ~X = ~x
is a cause of ϕ in (M,~u). We also define the degree of blame of
X = x for ϕ to be the expected degree of responsibility:

DEFINITION 2.3. The degree of blame of X = x for ϕ relative
to the epistemic state (K,Pr) is∑

(M,~u)∈K

dr((M,~u), X = x, ϕ) Pr((M,~u)).

3. TEAM PLANS
In this section, we define the notion of team plan. Our definition

is essentially the same as that used in much of the work in multia-
gent planning and work in plan diagnosis [19, 25],1 except that we
explicitly record the assignment of agents to primitive tasks. It thus
encompasses partial order causal link plans [24], primitive task
networks [6], and the notion of team plan used in [9, 10], where a
team plan is constrained to be a sequence of possibly simultaneous
individual actions.
1In their approach to identifying causes, Witteveen et al. [25] as-
sume that tasks are executed as soon as possible, consistent with
the order on tasks; we do not assume this.

As is standard in planning literature, e.g., [24, 25], we define
plans and planning problems relative to a planning domain descrip-
tion; however, for simplicity, we assume that the domain is de-
scribed using propositional rather than first order logic. A planning
domain is a tuple D = (Π, T , pre, post), where Π is a set of
atomic propositions, T is the set of tasks possible in the domain,
and pre and post are functions from T to subsets of Π∪{¬p : p ∈
Π}. For each t ∈ T , pre(t) specifies the preconditions of t (the
set of literals that must hold before t can be executed), and post(t)
specifies the postconditions of t (the effects of executing t).

A planning problem G is defined relative to a planning domain,
and consists of an initial or starting situation and a goal. The ini-
tial situation and goal are specified by the distinguished tasks Start
and Finish respectively. post(Start) is the initial state of the en-
vironment, and Finish has the goal as its preconditions and no
postconditions.

Given a planning problem, a team plan consists of a set of tasks
T ⊆ T ∪ {Start, F inish}, an assignment of agents to tasks
that specifies which agent is going to perform each task in t ∈
T \ {Start ,Finish}, and a partial order ≺ specifying the order in
which tasks in T must be performed. If t ≺ t′, whichever agent
is assigned to t must get t done before t′ is started. ≺ is ‘mini-
mally constraining’ in the sense that every linearization≺∗ of tasks
compatible with ≺ achieves the goal (in a sense we make precise
below). We assume that the agents desire to achieve the goal of the
team plan and have agreed to the assignment of tasks; we define
causality and responsibility relative to a team plan.

DEFINITION 3.1. A team plan P over a planning domain D
and problem G is a tuple P = (T,Ag,≺, α), where

• {Start ,Finish} ⊆ T ⊆ T ∪ {Start, F inish} is a finite
set of tasks;

• Ag is a finite set of agents;

• ≺ is an acyclic transitive binary relation on T such that
Start ≺ t ≺ Finish for all tasks t ∈ T \ {Start ,Finish};

• α is a function that assigns to each task in T\{Start ,Finish}
an agent a ∈ Ag (intuitively, α(t) is the agent assigned to
execute task t; Start is executed automatically),

such that Finish is executable, that is, the goal specified by G is
achieved (in a sense made precise in Definition 3.2).

Given a task t and a precondition ` of t, a task t′ is a clobberer of
t (or the precondition ` of t) if ∼ ` ∈ post(t′) (where ∼ ` denotes
¬p if ` = p and p if ` = ¬p).

DEFINITION 3.2. Given a team plan P = (T,Ag,≺, α), a
task t′ ∈ T establishes literal ` for a task t ∈ T if ` ∈ prec(t),
` ∈ post(t′), t′ ≺ t, and for every task t′′ ∈ T that clobbers `,
either t′′ ≺ t′ or t ≺ t′′. A set S ⊆ T of tasks is an establishing
set for task t ∈ T if and only if S is a minimal set that establishes
all literals ` ∈ prec(t). P achieves the goal specified by G if each
task t ∈ T ∪ {Finish} has an establishing set in T .

It is easy to check that if P achieves the goal and ≺∗ is a linear
order on tasks that extends ≺ (so that t ≺ t′ implies t ≺∗ t′), all
tasks have their preconditions established at the point when they are
executed. This justifies the claim that the constraints in ≺ capture
all the ordering information on tasks that is needed.

We call a team plan postcondition minimal if there is a unique
minimal establishing set {t1, . . . , tn} for each task t ∈ T . Most
planning algorithms construct plans that approximate postcondition

minimal plans, since they add only one task for each precondition
to be achieved. However, since they typically do not check for
redundancy, the resulting plan may contain several tasks that estab-
lish the same precondition ` of some task t.

As an illustration, consider the plan P1 = (T1, Ag1,≺, α1),
where T1 = {Start, F inish, t1, t2}, t1 is laying cables for traffic
signals (under the road surface), t2 is surfacing the road, Ag1 =
{a1, a2}, ≺ = Start ≺ t1 ≺ t2 ≺ Finish, α1(t1) = a1,
and α1(t2) = a2. The goal prec(Finish) = {c, s}, where c
stands for ‘cables laid’ and s for ‘road surfaced’. post(Start) =
{¬c,¬s}; prec(t1) = {¬s} (since cables are laid under the sur-
face); post(t1) = {c}; prec(t2) = ∅; and post(t2) = {s}. This
plan is accomplishes its goal; the preconditions of Finish are es-
tablished by {t1, t2}, while the precondition of t1 is established
by Start. Note that t2 is a clobberer of t1 because it undoes the
precondition ¬s of t1. For this reason, t2 is required by ≺ to be
executed after t1. Note that the plan P1 is postcondition minimal.

4. TRANSLATING TEAM PLANS TO
CAUSAL MODELS

In this section, we apply the definitions of causality, responsibil-
ity, and blame given in Section 2 to the analysis of team plans. We
start by showing that a team plan P = (T,Ag,≺, α) determines
a causal model MP in a natural way. The preconditions of a task
are translated as endogenous variables, as well as whether the agent
intends to perform it. Whatever determines whether the agent in-
tends to perform the task is exogenous. The structural equations
say, for example, that if the agent intends to perform a task t and
all its preconditions hold, then the task is performed.

For each task t ∈ T , we compute the set est(t) and the set
clob(t). The set est(t) consists of all the establishing sets for task
t. The assumption that the plan accomplishes its goal ensures that,
for all tasks t, est(t) 6= ∅.

The set clob(t) contains all pairs (s, t′) where s ∈ S for some
S ∈ est(t), s establishes some precondition ` of t, and t′ is a
clobberer of `.

For each task t ∈ T , we have variables en(t) for ‘t is enabled’,
ina(t) for ‘agent a = α(t) intends to do task t’, and pf (t) for ‘t is
performed’. en(t) is true if all the tasks in one of the establishing
sets S of t are performed, and no t′ such that (s, t′) ∈ clob(t) and
s ∈ S is performed after s (i.e., s is not clobbered). (We typically
omit en(t) from the causal model if est(t) is empty, since en(t) is
vacuously true in this case.) In order for t to be performed, it has
to be enabled and the agent assigned the task has to actually de-
cide to perform it; the latter fact is captured by the formula ina(t).
For example, even if the roadbed has been laid and it is possible
to surface the road (so the road-surfacing task is enabled), if the
road-surfacing contractor does not show up, the road will not be
surfaced. ina(t) depends only on the agent a. pf (t) is true if both
en(t) and ina(t) are true, where a = α(t). Finally, for each pair
(s, t′) in clob(t), we have a variable nc(s, t′, t), which stands for
‘t′ is not executed between s and t’.

Consider again the example plan P1 from Section 3. The causal
model forP1 has the variables pf (Start), en(t1), ina1(t1), pf (t1),
ina2(t2), pf (t2), en(Finish), pf (Finish), and nc(Start, t2, t1).
(Note that we omit en(Start) and en(t2) because Start and t2
have no preconditions.) nc(Start, t2, t1) is true if t2 is performed
after t1 and false if t2 is performed before t1. en(t1) is true if
pf (Start) is true and nc(Start, t2, t1) is true.

More precisely, a team planP = (T,Ag,≺, α) determines causal
model MP = ((UP ,VP ,RP),FP) as follows:

• UP = {Ua,t : t ∈ T, a = α(t)} ∪ {Unc(s,t′,t) : s, t′, t ∈

T, (s, t′) ∈ clob(t)}. Intuitively, Ua,t and Unc(t′,s,t) deter-
mine the value of ina(t) and nc(t′, s, t), respectively.

• VP = {en(t) : t ∈ T} ∪ {pf (t) : t ∈ T} ∪ {ina(t) : t ∈
T, a = α(t)}∪{nc(s, t′, t) : s, t′, t ∈ T, (s, t′) ∈ clob(t)}.
Note that |VP | ≤ |T |3 + 3|T |.

• RP(X) = {0, 1} for all variables X ∈ UP ∪ VP (i.e., all
variables are binary).

• FP is determined by the following equations:
ina(t) = Ua,t
nc(s, t′, t) = Unc(s,t′,t)

pf (t) = en(t) ∧ ina(t) (where t ∈ T and a = α(t))
en(t) =

∨
S∈est(t)(

∧
s∈Spf (s)∧

∧
(s,t′)∈clob(t)nc(s, t′, t)).

It should be clear thatMP captures the intent of the team planP .
In particular, it is easy to see that the appropriate agents perform-
ing their tasks results in P accomplishing its goal iff (MP , ~u) |=
pf (Finish), where ~u is the context where the corresponding agents
intend to perform their actions and no clobbering task is performed
at the wrong time (i.e., between the establishing of the precondition
they clobber, and the execution of the task requiring the precondi-
tion).

Our causal model abstracts away from pre- and postconditions
of tasks, and concentrates on high level ‘establishing’ and ‘clob-
bering’ links between them. This is standard practice in planning;
see, for example, [24]. We also abstract away from the capabili-
ties of agents: our model implicitly assumes that agents are able
to perform the tasks assigned to them. All we require is that the
preconditions of the task hold and that the agent intends to perform
it.

The size of MP is polynomial in the size of P if P is postcon-
dition minimal or we treat the maximal number of preconditions
of any task in the plan as a fixed parameter (if there are at most
k preconditions of a task, then est(t) has size at most 2k). Note
that all equations are monotone: there are no negations. Moreover,
the only disjunctions in the equations come from potentially mul-
tiple ways of establishing preconditions of some tasks. Thus, for
postcondition minimal plans the formulas are conjunctive.

Having translated team plans to causal models, we can apply the
definitions of Section 2. There may be several causes of pf (Finish)
= 0. As we suggested earlier, we are interested only in causes that
involve formulas of the form ina(t) = 0. We refer to variables of
the form ina(t) as the variables controlled by agent a.

DEFINITION 4.1. Agent a’s degree of responsibility for the fail-
ure of plan P (i.e., for pf (Finish) = 0 in (MP , ~u), where MP is
the causal model determined by a team plan P) is 0 if none of the
variables controlled by agent a is part of a cause of pf (Finish) =
0 in (MP , ~u); otherwise, it is the maximum value m/k such that
there exists a cause ~X = ~x of pf (Finish) = 0 and a witness
(~W, ~x′) to ~X = ~x being a cause of pf (Finish) = 0 in (MP , ~u)

with | ~X|+ | ~W | = k, and agent a controls m variables in ~X .

Intuitively, agent a’s responsibility is greater if it failed to per-
form a greater proportion of tasks. The intentions of agents in our
setting are determined by the context. Although the intention of
some agents can be inferred from observations (e.g., if a task t as-
signed to agent a was performed, then ina(t) must hold), in some
cases, we do not know whether an agent intended to perform a task.
In general, there will be a set of contexts consistent with the infor-
mation that we are given. If we are able to define a probability dis-
tribution over this set, we can then determine the degree of blame.

In determining this probability, we may want to stipulate that, un-
less we have explicit evidence to the contrary, the agents always
intend to perform their tasks (so that the agents who we assigned to
perform tasks that were not enabled are not to blame).

To show that our approach gives an intuitive account of respon-
sibility and blame for plan failures, we briefly outline some sim-
ple scenarios involving the example plan P1 and its correspond-
ing causal model MP1 . Assume that the context u is such that
en(t1) = 1, nc(Start, t2, t1) = 1, pf (t1) = 1, pf (t2) = 0, and
pf (Finish) = 0. We cannot observe the values of ina1(t1) and
ina2(t2), but from pf (t1) = 1 we can conclude that ina1(t1) = 1,
and, from the fact that pf (t2) = ina2(t2) (since t2 is always en-
abled), we can conclude that ina2(t2) = 0. Then the cause of
pf (Finish) = 0 is ina2(t2) = 0, and the degree of both respon-
sibility and blame of agent a2 is 1. (Note that pf (t2) = 0 is also
a cause of pf (Finish) = 0, but we are interested only in causes
involving agents’ intentions.) So far, the analysis is the same as
in plan diagnosis: we identify a minimal set of ‘faulty components’
(unwilling agents) such that, had they functioned correctly, the fail-
ure would not have happened.

For a more complex example of responsibility and blame, con-
sider a slightly extended plan P2, which is like P1, but has an
extra task t0 ≺ t1 that establishes t1: en(t1) = pf (t0). t0 is
enabled and assigned to a2. Suppose the context is en(t0) = 1,
nc(t0, t2, t1) = 1, pf (t0) = 0, pf (t1) = 0, pf (t2) = 0, and
pf (Finish) = 0. As before, ina2(t0) = 0 and ina2(t2) = 0
are parts of the cause of pf (Finish) = 0. However, we cannot
observe ina1(t1); since t1 was not enabled and not performed, we
cannot say whether agent a1 was willing to perform it. In the con-
text u1 where a1 was willing, the cause of pf (Finish) = 0 is just
{ina2(t0) = 0, ina2(t2) = 0} and the degree of responsibility
of a1 is 0. In the context u2 where a1 was not willing, the cause
is {ina2(t0) = 0, ina1(t1) = 0, ina2(t2) = 0} and a1’s degree
of responsibility is 1/3. If we assign probability 1 to u1, then the
blame attached to a1 is 0.

5. THE COMPLEXITY OF CAUSALITY FOR
MONOTONE MODELS

A causal model is monotone if all the variables are binary and
all the equations are monotone (i.e., are negation-free propositional
formulas). A monotone model is conjunctive if all the equations
are conjunctive (i.e., they involve only conjunctions; no negations
or disjunctions). As we have seen, the causal models that are deter-
mined by team plans are monotone; if the team plans are postcon-
dition minimal, then the causal models are also conjunctive.

In this section we prove general results on the complexity of
checking causality, degree of responsibility, and degree of blame
for monotone and conjunctive models. We first consider the situ-
ation for arbitrary formulas. Recall that the complexity class Dp

consists of languages L such that L = L1 ∩L2, where L1 is in NP
and L2 is in co-NP [21].

THEOREM 5.1. (a) [11] Determining if ~X = ~1 is a cause of
ϕ in (M,~u) is Dp-complete

(b) Determining if X = x is part of a cause of ϕ in (M,~u) is
Σp2-complete

(c) Determining if X = x has degree of responsibility at least
1/k is Σp2-complete.

Proof: Part (a) was proved by Halpern [11].
For part (b), first note that the problem is clearly in Σp2: we

simply guess ~X , ~x, ~x′, and ~W , where X = x is a conjunct of

~X = ~x, compute ~w such that (M,~u) |= ~W = ~w (in general,
checking whether (M,~u) |= ψ is easily seen to be in polynomial
time in acyclic models, assuming that the ordering ≺ on variables
is given, or can be easily computed from presentation of the equa-
tions), check that (M,~u) |= [~X ← ~x′, ~W ← ~w]¬ϕ, and check
that there is no ~Y ⊂ ~X , setting ~y′ of the variables in ~Y , and set ~W ′

such that (M,~u) |= [~Y ← ~y′, ~W ← ~w′]¬ϕ, where ~w′ is such that
(M,~u) |= ~W ′ = ~w′.

For Σp2-hardness, we adapt arguments used by Aleksandrowicz
et al. [2] to show that checking whether a formula satisfies AC1 and
AC2m is Σp2-complete.

Recall that to show that a language L is Σp2-hard, it suffices to
show that we can reduce determining if a closed quantified Boolean
formlua (QBF) of the form ∃~x ∀~y ϕ′ is true (the fact that it is closed
means that all the variables in ϕ′ are contained in ~x∪~y) to checking
if a string σ ∈ L [23]. Given a closed QBF ϕ = ∃~x ∀~y ϕ′, we
construct a causal formula ψ, a causal model M , and context ~u
such that ϕ is true iff A = 0 is part of a cause of ψ in (M,~u).

We proceed as follows: we take M to be a model with endoge-
nous variables V = A ∪ ~X0 ∪ ~X1 ∪ ~Y , where for each variable
x ∈ ~x, there are corresponding variables X0

x ∈ ~X0 and X1
x ∈ ~X1,

and for each variable y ∈ ~y there is a corresponding variable
Yy ∈ ~Y , and a single exogenous variable U . All the variables
are binary. The equations are trivial: the value of U determines
the values of all variables in V . Let u be the context where all the
variables in V are set to 0. Let ϕ̄′ be the causal formula that results
from replacing all occurrences of x and y in ϕ′ by X1

x = 1 and
Yy = 1, respectively. Let ψ be the formula ψ1 ∨ (ψ2 ∧ ψ3), where

• ψ1 =
(∨

x∈~x(X0
x = X1

x)
)
;2

• ψ2 = A = 0 ∨ ¬(~Y = ~1);

• ψ3 = (A = 1) ∨ ϕ̄′.

We now show that A = 0 is part of a cause of ψ in (M,u) iff
ϕ is true. First suppose that ϕ is true. Then there is an assign-
ment τ to the variables in ~x such that ∀~y ϕ′ is true given τ . Let
~x′ be the subset of variables in ~x that are set to true in τ , let ~X ′

be the corresponding subset of ~X1 and let ~X ′′ be the complemen-
tary subset of ~X0 (so that if x ∈ ~x is false according to τ , then
the corresponding variable X0

x is in ~X ′′). Note that for each vari-
able x ∈ ~x, exactly one of X0

x and X1
x is in ~X ′ ∪ ~X ′′. We claim

that A = 0 ∧ ~X ′ = ~0 ∧ ~X ′′ = ~0 ∧ ~Y = ~0 is a cause of ψ in
(M,u). Clearly (M,u) |= A = 0 ∧ ψ (since (M,u) |= ψ1). It is
immediate from the definitions of ψ2 and ψ3 that

(M,u) |= [~A← 1, ~X ′ ← ~1, ~X ′′ ← ~1, ~Y ← ~1](¬ψ1 ∧ ¬ψ2),

so

(M,u) |= [~A← 1, ~X ′ ← ~1, ~X ′′ ← ~1, ~Y ← ~1]¬ψ.

Thus, AC1 and AC2m hold. It suffices to prove AC3. So suppose
that there is some subset ~Z of ~A ∪ ~X ′ ∪ ~Y and a set ~W such that
(M,u) |= [~Z ← ~1, ~W = ~w]¬ψ, where (M,u) |= ~W = ~w. Since
(M,u) |= ~W = ~0, it must be the case that ~w = ~0, so (M,u) |=
[~Z ← ~1]¬ψ. Clearly we must have ~Z ∩ (~X0 ∪ ~X1) = ~X ′ ∪ ~X ′′,
for otherwise (M,u) |= [~Z ← ~1]ψ1 and (M,u) |= [~Z ← ~1]ψ.
(M,~u) |= [~Z ← ~1]ψ. so (M,u) |= [~Z ← ~1]ψ3. We must
have A ∈ ~Z, since otherwise (M,u) |= [~Z ← ~1](A = 0), so
2X0

x = X1
x is an abbreviation for the causal formula (X0

x = 0 ∧
X1
x = 0) ∨ (X0

x = 1 ∧X1
x = 1).

(M,u) |= [~Z ← ~1]ψ2, and thus (M,~u) |= [~Z ← ~1]ψ2, and thus
(M,~u) |= [~Z ← ~1]ψ. We also must have ~Y ⊆ ~Z, for otherwise
(M,u) |= [~Z ← ~1]¬(~Y = ~1), and again (M,u) |= [~Z ← ~1]ψ2

and (M,u) |= [~Z ← ~1]ψ. Thus, ~Z = A∪ ~X ′ ∪ ~X ′′ ∪ ~Y , and AC3
holds.

Finally, we must show that if A = 0 is part of a cause of ψ in
(M,u) then ∃~x ∀~y ϕ′ is true. So suppose that A = 0 ∧ ~Z = ~0

is a cause of ψ in (M,u), where ~Z ⊆ V − {A}. We must have
(M,u) |= [A ← 1, ~Z ← 1]¬ψ, which means that (M,u) |=
[~Z ← 1]¬ψ1. Thus, for each x ∈ ~x, ~Z must contain exactly one of
X0
x and X1

x . We must also have

(M,u) |= [A← 1, ~Z ← 1](¬ψ2 ∨ ¬ψ3).

Since (M,u) |= [A ← 1, ~Z ← 1](A = 1), we have (M,u) |=
[A ← 1, ~Z ← 1]ψ3, so (M,u) |= [A ← 1, ~Z ← 1]¬ψ2. It
follows that ~Y ⊆ ~Z.

Let ν be a truth assignment such that ν(x) is true iff X1
x ∈ ~Z.

We claim that ν satisfies ∀~y ϕ′. Once we show this, it follows that
ϕ = ∃~x ∀~y ϕ′ is true, as desired. Suppose, by way of contradiction,
that ν does not satisfy ∀~y ϕ′. Then there exists a truth assignment
ν′ that agrees with ν on the assignments to the variables in ~x such
that ν′ satisfies ¬ϕ′. Let ~Y ′ be the subset of ~Y corresponding
to the variables y ∈ ~y that are true according to ν′. Then if ~Z′

is the result of removing from ~Z all the variables in ~Y that are
not in ~Y ′, we have that (M,u) |= [~Z′ ← ~1](¬ψ1 ∧ ¬ψ3), so
(M,u) |= [~Z′ ← ~1]¬ψ. Thus, A = 0 ∧ ~Z = 0 is not a cause of ψ
(it does not satisfy AC3), giving us the desired contradiction.

Part (c) is almost immediate from part (b). Again, it is easy to
see that checking whether X = x has degree of responsibility in
(M,~u) at least 1/k is in Σp2: we simply guess ~X , ~x, ~x′, and ~W

such that X = x is a conjunct of ~X = ~x and | ~X| + | ~W | ≤ k,
and confirm that ~X = ~x is a cause of ϕ in (M,~u) with witness
(~x′, ~W).

To show that X = x has degree of responsibility in (M,~u) at
least 1/k is Σp2-hard, given an arbitrary formula ϕ = ∃~x ∀~y ϕ′.
Note that it follows from part (b) that A = 0 has degree of respon-
sibility at least 1

|~x|+~y+1
for the formula ψ as constructed in part (b)

iff ϕ is true. The result follows.

It now follows that by doing binary search we can compute the
degree of responsibility of X = x for ϕ with log(|ϕ|) queries to
a Σp2 oracle, and, as in [3], that the complexity of computing the
degree of responsibility is in FPΣP

2 [logn], where for a complexity
class A, FPA[logn] consists of all functions that can be computed
by a polynomial-time Turing machine with an A-oracle which on
input x asks a total of O(log |x|) queries [20]. (Indeed, it is not
hard to show that it is FPΣP

2 [logn]-complete; see [3].) Similarly, the
problem of computing the degree of blame is in FPΣP

2 [n].3

As we now show, checking causality in a monotone model for
formulas ϕ or ¬ϕ, where ϕ is monotone, is significantly simpler.
For team plans, we are interested in determining the causes of
¬pf (Finish) (why was the plan not completed); pf (Finish) is
clearly monotone. Say that a causal model is trivial if the equations
for the endogenous variables involve only exogenous variables (so
there are no dependencies between endogenous variables).

3We can characterise the complexity of computing the degree of
blame by allowing parallel (non-adaptive) queries to an oracle (see
[3]); we omit this discussion here.

THEOREM 5.2. Suppose that M is a monotone causal model
and ϕ is a monotone formula.

(a) If (M,~u) |= ϕ, then we can find ~X such that ~X = ~1 is a
cause of ϕ in (M,~u) in polynomial time.

(b) If (M,~u) |= ¬ϕ, then we can find ~X such that ~X = ~0 is a
cause of ¬ϕ in (M,~u) in polynomial time.

(c) Determining if ~X = ~1 is a cause of ϕ (resp., ~X = ~0 is a
cause of ¬ϕ) in (M,~u) can be done in polynomial time.

(d) Determining if X = 1 is a part of a cause of ϕ (resp.,
X = 0 is part of a cause of ¬ϕ) in (M,~u) is NP-complete;
NP-hardness holds even if M is a trivial monotone causal
model and ϕ has the form ψ ∧ (ϕ′ ∨ X = 1), where ϕ′

is a monotone formula in DNF whose variables are con-
tained in {X1, . . . , Xn, Y1, . . . , Yn} and ψ is the formula
(X1 = 1 ∨ Y1 = 1) ∧ . . . ∧ (Xn = 1 ∨ Yn = 1).

(e) Determining if X = 1 has degree of responsibility at least
1/k for ϕ (resp., X = 0 has degree of responsibility at least
1/k for ¬ϕ) in (M,~u) is NP-complete. NP-hardness holds
even if M is a trivial monotone causal model and ϕ has the
form ψ∧(ϕ′∨X = 1), where ϕ′ is a formula in DNF whose
variables are contained in {X1, . . . , Xn, Y1, . . . , Yn} and ψ
is the formula (X1 = 1∨Y1 = 1)∧. . .∧(Xn = 1∨Yn = 1).

Proof: For part (a), let X1, . . . , Xk be all the variables that are
1 in (M,~u). Clearly, only Xi = 1 for i = 1, . . . , k can be part
of a cause of ϕ in (M,~u) (since M and ϕ are monotone). Let
~X0 = {X1, . . . , Xk}. Clearly, (M,~u) |= [~X0 ← ~0]¬ϕ. De-
fine ~Xj for j > 0 inductively by taking ~Xj = ~Xj−1 − {Xj} if
(M,~u) |= [~Xj−{Xj} ← 0]¬ϕ, and ~Xj = ~Xj−1 otherwise. The
construction guarantees that (M,~u) |= [~Xk ← 0]¬ϕ, and that ~Xk

is a minimal set with this property. Thus, ~Xk = ~1 is a cause of ϕ
in (M,~u).

For part (b), we proceed just as in part (a), except that we switch
the roles of ϕ and ¬ϕ and replace 0s by 1s. We leave details to the
reader.

For part (c), to check that ~X = ~1 is a cause of ϕ, first check
if (M,~u) |= (~X = ~1) ∧ ϕ. (As observed above, this can be
done in polynomial time.) If so, then AC1 holds. Then check
if (M,~u) |= [~X ← ~0]¬ϕ. If not, ~X = ~1 is not a cause of ϕ
in (M,~u), since AC2m fails; the fact that M and ϕ are mono-
tone guarantees that for all sets ~W , if (M,~u) |= ~W = ~w and
(M,~u) |= [~X ← ~0]ϕ, then (M,~u) |= [~X ← ~0, ~W ← ~w]ϕ.
(Proof: Suppose that W ′ ∈ ~W . If (M,~u) |= W ′ = 1, then, be-
cause M and ϕ are monotone, (M,~u) |= [~X ← ~0,W ′ ← 1]ϕ.
On the other hand, if (M,~u) |= W ′ = 0, then the fact that M
is monotone guarantees that (M,~u) |= [~X ← ~0](W ′ = 0),
so (M,~u) |= [~X ← ~0,W ′ ← 0]ϕ.4) For AC3, suppose that
~X = {X1, . . . , Xk}. Let ~X−i consist of all variables in ~X butXi.
SinceM and ϕ are monotone, it is necessary and sufficient to show
that (M,~u) |= [~X−i ← ~0]ϕ for all i = 1, . . . , k. Clearly, if any
of these statements fails to hold, then AC3 does not hold. On the
other hand, if all these statements hold, then AC3 holds. This gives
us a polynomial-time algorithm for checking if ~X = ~1 is a cause of
ϕ in (M,~u). The algorithm for checking that ~X = ~0 is a cause of

4This shows that for monotone causal models and monotone for-
mulas, we can always take the set ~W in the witness to be empty.

¬ϕ is essentially the same, again replacing ϕ by ¬ϕ and switching
the role of 0 and 1.

For part (d), checking if X = 1 is part of a cause of ϕ in (M,~u)

is clearly in NP: guess a cause ~X = ~1 that includes X = 1 as a
conjunct, and confirm that it is a cause as discussed above.

To show that checking ifX = 1 is part of a cause of ϕ in (M,~u)
is NP-hard, suppose that we are given a propositional formula ϕ,
with primitive propositions x1, . . . , xn. Let ϕr be the result of
(i) converting ϕ to negation normal form (so that all the nega-
tions are driven in so that they appear only in front of primitive
propositions—this conversion can clearly be done in polynomial
time, indeed, in linear time if ϕ is represented by a parse tree)
and (ii) replacing all occurrences of ¬xi by yi, where yi is a fresh
primitive proposition. Note that ϕr is monotone. (The formula ϕr

was first introduced by Goldsmith, Hagen, and Mundhenk [7] for a
somewhat different purpose.)

Let ϕ̄r be the monotone causal formula that results by replacing
each occurrence of xi (resp., yi) in ϕr by Xi = 1 (resp., Yi = 1).
Let ϕ̄+ = ψ ∧ (ϕ̄r ∨X = 1), where ψ is

(X1 = 1 ∨ Y1 = 1) ∧ . . . ∧ (Xn = 1 ∨ Yn = 1).

Let M be a model where V = {X,X1, . . . , Xn, Y1, . . . , Yn} and
U is the only exogenous variable. U determines the values of all
the variables in V , so again there are no interesting equations. Let
u be the context where all these variables are 1. We claim that
X = 1 is part of a cause of ϕ̄+ in (M,u) iff ¬ϕ is satisfiable. This
clearly suffices to prove the NP lower bound (since ϕ is satisfiable
iff X = 1 is a cause of ¬̄ϕr in (M,u)). To prove the claim, first
suppose that ¬ϕ is unsatisfiable, so ϕ is valid. Let ~Z be a subset
of {X1, . . . , Xn, Y1, . . . , Yn}. We claim that if ~Z contains at most
one ofXi and Yi for i = 1, . . . n, then (M,u) |= [~Z ← ~0](ψ∧ϕ̄r).
The fact that (M,u) |= [~Z ← ~0]ψ is immediate. To see that
(M,u) |= [~Z ← ~0]ϕ̄r , first suppose that ~Z contains exactly one
of Xi or Yi for all i ∈ {1, . . . , n}. Then ~Z determines a truth
assignment to ~x in the obvious way, so (M,u) |= [~Z ← ~0]ϕ̄r ,
since ϕ is valid. Since ϕ̄r is monotonic, it follows that if ~Z contains
at most one of Xi or Yi for all i ∈ {1, . . . , n}, then we must also
have (M,u) |= [~Z ← ~0]ϕ̄r . This completes the argument.

Now suppose, by way of contradiction, that X = 1 is part of a
cause of ϕ̄+ in (M,u). Then there exists a subset ~Z of {X1, . . . , Xn,
Y1, . . . , Yn} such that (M,u) |= [~Z ← ~0, X ← 0]¬ϕ̄+. By
the argument above, it cannot be the case ~Z contains at most one
of Xi and Yi for all i = 1, . . . , n, for otherwise, we must have
(M,u) |= [~Z ← ~0, X ← 0](ψ ∧ ϕ̄r), and hence (M,u) |=
[~Z ← ~0, X ← 0]ϕ̄+. Thus, it must be the case that ~Z includes
both Xi and Yi for some i ∈ {1, . . . , n}. But then (M,u) |=
[~Z ← ~0]¬ψ, so (M,u) |= [~Z ← ~0]¬ϕ̄+, which contradicts AC3.
Thus, X = 1 is not part of a cause of ϕ̄r in (M,u).

Now suppose that¬ϕ is satisfiable. Then there is a set ~Z ⊆ {X1,
. . ., Xn, Y1, . . . , Y } that includes exactly one of Xi and Yi, for
i = 1, . . . , n, such that (M,u) |= [~Z ← ~0]¬ϕ̄r . Let ~Z′ be a
minimal subset of ~Z such that (M,u) |= [~Z′ ← ~0]¬ϕ̄r . We claim
that ~Z′ = 1∧X = 1 is a cause of ϕ̄+. AC1 trivially holds. Clearly
(M,u) |= [~Z′ ← ~0, X ← 0]¬(ϕ̄r ∨ X = 1), so (M,u) |=
[~Z′ ← ~0, X ← 0]¬ϕ̄+ and AC2 holds. By choice of ~Z′, there is
no strict subset ~Z′′ of ~Z such that (M,u) |= [~Z′′ ← ~0]¬ϕ̄r . Since
~Z′ contains at most one of Xi or Yi for i = 1, . . . , n, we have that
(M,u) |= [~Z′ ← ~0]ψ. It now easily follows that AC3 holds. Thus,
X = 1 is part of a cause of ϕ̄+.

Since to get NP-hardness it suffices to consider only CNF for-

mulas, and the result above shows that X = 1 is a cause of ϕ+ iff
¬ϕ is satisfiable, we can restrict to ϕ being a DNF formula. The
model M is clearly a trivial monotone model. This completes the
proof of part (d).

The argument that determining if X = 0 is a part of a cause of
¬ϕ is NP-complete is almost identical. In particular, essentially the
same argument as that above shows that ¬ϕ is a satisfiable propo-
sitional formula iff X = 0 is part of a cause of ¬ϕ̄+ in (M,u′),
where M is as above and u′ is the context where all variables in V
get value 0.

Part (e) follows easily from part (d). To show that checking if
the degree of responsibility of X = 1 for ϕ is at least 1/k is in
NP, given k, we guess a cause ~X = ~1 that includes X = 1 as
a conjunct and has k or fewer conjuncts. As observed above, the
fact that ~X = ~1 is a cause of ϕ in (M,~u) can be confirmed in
polynomial time.

For the lower bound, using the notation of part (d), if the proposi-
tional formulaϕmentions n primitive propositions, say x1, . . . , xn,
then we claim that X = 1 has degree of responsibility at least
1/(n + 1) for ϕ̄+ in (M,u) iff ¬ϕ is satisfiable. As observed
above, if ¬ϕ is not satisfiable, then X = 1 is not a cause of ¬ϕ̄+,
and hence has degree of responsibility 0. On the other hand, if
¬ϕ is satisfiable, then as shown above, X = 1 is part of a cause
~Z+ = 1 for ϕ in (M,u). Since |~Z+| = n + 1, it follows that the
degree of responsibility of X = 1 for ϕ̄ is at least 1/(n+ 1). (It is
not hard to show that it is in fact exactly 1/(n+ 1).)

The argument for showing that checking if the degree of respon-
sibility of X = 0 for ¬ϕ is at least 1/k is NP-complete is essen-
tially identical; we leave details to the reader.

Again, it follows that the problem of computing the degree of
responsibility of X = x for ϕ in (M,~u) is in FPNP[logn] (a lit-
tle more effort in the spirit of [3, Theorem 4.3] shows that it is
FPNP[logn]-complete), while the problem of computing the degree
of blame of X = x for ϕ relative to an epistemic state (K,Pr) is
in FPNP[n].

We can do even better in conjunctive models.

THEOREM 5.3. IfM is a conjunctive causal model, ϕ is a con-
junctive formula, and (K,Pr) is an epistemic state where all the
causal models in K are conjunctive, then the degree of responsi-
bility of ~X = ~1 for ϕ (resp., ~X = ~0 for ¬ϕ) in (M,~u) can be
computed in polynomial time, as can the degree of blame of ~X = ~1

for ϕ (resp., ~X = ~0 for ¬ϕ) relative to (K,Pr).

Proof: It is easy to check that ~X = ~1 is a cause of the conjunctive
formula ϕ in (M,~u), where M is a conjunctive causal model, iff
~X is a singleton and (M,~u) |= [X = 0]¬ϕ. (This means X = 1
a “but-for” cause, in legal language.) Thus, X = 1 has degree of
responsibility 1 for ϕ. It is clearly easy to determine if X = 1 is a
but-for cause of ϕ and find all the causes of ϕ in polynomial time
in this case. It follows that the degree of responsibility and degree
of blame of ~X = ~1 can also be computed in polynomial time.

In the case of degree of responsibility of ~X = ~0 for ¬ϕ, observe
that for a conjunctive formula ϕ, there is exactly one cause of ¬ϕ
in (M,~u): the one containing all conjuncts of the form Y = 0. It
is easy to check whether X = 0 is part of that single cause, and if
it is, then its degree of responsibility is 1/k, where k is the number
of variables which have value 0. Similarly, it is easy to compute
degree of blame in polynomial time.

Since the causal models that are determined by team plans are
monotone, the upper bounds of Theorem 5.2 apply immediately to
team plans (provided that we fix the maximal number of literals

in a precondition); similarly, Theorem 5.3 applies to team plans
that are postcondition minimal. The question remains whether
the NP-hardness results in parts (d) and (e) of Theorem 5.2 also
apply to team plans. It is possible that the causal models that arise
from team plans have additional structure that makes computing
whether X = 1 is part of a cause of ϕ easier than it is for arbitrary
monotone causal models, and similarly for responsibility. As the
following result shows, this is not the case.

THEOREM 5.4. Determining whether ina(t) = 0 is part of a
cause of ¬pf (Finish) in (MP , ~u), whereMP is the causal model
determined by a team plan P , is NP-complete, as is determining
whether the degree of responsibility of agent a for ¬pf (Finish) is
at least m/k.

Proof: As we observed, the upper bound for determining whether
ina(t) = 0 is part of a cause follows from part (d) of Theorem 5.2.
For the lower bound, recall that it is already NP-hard to compute
whetherX = 0 is part of a cause of¬ϕ in a trivial monotone causal
model, where ϕ has the form ψ ∧ (ϕ′ ∨X = 1), ϕ′ is a formula in
DNF whose variables are contained in {X1, . . . , Xn, Y1, . . ., Yn},
andψ is the formula (X1 = 1∨Y1 = 1)∧. . .∧(Xn = 1∨Yn = 1).
Given such a model M and formula ϕ, we construct a model MP
determined by a team plan P as follows. Suppose that ϕ′ is the
formula σ1 ∨ . . . ∨ σk, where σj is a conjunction of formulas of
the form Xh = 1 and Yh = 1. The formula ϕ is clearly logically
equivalent to ϕ′′ = (σ1 ∧ ψ) ∨ . . . ∨ (σk ∧ ψ) ∨ (X = 1 ∧ ψ).
Let ψ′ be the formula that results by replacing each disjunct Xi =
1 ∨ Yi = 1 in ψ by Wi = 1, and let ϕ∗ be the formula that results
from replacing each occurrence of ψ in ϕ′′ by ψ′. Clearly, ϕ∗ is
monotone.

We construct a team plan P = (T,Ag,≺, α) with T = {Start,
F inish, tX , tX1 , . . . , tXn , tY1 , . . . , tYn , tW1 , . . ., tWn}; that is, be-
sides Start and Finish, there is a task corresponding to each vari-
able in ψ′. The only nontrivial ordering conditions are tXi , tYi ≺
tWi . Take Ag = {at : t ∈ T \ {Start, F inish}} and take α such
that each task t in T \{Start, F inish} is associated with agent at.
Finally, we define prec and post so that clob(t) = ∅ for all actions
t, est(tWi) = {{tXi}, {tYi}}, est(tXi) = ∅, and est(tY1) = ∅
for i = 1, . . . , n, and est(Finish) = {Eσ1 , . . . , Eσk , {tX , tW1 ,
. . . , tWn}}, where Eσj consists of the tasks tXi and tYj such that
Xi and Yj appear in σj , together with tW1 , . . . , tWn . This ensures
that the equation for pf (Finish) looks like ϕ∗, except each vari-
able Z ∈ {X1, . . . , Xn, Y1, . . . , Yn,W1, . . . ,Wn} is replaced by
inatZ (tZ).

Consider the causal model MP . We claim that X = 0 is part of
a cause of ¬ϕ∗ in (M,u), where u sets all endogenous variables
to 0, iff inatX (tX) = 0 is a part of a cause of ¬pf (Finish) in
(MP , ~uP), where ~uP is such that inat(t) = 0 for all tasks t ∈ T \
{Start, F inish}. Suppose thatX = 0 is part of a cause of ¬ϕ∗ in
(M,~u). Then there exists some ~V ⊆ {X1, . . . , Xn, Y1, . . . , Yn}
such that ~V = ~0 ∧ X = 0 is a cause of ¬ϕ∗. The corresponding
conjunction (∧V ∈~V inatV (tV) = 0∧inatX (tX) = 0) is a cause of
¬pf (Finish) in (MP , ~uP), so inatX (tX) = 0 is part of a cause
of ¬pf (Finish).

Conversely, suppose that inatX (tX) = 0 is part of a cause of
¬pf (Finish) in (MP , ~uP). Thus, there exists a set ~V such that
~V = ~0∧ inatX (tX) = 0 is a cause of ¬pf (Finish) in (MP , ~uP).
Note that inatWi

(tWi) /∈ ~V for i = 1, . . . , n. For it is easy to see
that (MP , ~uP) |= [inatWi

(tWi)← 1]pf (Finish), so AC3 would

be violated if inatWi
(tWi) ∈ ~V . The same holds true if en(tWi) ∈

~V or if pf (tWi) ∈ ~V . Next note that if en(tZ) ∈ ~V then it can be

replaced by inatZ (tZ), for Z ∈ {X1, . . . , Xn, Y1, . . . , Yn}, and
similarly for pf (tZ). That is, if ~V ′ is the set obtained after doing
this replacement, then ~V ∧ X = 0 is a cause of ¬pf (Finish)

iff ~V ′ ∧ X = 0 is a cause of ¬pf (Finish). The upshot of this
discussion is that, without loss of generality, we can take ~V to
be a subset of {inatZ (tZ) : Z ∈ {X1, . . . , Xn, Y1, . . . , Yn}}.
It now easily follows that if ~V ∗ is the corresponding subset of
{X1, . . . , Xn, Y1, . . . , Yn}, then ~V ∗ = ~0 ∧ X = 0 is a cause
of ¬ϕ∗ in (M,u). This completes the proof for part of a cause.

The argument for the degree of responsibility is similar to The-
orem 5.2(e). For the upper bound, we guess a cause where the
proportion of a-controlled variables with value 0 is greater or equal
to m/k. Then we can check in polynomial time that it is indeed a
cause of ¬pf (Finish). The lower bound follows from the previ-
ous argument (for the special case when m = 1 and the degree of
responsibility of an agent at is the same as the degree of responsi-
bility of inat(t)), as in Theorem 5.2(e).

6. CONCLUSIONS
We have shown how the definitions of causality, responsibility

and blame from [11] can be used to give useful insights in the con-
text of team plans. We also showed that the resulting problems are
tractable: causality for team plans can be computed in polynomial
time, while the problem of determining the degree of responsibil-
ity and blame is NP-complete; for postcondition minimal plans, the
degree of responsibility and blame can be computed in polynomial
time. We can extend our model with external events (or actions by
an environment agent) without increase in complexity. We chose
not to consider events here, as we are concerned only with allocat-
ing responsibility and blame to agents (rather than to the environ-
ment). In future work, we would like to consider a richer setting,
where agents may be able to perform actions that decrease the prob-
ability of plan failure due to external events.

The epistemic perspective of the paper is that of an outside ob-
server rather than the agents. In future work we plan to model
agents reasoning about the progress of plan execution, which would
involve their beliefs about what is happening and who is to blame
for the failure of the plan.

REFERENCES
[1] H. Aldewereld, V. Dignum, and W. Vasconcelos. We ought

to; they do; blame the management! - A conceptualisation of
group norms. In Coordination, Organizations, Institutions,
and Norms in Agent Systems (COIN 2013), volume 8386 of
LNCS, pages 195–210, 2013.

[2] G. Aleksandrowicz, H. Chockler, J. Y. Halpern, and A. Ivrii.
The computational complexity of structure-based causality.
In Proc. Twenty-Eighth National Conference on Artificial
Intelligence (AAAI ’14), pages 974–980, 2014.

[3] H. Chockler and J. Y. Halpern. Responsibility and blame: A
structural-model approach. Journal of Artificial Intelligence
Research, 20:93–115, 2004.

[4] F. de Jonge, N. Roos, and C. Witteveen. Primary and
secondary diagnosis of multi-agent plan execution.
Autonomous Agents and Multi-Agent Systems,
18(2):267–294, 2009.

[5] T. De Lima, L. M. M. Royakkers, and F. Dignum. Modeling
the problem of many hands in organisations. In 19th
European Conference on Artificial Intelligence (ECAI 2010),
pages 79–84, 2010.

[6] I. Georgievski and M. Aiello. HTN planning: Overview,
comparison, and beyond. Artificial Intelligence,
222:124–156, 2015.

[7] J. Goldsmith, M. Hagen, and M. Mundhenk. Complexity of
DNF minimization and isomorphism testing for monotone
formulas. Information and Computation, 206(6):760–775,
2008.

[8] N. Griffiths, M. Luck, and M. d’Inverno. Annotating
cooperative plans with trusted agents. In R. Falcone, K. S.
Barber, L. Korba, and M. P. Singh, editors, Trust, Reputation,
and Security: Theories and Practice, volume 2631 of Lecture
Notes in Computer Science, pages 87–107. Springer, 2003.

[9] D. Grossi, F. Dignum, L. M. M. Royakkers, and J.-J. C.
Meyer. Collective obligations and agents: Who gets the
blame? In Deontic Logic in Computer Science (DEON
2004), volume 3065 of LNCS, pages 129–145, 2004.

[10] D. Grossi, L. M. M. Royakkers, and F. Dignum.
Organizational structure and responsibility. Artificial
Intelligence Law, 15(3):223–249, 2007.

[11] J. Y. Halpern. A modification of the Halpern-Pearl definition
of causality. In Proc. 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015), pages 3022–3033, 2015.

[12] J. Y. Halpern. Actual Causality. MIT Press, Cambridge, MA,
2016.

[13] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. In
Proc. Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI 2001), pages 194–202, 2001.

[14] J. Y. Halpern and J. Pearl. Causes and explanations: A
structural-model approach. Part I: Causes. British Journal for
Philosophy of Science, 56(4):843–887, 2005.

[15] T. D. Lima, L. M. M. Royakkers, and F. Dignum. A logic for
reasoning about responsibility. Logic Journal of the IGPL,
18(1):99–117, 2010.

[16] E. Lorini and F. Schwarzentruber. A logic for reasoning
about counterfactual emotions. Artificial Intelligence,
175(3-4):814–847, 2011.

[17] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The
complexity of causality and responsibility for query answers
and non-answers. Proc. VLDB Endowment, 4(1):33–45,
2010.

[18] R. Micalizio and P. Torasso. Cooperative monitoring to
diagnose multiagent plans. Journal of Artificial Intelligence
Research, 51(1):1–70, Sept. 2014.

[19] R. Micalizio, P. Torasso, and G. Torta. On-line monitoring
and diagnosis of multi-agent systems: A model based
approach. In R. L. de Mántaras and L. Saitta, editors,
Proceedings of the 16th Eureopean Conference on Artificial
Intelligence (ECAI 2004), pages 848–852. IOS Press, 2004.

[20] C. H. Papadimitriou. The complexity of unique solutions.
Journal of ACM, 31:492–500, 1984.

[21] C. H. Papadimitriou and M. Yannakakis. The complexity of
facets (and some facets of complexity). J. Comput. Syst. Sci.,
28(2):244–259, 1982.

[22] M. P. Singh, A. K. Chopra, and N. Desai.
Commitment-based service-oriented architecture. IEEE
Computer, 42(11):72–79, 2009.

[23] L. J. Stockmeyer. The polynomial-time hierarchy.
Theoretical Comput. Sci., 3:1–22, 1977.

[24] D. S. Weld. An introduction to least commitment planning.
AI Magazine, 15(4):27–61, 1994.

[25] C. Witteveen, N. Roos, R. van der Krogt, and M. de Weerdt.
Diagnosis of single and multi-agent plans. In 4th
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 805–812, 2005.

