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Abstract: This study investigates the thermal performance of composite ultra-thin heat pipes (UTHPs). 

UTHPs are fabricated by flattening cylindrical heat pipes with outer diameter of 2 mm. The thickness 

and width were 0.8 mm and 2.7 mm, respectively. The composite wick structure is made of sintered 

copper foam-mesh wick (CFMW). CFMW combines the good heat transfer performance of copper 

foam and the high mechanical strength of mesh. The manufacturing process of UTHP was studied and 

the thermal performance of UTHP samples were investigated experimentally. The results indicate that 

the optimum filling ratio of UTHPs is 100% and the maximum temperature difference is 3.7 ℃ under 

the maximum heat transport capacity of 5 W. The thermal resistances of UTHPs increase gradually 

with the heat power before drying out. Too low or too high filling ratios will reduce the heat transfer 

efficiency of UTHPs by increasing the thermal resistances. With the optimum filling ratio of 100%, the 

evaporation thermal resistance of UTHP is found to be 0.29 K/W and the condensation thermal 

resistance is 0.45 K/W at the heat load of 5 W. 
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Nomenclature  

L length, mm ρ density, g/mm3 

d diameter, mm   

I current, A Subscripts  

M mass, g a adiabatic 

Q heat input, W ave average 

R thermal resistance, K/W c condenser 

T temperature, ℃ cp copper foam 

th thickness, mm e evaporator 

U voltage, V h hole 

W width, mm m mesh 

V volume, mm3 o outer 

  p pore 

Greek symbols w wick 

ε porosity, % v vapor 

η filling ratio, %   

 

1. Introduction 

With the performance enhancement and size reduction of smart phones [1], the power density has 

become higher and higher, resulting in more and more serious heat dissipation problem. Heat pipes, 

considered as super thermal conductors, have been widely used in the electronic devices because of 

their small sizes, light weight structures and excellent heat transfer performance [2-4].  

Because the spaces of the electronic devices for heat dissipation are limited, heat pipes are usually 

flattened before applied [5]. Flattened heat pipes have been designed for high heat flux occasions and 

widely used in the narrow space of thermal control components [6-8]. The flattened structure of 

ultra-thin heat pipes (UTHPs) is usually made by flattening cylindrical heat pipes. The flattening 

process is very efficient and mass production is easy to realize without complex equipment. Therefore, 

UTHPs flattened by cylindrical heat pipes are studied in this work. 

As for the cylindrical heat pipes, many heat transfer limits should be considered to research the 
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heat transfer performance of UTHPs. UTHPs with different wick structures have different thermal 

characteristics. Do et al. [9] theoretically analyzed the performance of grooved heat pipes with the 

vapor-liquid inter-facial shear theory and insisted that the dragging limit was the main heat transfer 

limit. Liou et al. [10] investigated the thermal performance of flat plate heat pipes with mesh wick. The 

experiment showed that no nucleate boiling occurred in the evaporator section but quiescent surface, 

even though at the maximum super-heat of 8 K. The results indicated that water with larger latent heat 

and larger surface tension was less likely to cause nucleate boiling in flat plate heat pipes. Wong et al. 

[11] investigated the evaporator resistance of flat plate heat pipes with sintered copper-powder wick 

structure. The results showed that a thin water film was sustained by the wick with fine pores at the 

bottom under large heat input power. The minimum evaporation resistance was yielded by a composite 

wick with only coarse spherical powder in the evaporator. 

Filling ratio determines the mass of working fluid that could transfer the heat of a heat pipe. If a 

heat pipe with a low filling ratio works under a high heating power, local overheating may occur. And 

if it works in a low heating power with a high filling ratio, liquid clogging may appear. Both local 

overheating and liquid clogging can seriously degrade the heat transfer performance of heat pipes, so 

it’s very important to choose the optimum filling ratio. Lips et al. [12] studied the effects of filling ratio 

and vapor thickness on the thermal performance of flat plate heat pipes and found that the vapor space 

thickness and filling ratio strongly influenced the level of the meniscus curvature radii and therefore 

modified the maximum capillary pressure. Chen et al. [13] experimentally investigated the filling ratio 

effect on the thermal performance of flat plate heat pipe made of Al 6061. The results showed that the 

optimum filling ratio of flat plate heat pipes with groove wick was 25 %, and the maximum heat 

transport capability was 47 W. 
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In the researches, the UTHPs usually fabricated by flattening cylindrical heat pipes with outer 

diameter of 6 mm. Tao et al. [14] investigated the performance of UTHPs flattened to different 

thicknesses from 6 mm outer diameter with groove wick structures. Li et al. [15] studied the thermal 

performance of UTHPs with bilateral sintered powder wick structures and discovered that the flattening 

thickness exerted a critical influence in the thermal performance. Lin and Wong [16] examined the 

performance degradation of flattened heat pipes with the sintered-powder wick and groove wick. The 

ultra-thin heat pipes were flattened from cylindrical heat pipes with 6 mm outer diameter and with the 

length of 300 mm. 

However, narrow heat dissipation space of smart phones not only limits the thickness of the heat 

pipes, but also limits their width. The outer diameter of cylindrical heat pipes basically determines the 

width of UTHPs after flattening. If the cylindrical heat pipes with 6 mm outer diameter are flattened to 

0.8 mm, the width of the UTHPs is about 9.0 mm. But if 2 mm outer diameter heat pipes are flattened 

to 0.8 mm, the width of the UTHPs is only about 2.7 mm. The manufacturing process of 2 mm outer 

diameter heat pipes is significantly different from the conventional diameter heat pipes, which is more 

difficult. Therefore, the manufacturing process and thermal performances of composite UTHPs 

flattened by 2 mm outer diameter cylindrical heat pipes with thickness of 0.8 mm are studied. 

 

2. UTHP specification 

2.1. Experimental samples 

The composite UTHPs with thickness of 0.8 mm were fabricated by flattening cylindrical heat 

pipes with outer diameter of 2 mm. The wick structure of UTHPs is made of copper foam-mesh wick 

(CFMW). The structure of the heat pipe is illustrated in Fig. 1 and the parameters are given in Table 1. 
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The wick structures are shown in Fig. 2. 

  

Fig. 1. Schematic of the cylindrical heat pipe. 

 

Table 1 Parameters of cylindrical heat pipe 

Parameters Dimension / material 

Tube material Copper (C1020) 

do (mm) 2 

thw (mm) 0.2 

thcp (mm) 0.3 

pcp 80 % 

thm (mm) 0.1 

dhm (mm) 0.074 

pm 80 % 

 

 

Fig. 2. SEM photograph of wick structures: (a) copper foam and (b) mesh. 
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2.2. Fabrication of UTHP samples 

The common forms of the wick structures are grooved, sintered powder, copper foam and mesh 

[17]. Groove wick and sintered powder wick are applied into mass production because these wicks are 

easier to manufacture than other wicks. Due to poor anti-gravity performance, grooved structured 

ultra-thinned heat pipes have been rarely used in industries [18]. And the cylindrical heat pipe with 

outer dimeter of 2 mm is too small to adopt the sintered powder wicks, because the powder is very 

difficult to fill into the tube. So the wick structures like copper foam and mesh are taken into 

consideration. The CFMW combines the good heat transfer performance of the copper foam and the 

high mechanical strength of the mesh. The most important processes for making UTHP samples are the 

CFMW fabrication process and the UTHP wick sintering process, which are shown in Fig. 3 and Fig. 4, 

respectively. 

Firstly, copper foam with the thickness of 0.3 mm and mesh with the thickness of 0.1 mm are cut 

into pieces. Then a copper foam piece and a mesh piece are put together and clamped by two graphite 

moulds. Secondly, the combined piece is sintered for 3 hours at the temperature of 950 ℃ under 

reducing atmosphere. After sintering, CFMW is taken out and cut into slices with the length of 100 mm 

and the width of 1.3 mm. Then a stainless mandrel (the material is 310S) is used to insert the CFMW 

slice into the copper tuber, which ensures close contact between the CFMW and the inner wall of tuber. 

Thirdly, the tube is sintered for 3 hours at the temperature of 950 ℃ under reducing atmosphere. The 

stainless mandrel is removed after the sintering process. To manufacture UTHPs successively, there are 

many other following processes, such as liquid charging process, first vacuuming process, second 

vacuuming process, welding process, and flattening process. Fig. 5 shows the cylindrical heat pipe 

samples and the UTHP samples. 
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Fig. 3. Fabrication process of CFMW 

 

 

Fig. 4. Sintering process of UTHP CFMW 
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Fig. 5. Heat pipe samples: (a) cylindrical heat pipes and (b) UTHPs. 

 

3. Experimental setup 

3.1 Experimental testing system 

Fig. 6 shows the schematic of UTHP experimental testing system. The system mainly includes the 

heating module, heat sink and temperature data acquisition module. The heating module is a copper 

heater with dimension of 30 × 20 × 20 mm3. The heater was heated by a heating rod supplied by a DC 

power source with an accuracy of 0.01 W. The heating power was accurately obtained by adjusting the 

current and voltage value of DC power output. The heat sink with the same dimension of the heater 

was cooled by a water-cooling bath system. The material of the heat sink is copper. The cooling water 

was supplied by a constant temperature water tank and the output water temperature can be adjusted 

with an accuracy of 0.1 ℃. The flow rate of water could be controlled by the float flowmeter with an 

accuracy of 2 L/h. The temperature data were recorded by NI 9213 analog input data acquisition 

module with an accuracy of 0.1 ℃. The temperature data were measured at five temperature measuring 

locations by T-type thermocouples with an accuracy of 0.5 ℃. The thermocouples were fixed on two 

PU blocks and tightly attached on the UTHPs surface. 

The UTHP sample was placed horizontally on the experimental apparatus with one end on the 
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heating block and the other end on the heat sink during the experiment. The contact thermal resistances 

of evaporator and condenser were reduced by using a layer of the thermal grease with the thermal 

conductivity of 6.0 W/ (m·K) on the interface between the UTHP and the copper blocks. The 

evaporator section was compressed by a PU block with the temperature measuring locations of T1 and 

T2. The condenser section was compressed by the other PU block with the temperature measuring 

locations of T4 and T5. The evaporator length was equal to the condenser length [19]. The evaporator 

and condenser sections were separated by an adiabatic section with a length of 35 mm. A block with the 

temperature measuring location T3 was clamped on the adiabatic section. UTHPs were thermally 

insulated with thermal insulation material during the testing process. The cooling water ran through the 

condenser copper block at the flow rate of 20 L/h and at the temperature of 50 ℃. 

 

Fig. 6. Schematic of the experiment testing system 

 

Heat power input to the evaporator copper block increased from 2.5 W to 5 W with an increment 

of 0.5 W. The data of the five temperature measuring locations were recorded until the UTHPs reached 

the equilibrium state (the maximum temperature difference is less than 5 ℃), under which the 

temperature variances are less than 0.1 ℃. With the increment of heat input, more and more working 
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fluid in the evaporator changed to vapor and transferred heat to the condenser. If the input heat was too 

larger for the UTHP to take away, dry-out phenomenon will occur with significant temperature rise in 

the evaporator section. The heat load is defined as the maximum heat transport power of the UTHP. 

The thermal performance of UTHP includes the axial temperature distribution, temperature 

difference, heat transport capacity, thermal resistance and so on. The average temperature of evaporator 

section Te-ave and the average temperature of condenser section Tc-ave are defined respectively by: 

1 2

2
e ave

T T
T 


          (1) 

4 5

c
2

ave

T T
T 


           (2) 

The average temperature difference ΔT is given as follows: 

e ave c aveT T T             (3) 

The temperature of adiabatic section Ta is equal to T3.The thermal resistance of evaporator section Reva 

is given by: 

e ave a

eva

T T
R

Q

 
          (4) 

where Q is the heat load. The thermal resistance of condenser section Rcon is defined by: 

a c ave

con

T T
R

Q


          (5) 

The porosity of the CFMW was calculated by soaking the wick into deionized water until it become 

saturated [5]. The porosity of wick is defined by: 

= 100%l

w

V

V
            (6) 

where Vl is the volume of saturated water and the Vw is the volume of CFMW. 

The volume of pores inside the CFMW can be given by: 

p wV V            (7) 

where ε is the porosity of CFMW. 
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The filling ratio η is defined by： 

100%
f

p

V

V
             (8) 

where Vf is the volume of filling fluid. The filling ratio is 100 % when the CFMW is saturated, namely 

the Vf is equal to Vp. The structure of the UTHP is shown in Fig. 7 and the parameters of UTHP are 

listed in Table 2. 

 

Fig. 7. Schematic of the UTHP 

 

Table 2 Parameters of UTHP 

Parameters Dimension 

LUTHP (mm) 100 

thUTHP (mm) 0.8 

WUTHP (mm) 0.27 

thCFMW (mm) 0.40 

WCFMW (mm) 0.13 

pCFMW 67 % 

VCFMW (mm3) 52 

 

3.2 Uncertainty analysis 

The experimental testing system includes the heating module, heat sink and temperature data 

acquisition module. The uncertainty of the testing system arises mainly from the heating module and 

temperature acquisition module. The maximum measurement error of the heating module and the 

temperature acquisition module are 0.01 W and 0.5 °C, respectively. The relative measurement errors 
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of thermal resistances are calculated with the following formula [20]: 

 

2

iT
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R R

 
 
 




         (9) 

where E(R) is the measurement error of thermal resistances and ETi is the maximum measurement error, 

which is defined as Ti. Fig. 8 shows the relative measurement error of UTHPs. The relative 

measurement errors of evaporation and condensation thermal resistances are very close. As heat input 

power increases to 5 W, the relative measurement errors of evaporation and condensation thermal 

resistances drop sharply and they are below 12.5 %. 

 

Fig. 8 Relative measurement error of UTHPs. 

 

4. Results and Discussion 

4.1. SEM photographs of composite wick structure 

Fig. 9 shows the SEM photographs of CFMW structure. The copper foam and mesh are sintered 

together to produce the CFMW structure. The total thickness of UTHP is 0.8 mm and the width is 

about 2.7 mm. After flattening, the upper and bottom surfaces of CFMW contact closely with the inner 

wall of the copper tube. The thickness of CFMW is 0.4 mm and the width is about 1.3 mm. The 

independent channels of liquid and vapor of CFMW can be observed clearly in Fig. 9(a). The CFMW is 

sintered in the middle position of the inner tube in order to provide a liquid circulation passage for the 
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working fluid. The vapor flows in the channels on both sides of the wick structure. The composite wick 

can reach higher heat flux than the single wick because the composite wick can make more menisci 

inside the wick than the single wick [21]. The copper foam wick has the advantages of high porosity 

and large capillary force. The mesh wick is easy to bend and it has high mechanical strength. Thus, 

CFMW combines with the advantages of both. 

 

Fig. 9. SEM photographs of UTHP: (a) cross section and (b) partial magnification. 

 

4.2. Temperature distribution and heat transport capacity 

Thermal performance tests with filling ratios from 57 % to 115% were conducted to find out the 

optimum filling ratio for UTHPs with CFMW. Fig. 10 shows the axial temperature distribution of 

UTHP samples under incremental heat input ranging from 2.5 W to 5 W until dry out occurred. Fig. 11 

shows the heat transport power of UTHPs with different filling ratios. The temperature of UTHP 

samples increased firstly and then decreased with increasing the distance away from the evaporator end. 

T2 temperature reading is higher than the T1, the reason is that the internal cavity of UTHP sample is 

very narrow. At a lower heating power, the working fluid is easy to accumulate in the evaporator 

section of UTHP sample with a lower liquid filling ratio. The working fluid accumulates in the end of 

evaporator section, resulting in a lower temperature of it. T5 has the lowest temperature with the longest 

distance away from the heating rod. The UTHP samples showed good temperature uniformity at low 

heat input. The maximum temperature difference was below 1.2 ℃ with the heat input of 2.5 W. The 

UTHP samples with the filling ratio of 85 % have the smallest temperature difference under the heat 

input ranging from 2.5 W to 4.5 W. When the UTHP samples worked normally, the maximum heat 

transport power of the UTHP samples increased firstly and then decreased with the increase of the 

filling ratio. When the filling ratio is 100%, the UTHP samples reach the maximum heat transport 
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power of 5 W, and the maximum temperature difference is 3.7 ℃. When the filling ratio is 57%, the 

maximum heat transport power of UTHP samples is 3 W and the maximum temperature difference is 

4.2 ℃. When the filling ratio is 115%, the maximum heat transport power is 4 W and the maximum 

temperature difference is 4.7 ℃. With the increase of the heating power, the UTHP samples with the 

filling ratio of 57 % could not take away all the heat. Dry-out phenomenon occurred with a significant 

temperature rise in the evaporator section. Dry-out phenomenon broken the balance of liquid-vapor 

between evaporator and condenser section. The working fluid in the evaporator section undergoes 

superheating and forms nucleate boiling when the dries out occurred at sufficiently high heat input. The 

bubbles formed by nucleate boiling be trapped in the CFMW, thereby breaking the circulation of the 

working fluid. With the increase of the heating power, liquid clogging phenomenon occurred in the 

UTHP samples with the filling ratio of 115 %, which resulted in rapid temperature rise in the condenser 

section. The increase of the temperature difference of the UTHP is caused by the liquid accumulated 

exceeds the reflow capacity of the CFMW in the condensation section. The exceeded working fluid in 

the condensation section is blocked and cooled continuously by the cooling water, resulting in a 

significant temperature decrease in the condensation section and an increase in the overall temperature 

difference of the heat pipe. Therefore, the optimum filling ratio of UTHP samples is 100 % and the 

maximum heat transport capacity is 5 W. 
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Fig. 10. Temperature distribution of UTHPs under different filling ratios: (a) 57 %, (b) 71 %, (c) 85 %, 

(d) 100 % and (e) 115 %. 
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Fig. 11. Heat transport capacities of UTHPs under different filling ratios. 

 

4.3. Thermal resistance 

Fig. 12 shows the evaporation and condensation thermal resistances of UTHPs with different 

filling ratios under different heat loads. In general, the thermal resistances of the UTHP samples 

increased gradually with the increasing heat power. The thermal resistances of UTHP samples 

increased rapidly with the increasing heat input when the filling ratios are 57 % and 71 %. It is because 

that the working fluids in the evaporator were not enough, the dry-out phenomenon occurred with rapid 

evaporator temperature rise. The evaporation thermal resistance of UTHP samples with the filling ratio 

of 115 % first increased and then decreased slightly. According to the thin-film heat transfer 

mechanism, the thin film existing on the evaporative interface will enlarge the evaporation thermal 

resistance of UTHPs under high filling ratios. The evaporation thermal resistances of UTHP samples 

with the filling ratio of 85% and 100% increased slowly with the increasing heat input. With the 

increase of heating power, the condensation thermal resistance of UTHP samples with the filling ratio 

of 115% increased rapidly, and the increase rate became faster when the heating power was over 3.5 W. 

According to the theory of the thin-film heat transfer theory, working fluid gathered at the condensation 

section in the UTHPs with high filling ratio, and the thin film at the vapor-liquid interface lead to large 

condensation thermal resistance. It can be seen that too low or too high filling ratios will degrade the 

heat transfer performance of UTHPs and increase the thermal resistances. The optimum filling ratio of 

experimental UTHPs is 100% and the maximum heat transport capacity is 5W, with the evaporation 

thermal resistance of 0.29 K/W and the condensation thermal resistance of 0.45 K/W. 
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Fig. 12. Thermal resistances of UTHPs under different filling ratios: (a) evaporation thermal resistance 

and (b) condensation thermal resistance. 

 

5. Conclusion 

UTHPs with the length of 100 mm and the thickness of 0.8 mm are fabricated and investigated in 

the study. Thermal performance and optimal filling ratios of UTHPs are measured. Conclusions can be 

summarized as follows: 

(1) UHTPs with composite wick were produced by flattening cylindrical heat pipes with outer 

diameter of 2 mm. The width of UTHPs is about 2.7 mm. The composite wick structure is made of 

CFMW that combines the good heat transfer performance of copper foam and the high mechanical 

strength of mesh. 

(2) The filling ratio mainly affects the response time and the temperature uniformity of UTHPs. 

The optimum filling ratio of UTHPs is 100% and the maximum temperature difference is 3.7 ℃ under 

the maximum heat transport capacity of 5 W. 

(3) The thermal resistances of UTHPs increase gradually with the increasing heat power before 

drying out. Too low or too high filling ratios will reduce the heat transfer efficiency of UTHPs by 

increasing the thermal resistances. With the optimum filling ratio of 100%, evaporation thermal 
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resistance of UTHP is 0.29 K/W and the condensation thermal resistance is 0.45 K/W at the heat load 

of 5 W. 
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