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ABSTRACT 17 

In the context of wider debates about the role of uncertainty in environmental science and the 18 

development of environmental policy, we use a Generalised Likelihood Uncertainty Estimate (GLUE) 19 

approach to address the uncertainty in both acid deposition model predictions and in the sensitivity 20 

of the soils to assess the likely success of policy actions to reduce acid deposition damage across 21 

Great Britain. A subset of 11, 699 acid deposition model runs that adequately represented observed 22 

deposition data were used to provide acid deposition distributions for 2005 and 2020, following a 23 

substantial reduction in SO2 and NOx emissions. Uncertain critical loads data for soils were then 24 

combined with these deposition data to derive estimates of the accumulated exceedance (AE) of 25 

critical loads for 2005 and 2020. For the more sensitive soils, the differences in accumulated 26 

exceedance between 2005 and 2020 were such that we could be sure that they were significant and 27 

a meaningful environmental improvement would result. For the least sensitive soils, critical loads 28 

were largely met by 2020, hence uncertainties in the differences in accumulated exceedance were of 29 

little policy relevance. Our approach of combining estimates of uncertainty in both a pollution model 30 

and an effects model, shows that even taking these combined uncertainties into account, policy-31 

makers can be sure that the substantial planned reduction in acidic emissions will reduce critical 32 

loads exceedances.  The use of accumulated exceedance as a relative measure of environmental 33 

protection provides additional information to policy makers in tackling this ‘wicked problem’.   34 

 35 

Keywords: HARM, GLUE, uncertainty, critical loads, soil acidification 36 

 37 

 38 

 39 
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1. Introduction 40 

The many types of uncertainty that can affect policy making and how these can be presented to and 41 

then handled by policy makers, have become topics of increasing interest.  Schneider and Kuntz-42 

Duriseti (2002) considered uncertainty in climate change policy.  They suggested that whilst one 43 

approach is to reduce (bound) the uncertainty by collecting more data, more understanding and 44 

building better models, the other approach is to reduce the effects of (manage) any uncertainty in 45 

understanding by taking it into account in policy making.  This second approach can be traced back 46 

to ideas about ecosystem resilience and recovery after disturbance developed in the 1970s.  47 

Refsgaard et al. (2007) in a review of uncertainty in the context of water management, suggested 48 

that uncertainty in its widest sense can usefully be regarded as the degree of confidence a decision 49 

maker has about possible outcomes and/or the probabilities of these outcomes.  Uusitalo et al. 50 

(2015) suggested that uncertainty analysis can provide decision makers with a realistic picture of 51 

possible outcomes, in a context where results are going to be better or worse, not true or false, i.e. 52 

that environmental problems are ‘wicked problems’.   Whilst some types of uncertainty are 53 

unquantifiable, other types can be quantified through approaches such as sensitivity analysis, the 54 

use of multiple models and exploring the impact of parameter uncertainty.  Here we take a 55 

quantitative approach to uncertainty in the context of recovery from the problem of acidification in 56 

Great Britain. We quantify and then combine the uncertainties in outputs from one acid deposition 57 

model and one measure of ecosystem health to assess whether current emissions reduction policies 58 

are likely to deliver ecosystem protection.  We believe that this is the first effort to combine the 59 

uncertainties in both these elements in a single assessment. 60 

European policymakers have been concerned about the acidification of sensitive soils and terrestrial 61 

ecosystems, driven by emissions of acidic species, sulphur dioxide (SO2) and nitrogen oxides (NOx) 62 

since the 1970s. These concerns have led to concerted policy actions within the United Nations 63 

Economic Commission for Europe (UN ECE) and the European Union (EU), designed to reduce 64 
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emissions and hence, the damaging deposition. The UN ECE agreed the Convention on Long-Range 65 

Transboundary Air Pollution (CLRTAP) in 1979 and has since promulgated a series of Protocols to the 66 

Convention, initially involving SO2 and NOx separately and then combined with ammonia (NH3) under 67 

the Gothenburg Protocol (1999), referred to as the ‘Multi-pollutant, Multi-effect Protocol’. A revision 68 

of the Gothenburg Protocol was agreed in 2012 (referred to here as RGP, see Amann et al., 2012; 69 

Reis et al., 2012). The EU has tackled the need to reduce emissions through a series of directives 70 

focussing initially on Large Combustion Plant (1988 and 2001), giving rise to the National Emission 71 

Ceilings Directive (NECD). In 2005, the EU put forward its Thematic Strategy on Air Pollution, Clean 72 

Air for Europe (CAFÉ) and under this framework is renegotiating the NECD with current 73 

commitments extending to 2029, with new commitments after 2030 (for an assessment of the NECD 74 

see Hettelingh et al., 2013a). Within these policy contexts, the chosen measure of ecosystem 75 

sensitivity was the critical load (CL) (Hettelingh et al., 1995), where the CL is the amount of 76 

deposition the chosen receptor can apparently tolerate without damage being likely (Bull, 1992). 77 

Where deposition was greater than (exceeded) the CL, damage was assumed to occur. CLs have 78 

been developed for a range of receptors (soils, freshwaters and a variety of terrestrial ecosystems) 79 

using a number of different methodologies (for the latest UK information see 80 

http://www.cldm.ceh.ac.uk/, for details of the most recent changes in methodology across Europe 81 

see Slootweg et al. 2015). It has been long recognised that there is variability between 82 

representations of CLs and that there are uncertainties in their calculation (see Zak et al., 1997), but 83 

CLs remain central to policymaking in this area and are an accepted risk assessment tool (Hettelingh 84 

et al., 2013b; Holmberg et al., 2013). The success of any emissions reduction policy is gauged by the 85 

resulting reduction in CL exceedance and system recovery (chemical and biological) (Posch et al., 86 

2012), recognising that any system is unlikely to recover to exactly its pre-acidification state 87 

(Helliwell et al., 2014). 88 

As it soon became evident that CLs would not be achievable across the whole of Europe in the 89 

foreseeable future, the concept of ‘gap-closure’ was adopted to formulate acid deposition policies 90 
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(see Amann et al., 2012 and the references therein). Gap closure implies reducing CL exceedance by 91 

a given fraction, say 50%, and then using integrated assessment modelling to find an equitable and 92 

fair distribution of emission reductions across the European countries to achieve the gap-closure 93 

target. Whilst this is a pragmatic approach, the approach cannot use meeting CLs as its optimisation 94 

target (and hence cannot guarantee complete ecosystem protection) and so a new index of 95 

environmental protection has been defined in terms of reducing ‘accumulated exceedance’ (AE) 96 

which captures both the magnitude and areal extent of exceedance.  This index requires the 97 

combination of both CL and acid deposition data, both of which are uncertain.  98 

The historical reductions in emissions across the EU-28 countries (by 87% for SO2, 54% for NOx and 99 

27% for NH3 since 1990) (European Environment Agency (EEA), 2015) and measured decreases in 100 

deposition, have been reflected by measurable recovery in pH and acid neutralising capacity in many 101 

surface waters (Battarbee et al., 2014; Kernan et al., 2010) and reductions in CL exceedance (De Wit 102 

et al., 2015; RoTAP, 2012). Forward projections of current emission reduction commitments and the 103 

agreement of any additional reductions, however, depend on the application of atmospheric 104 

transport and deposition models, whose outputs can then be compared with CLs to assess the likely 105 

resulting environmental improvement (gains). Acid deposition models are uncertain because the 106 

parameterisations on which they are based and the input parameters that are fed into them, both 107 

contain simplifications and assumptions. CL are also uncertain, as described above. It is important, 108 

therefore, that policymakers have confidence in the outcomes of this modelling procedure 109 

(deposition and CL exceedance) given all the uncertainties inherent in both the atmospheric 110 

transport and CL models and can be assured that the higher costs of additional future emission 111 

reductions (assuming that the cheaper options have already been adopted) will actually increase 112 

protection of sensitive ecosystems and that recovery from acidification will continue. Two questions 113 

therefore arise: 1) can we can really be sure that the emissions reductions proposed to reduce AE 114 

will produce discernible environmental improvement or will they be lost in uncertainty? and 2) does 115 

the change of approach from an absolute target (CL exceeded or not) to a relative one (based on 116 
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accumulated exceedance), change our perception of environmental improvement? Here we address 117 

both these questions. The concerns around the implications of scientific and model uncertainty for 118 

policy making that we address here in relation to acidification are relevant across a range of 119 

environmental issues. 120 

We address our two questions about the impact of scientific uncertainty on achieving environmental 121 

protection, by exploring the impact of uncertainties in one atmospheric transport and deposition 122 

model, the Hull Acid Rain Model (HARM, Metcalfe et al., 2005) and one representation of CL (for 123 

soils), based on the Skokloster classification, by comparing estimates of accumulated exceedance of 124 

CL in 2005 and 2020 and assessing the likelihood of environmental protection across Great Britain 125 

(GB). This builds on an initial assessment of the impacts of uncertainty in HARM on CL exceedance 126 

across Wales reported by Heywood et al. (2006a). We provide a brief description of HARM and set 127 

out our approach to representing uncertainty in HARM and the CL for soils data set. We describe 128 

how we have combined estimates of deposition and sensitivity to acidification (CLs) to yield 129 

estimates of accumulated exceedance (AE) and how we have assessed the significance of the 130 

modelled changes. Our method is illustrated with reference to one 10 km x 10 km grid square in the 131 

Peak District in northern England, before going on to present and discuss the results for the whole of 132 

GB and consider the wider implications of this more rigorous approach for policy making. 133 

2. Methodology 134 

2.1 HARM and the GLUE framework 135 

HARM is a receptor-orientated Lagrangian statistical model which is driven by emissions of SO2, NOx 136 

and NH3 across the UK and the wider European area. Over a number of years, the model has been 137 

used to help in the formulation of acidification control policies in the UK. It provides estimates of 138 

wet and dry sulphur and nitrogen (both oxidised and reduced) depositions at 10 km x 10 km spatial 139 

resolution across the UK. Further details of the model are given elsewhere (Dore et al., 2015; 140 
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Metcalfe et al., 2005; Whyatt et al., 2007). Here, HARM has been run using 2005 emissions estimates 141 

for SO2, NOx and NH3 sources within the UK and the rest of Europe. An illustrative, gap closure type,  142 

scenario was then applied to simulate a possible 2020 emission situation involving a 35% reduction 143 

in SO2 emissions and a 33% reduction in NOx emissions (no reduction was applied to NH3 emissions). 144 

This 2020 scenario was developed before the RGP was agreed, but is broadly consistent with the 145 

UK’s current Gothenburg commitments (DEFRA, 2015). Our SO2 emissions lie within the likely ranges 146 

for 2020, but our NOx emissions are a little high. It is also proposed that UK NH3 emissions will 147 

decline by 2020, by around 12% from the figure used here.  Because our results are likely to be 148 

influenced by the absolute magnitude of the deposition reduction as well as the spatial distribution 149 

of any reduction, our illustrative or hypothetical reduction should be within the bounds of current 150 

projections. 151 

 152 

Policymakers require that any model used for environmental policy formulation should reproduce 153 

real world behaviour adequately. In the present context, this means that an acid deposition model 154 

should reproduce the observed acid deposition fields (see for example Dore et al, 2015; Fagerli et al., 155 

2003; NEGTAP, 2001; RoTAP, 2012). However, any comparison of model results with observations is 156 

never perfect. Inevitably, there is likely to be good agreement for some sites or species and not with 157 

others. There are inadequacies and simplifications in the model together with site dependent factors 158 

influencing the observations. Here, the view is taken that it is difficult to find a set of model input 159 

parameters that uniquely fit the available observations. There may be a number of sets of 160 

parameters, or combinations of parameters that are ‘acceptably’ consistent with the available 161 

observations. This is known as equifinality (Beven, 2006) and results from the difficulty of deciding 162 

between competing parameter sets and models, given the limitation of the observations. Equifinality 163 

implies uncertainty and is the basis for our exploration of uncertainty within HARM. We have 164 

approached this by adopting the Generalised Likelihood Uncertainty Estimation (GLUE) framework. 165 
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In a previous study using HARM, Page et al. (2008) identified a subset of 11,699 HARM model runs 166 

that ‘adequately’ represented observed acid deposition data, allowing the production of deposition 167 

uncertainty distributions across the UK. This subset of ‘acceptable’ model parameter sets has been 168 

used in this study to provide distributions of deposition for 2005 and 2020. Details of the parameter 169 

set ‘acceptance’ criteria and the Monte Carlo parameter set sampling procedure are given in Page et 170 

al. (2008). 171 

2.2 Critical loads for soils 172 

Critical loads for soils were defined and estimated using the steady state mass balance method for 173 

GB (Hornung et al., 1995). CLs were assigned using the dominant soil type at a spatial scale of 1 km x 174 

1 km using the Skokloster categories Class 1 to Class 5 and their distribution across Great Britain (GB) 175 

is shown in Figure 1. Class 1 soils have the lowest buffering capacity (most sensitive) and were 176 

assigned CLs in the range 0 – 0.2 keq ha-1 yr-1. Class 5 soils have the highest buffering capacity and 177 

were assigned CLs greater than 4.0 keq ha-1 yr-1. Soils in Classes 2, 3 and 4 have intermediate levels 178 

of buffering capacity and had their range boundaries set at 0.5, 1.0 and 2.0 keq ha-1 yr-1. Given the 179 

difference in spatial scale between the CL data (1 km x 1 km) and the HARM deposition data (10 km x 180 

10 km), the CL data were aggregated up to the scale of the HARM data, providing the total area for 181 

each Skokloster soil class within each 10 x 10 km grid cell. Aggregating up the CLs in this way does 182 

not change the underlying sensitivity, but masks the spatial distribution and location of the most 183 

sensitive elements within each square. This spatial distribution is only important if there are strong 184 

gradients in deposition within a particular grid square or the assessment of damage is required for a 185 

particular location. At the 10 km x 10 km scale such gradients were not significant and hence the 186 

aggregation process led to no significant loss of accuracy or bias in the CL exceedance. 187 

In total, there were 1467 10 km x 10 km grid squares representing England, 258 for Wales and 1047 188 

for Scotland. No corresponding CL data were available for Northern Ireland and so this country was 189 

given no further consideration in this analysis. Here, the effects of incorporating uncertainties 190 
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associated with the Skokloster CL classifications into the calculation of CL exceedances has been 191 

studied for the 2772 grid squares covering GB, given the uncertain deposition estimates described 192 

above. 193 

Uncertainties in the estimation of CLs were first addressed by Zak et al. (1997) who applied the GLUE 194 

approach to the PROFILE model, a steady state geochemical model that is widely used within the CL 195 

community. Heywood et al. (2006b) used coniferous woodland as an example and showed that 196 

uncertainties in GB CLs varied between 14 – 29%. In further work, Heywood et al. (2006c) reviewed 197 

uncertainties in CL assessments across Europe and established the need for a coordinated effort to 198 

characterise uncertainties in CLs. Skeffington et al. (2007) used Monte Carlo methods to obtain the 199 

output distributions of various CL parameters, having quantified the uncertainties in the input 200 

parameters to the CL models. They showed that estimates of the uncertainties in the CLs for acidity 201 

exhibited coefficients of variation which lay between 25 and 61%, across a range of catchments. On 202 

the basis of the uncertainties estimated by Heywood et al. (2006b) and Skeffington et al. (2007), we 203 

take the view that the uncertainties in actual CLs are likely to be smaller, or at most comparable to, 204 

the ranges in the Skokloster classes outlined above. 205 

The uncertainty in the CLs within each 10 km x 10 km grid square was addressed by assigning the CL 206 

a probability distribution that was evenly distributed within the particular CL range, that is to say, a 207 

‘top hat’ function was assumed, as shown in Figure 2. As there was no HARM model estimated CL 208 

exceedance of the least sensitive (Class 5) soils in either 2005 or 2020, they are not discussed in this 209 

paper. 210 

2.3 Estimating critical loads exceedances and their uncertainties 211 

The methodology employed in the estimation of the uncertain CL exceedances for soils is illustrated 212 

in Figure 2. It consisted of a loop over the 2772 GB grid cells. Within this loop, the 11,699 acceptable 213 
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HARM estimates of total acid deposition for each 10km grid cell were overlaid onto the CL ranges for 214 

each soil class to estimate CL exceedances, as follows: 215 

CL exceedance (keq ha-1 yr-1)   =  acid deposition load  (in keq ha-1 yr-1)  -  CL (in keq ha-1 yr-1). 216 

The accumulated exceedance (AE) of the CLs in a given grid square was calculated using: 217 

Accumulated Exceedance (keq yr-1)  =  CL exceedance x area exceeded 218 

and summing this over all the soil classes in a given grid square. This calculation was repeated for 219 

each of the soil classes and each of the 10 km x 10 km grid squares. 220 

This methodology was then repeated using the 11,699 HARM deposition estimates for the 2020 221 

emission scenario. For each soil class and grid square, the differences in AE (2005 – 2020) were 222 

calculated: these differences were calculated by pairing up the 11,699 HARM estimates for 2005 and 223 

2020 and not drawing them at random from the sets of model runs.  The differences in AE were then 224 

ranked in order and the 5th-, 25th-, 50th-, 75th- and 95th-percentiles were determined for the 225 

distributions of the 11,699 ‘acceptable’ results. 226 

3. Estimating 2005 – 2020 differences in critical load exceedance in the Peak District 227 

To illustrate the application of the methodology in Figure 2, attention is turned to a single 10 km x 10 228 

km grid square located in the Peak District National Park, in northern England (see inset Figure 1). 229 

Class 1 soils occupied 25% of the surface area of this grid square, Class 2 14%, Class 3 22% and Class 230 

4 25%. Total HARM acid deposition declined from 1.29 +0.59
-0.40 keq ha-1 yr-1 (where the quoted 231 

uncertainty range is the 5% - 95% range, equivalent to the 2 – σ confidence interval) in 2005 to 0.93 232 

+0.39
-0.29 keq ha-1 yr-1 in 2020, giving a reduction in acid deposition of 0.36 +0.30

-0.11 keq ha-1 yr-1. 233 

The probability distribution of the HARM model estimates of the difference in AE per class is 234 

illustrated as a box-and-whisker plot in Figure 3. Looking first at the Class 1 (most sensitive) soils, all 235 

11,699 model runs for both 2005 and 2020 gave deposition estimates that exceeded the CL for Class 236 
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1 soils. The 2005 – 2020 difference in AE for Class 1 soils was found to be 895 +493
-290 keq yr-1. On this 237 

basis, the 5% - 95% confidence interval was narrow enough not to encompass zero and it could be 238 

concluded that the difference in AE was statistically significantly different from zero, despite the 239 

uncertainties in the deposition and CLs. However, in Figure 3, it can be seen that the 2 – σ 240 

confidence interval was not exactly symmetrical about the 50-percentile value. This lack of 241 

symmetry implies a degree of skewness in the distribution of the differences in the AEs. Statements 242 

about statistical significance based on the assumption of a normal distribution may not be reliable if 243 

there is a high degree of skew. However, on a cautionary basis, if the range between the 50-244 

percentile and the upper confidence limit was applied at the lower confidence interval, then the 5% - 245 

95% range would still not encompass zero. It was thus concluded that the difference in AE was likely 246 

to be robust, despite the apparent skewness in its probability distribution and the uncertainties in 247 

the deposition and CLs. 248 

The deposition loads exceeded the CLs for Class 2 soils in all HARM model runs in both 2005 and 249 

2020. The AE for Class 2 soils was 1297 +600
-442 keq yr-1 in 2005 and 795 +500

-300 keq yr-1 in 2020, with a 250 

difference in AE of 501 +276
-162 keq yr-1. Since the 2 – σ confidence interval did not encompass zero, it 251 

was concluded that this difference was statistically significant, taking into account the apparent 252 

skewness in its probability distribution. The situation was much the same for Class 3 soils, where the 253 

2005 – 2020 difference in AE was found to be 763 +458
-394 keq yr-1, see Figure 3, and again this 254 

difference was considered to be significantly different from zero. 255 

Looking at the least sensitive Class 4 soils, all 11,699 model runs gave deposition estimates that 256 

exceeded the CL in 2005, but 75% of the model runs met critical loads in 2020. The 2005 – 2020 257 

difference in AE was found to be 84 +511
-84 keq yr-1. The skewness in the distribution for the Class 4 258 

soils is clearly apparent in Figure 3. Uncertainties were so large for the Class 4 soils that they 259 

encompassed zero and so it was unlikely that they could be considered significant because of the 260 

combined uncertainties in the deposition and CLs. We therefore have the situation where in one 261 
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10km grid square, the most sensitive soils show a large and statistically significant reduction in AE 262 

whereas the least sensitive soils show a small reduction, which is not significant. This contradicts our 263 

conventional notion of environmental protection that if you protect the most sensitive elements in 264 

the environment from damage, then you automatically protect the least sensitive. However, 265 

because CLs were actually met for Class 4 soils in three cases out of four, the small difference in AE 266 

and its lack of statistical significance would not be relevant in policy terms. 267 

4. Estimating 2005 – 2020 differences in critical loads exceedance across GB 268 

The methodology illustrated in Figure 2 was then followed for each of the 2772 10 km x 10 km grid 269 

squares across GB. We found that the differences in AE between 2005 and 2020 for all soil classes (1 270 

– 4) showed that the reductions in emissions in our initial scenario reduced CL exceedances 271 

throughout GB. This implies that non-linearities in the relationship between acid deposition and CL 272 

exceedance were unimportant on the GB scale. This is a reflection of the illustrative emission 273 

reduction scenario chosen, where there was no reduction in the emissions of NH3 across the UK and 274 

very limited (4%) reduction across the rest of the EMEP area, hence, non-linearities in relation to the 275 

response of S and oxidised N to changes in the emission of NHx were minimised.  276 

The 2005 – 2020 difference in total AE for Class 1 soils was 354,000 +145,000
-104,000 keq yr-1 (see Table 1) 277 

The probability distribution of the AE differences is shown as a box-and-whisker plot in Figure 4 and 278 

a 2 – σ confidence range did not encompass zero. Despite the uncertainties in the deposition loads 279 

and CLs, this difference in AE was statistically significant. The spatial distribution in the 50-percentile 280 

reductions in AE for the individual grid squares is shown in Figure 5a. The greatest reductions were 281 

found in southern  England, Wales, East Anglia, northern England and in a few scattered locations in 282 

south west Scotland and in the highlands and islands. The 2 – σ ranges in the differences in AE for 283 

the individual grid squares were not evenly distributed about their 50-percentile values. The 284 

dispersion in the AEs about their 50-percentiles showed evidence of skewness, with shorter tails to 285 

low values and longer tails to high values (Figure 4). However, as with the Peak District grid square, 286 
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this dispersion differed only slightly from that shown by a ‘normal’ distribution. Consequently, a null 287 

hypothesis that the AE reductions were due to chance could be rejected with a high level of 288 

confidence. On this basis, it was concluded that the reductions in the AEs for Class 1 soils were all 289 

highly significant at the 99.99% level, despite the large uncertainties in the deposition loads and CLs. 290 

Although the changes for this soil class were small (Figure 4) they are likely to be important for these 291 

most acid sensitive environments. There were a small number of grid squares, on the fringes of GB, 292 

where it was difficult to make any robust statement about the policy significance of any reduction in 293 

AE because of severe skewness.  294 

The difference in Total AE for Class 2 soils across GB was 1,275,000 +460,000
-375,000 keq yr-1, see Table 1 295 

and Figure 4, between 3 – 4 times higher than for Class 1 soils. Again, the 2 – σ confidence range did 296 

not encompass zero and so this difference was highly statistically significant. Although CL 297 

exceedances were generally higher for Class 1 soils, the areas assigned to Class 2 soils were much 298 

larger and so the total AE difference across GB was substantially higher for the latter. Figure 5b 299 

shows the spatial distribution of the 50-percentile AE differences for Class 2 soils for each grid 300 

square. The greatest reductions in AE were found in Wales, Cumbria, south west Scotland and across 301 

the Scottish Highlands. Although the distributions in the AE differences were skewed, the degree of 302 

skewness was considerably less than for Class 1 soils (Figure 4). It was concluded that the reductions 303 

in the AEs for Class 2 soils were all highly significant at the 99.99% level, despite the large 304 

uncertainties in the deposition and CLs. Skewness was a real problem in less than 3% of grid squares, 305 

the bulk of these in the Outer Hebrides. It is difficult to make any robust statement about the 306 

environmental significance of the AE reduction in these locations. 307 

The difference in total AE across GB for Class 3 soils was 1,010,000 +780,000
-565,000 keq yr-1, see Table 1 308 

and Figure 4. This AE difference was somewhat smaller than for Class 2 soils despite their 309 

substantially larger areal coverage because of their lower CL exceedances.  Although the 2 – σ 310 

confidence interval did not encompass zero, there was noticeable skewness in the distribution of AE 311 
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differences. As discussed above, statements about significance may not be reliable if there is a large 312 

amount of skewness. However, as with the Peak District grid square, if the 50-percentile – 95-313 

percentile range was applied at the lower confidence interval, then the adjusted 5-percentile – 95-314 

percentile range would still not encompass zero. It was concluded that the difference in total AE was 315 

likely to be robust, despite the uncertainties in the deposition and CLs.  Figure 5c shows the spatial 316 

distribution of the 50-percentile differences for the individual grid squares containing Class 3 soils. 317 

The largest reductions were found throughout southern and south west England, south Wales and a 318 

band from the west Midlands and into north west England. In all these regions, the reductions were 319 

likely to be highly significant. However in the regions where the reductions were much smaller and 320 

close to zero, skewness was again a real, issue. In ~ 25% of the grid squares, it was considered likely 321 

that the reductions in AE were not significant. This resulted from the situation where CLs and 322 

deposition loads were comparable in magnitude so the combination of uncertainties has become 323 

overwhelming in the estimation of these small AEs. 324 

The difference in total AE across GB for Class 4 soils was found to be 42,000 +275,000
-41,000 keq yr-1, see 325 

Table 1 and Figure 4. The spatial distribution of the 50-percentile differences for the individual grid 326 

squares containing Class 4 soils is shown in Figure 5d. The difference in AE is small and highly 327 

uncertain (the 2-σ confidence range encompasses zero) compared with the above same values for 328 

Class 1 – 3 soils. Deposition and CLs were closely comparable in magnitude and so the uncertainties 329 

in these quantities have been magnified in the estimation of AE differences to the extent that AE and 330 

its differences have become unreliable indicators of ecosystem status for Class 4 soils. Given the 331 

relative insensitivity of this class of soils to acidification it is, however, quite feasible that the 2020 332 

scenario would deliver ecosystem protection.  333 

5. Discussion and Conclusions 334 

In the Introduction, we posed two policy related questions: The first question was if the current 335 

models and the current CL approaches are too uncertain to identify whether proposed emissions 336 
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reductions will deliver discernible environmental improvement; the second question concerned the 337 

impact of the change in the optimisation target from CL exceedance to accumulated exceedance. 338 

We have applied the GLUE methodology to address the uncertainties in deposition models and in 339 

the CLs. We have then developed a realistic hypothetical scenario for 2020 and quantified the 340 

uncertainties in the estimates of the differences in AE between 2005 and 2020. The 2-σ confidence 341 

limits for the AE difference for Class 1 – 3 soils in the vast majority of GB locations do not encompass 342 

zero (see Figure 4) and so are likely to be statistically significant. In relation to question one, we can 343 

therefore say with some confidence that reductions in emissions of the order of 35% will lead to 344 

reductions in AE which are not ‘lost in the noise’ in the deposition and CL modelling. These findings 345 

are consistent with those of other studies for the UK (Helliwell et al., 2014; Majeko et al., 2009; 346 

Oxley et al., 2013;) using a range of modelling approaches.  It is notable, however, that only the 347 

Helliwell et al. study (using the MAGIC model) attempted to include uncertainty  in their assessment, 348 

primarily in relation to model inputs (parametric uncertainty). Far from being too uncertain for 349 

policy use, we have been able to make a first attempt at quantifying uncertainties  in both 350 

deposition and CL at the GB scale and to demonstrate that the uncertainties are small enough that 351 

they can be employed to develop robust policy assessments.  To follow on from Uusitalo et al. (2015, 352 

see Introduction) we can use this approach to give policy makers a more realistic picture of possible 353 

outcomes in tackling this particular ‘wicked problem’. 354 

The second question concerned the impact of the change in environmental target from simple CL 355 

exceedance (or not), to an index of success represented by AE. Using the standard CL approach, with 356 

a single value applied to a deposition grid cell, the degree of protection was assessed only on a true 357 

or false basis (see Introduction).  If the outcome of running a future emissions scenario was false (ie 358 

CL was still exceeded), policy makers were left with the impression that the proposed emissions 359 

reductions would fail to deliver environmental protection.   In contrast, using the AE index gives a 360 

broader measure of better or worse relative to the starting situation, even if CL are not met 361 

completely.   In our 2020 scenario, based on our 11,699 model runs, CLs for Class 4 soils would be 362 
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met 98% of the time.  For Class 3 soils this declined to 67%, for Class 2 soils to 27% and for Class 1 363 

soils (most sensitive) to slightly less than 1% (fewer than 116 runs of the 11,699).  Only on the most 364 

extreme deposition and CL uncertainty outcomes would Class 1 and 2 soils be protected.  This 365 

suggests that emissions reductions in line with current commitments would do little to protect the 366 

most acid sensitive environments across GB (see Table 1).   A simple estimate of the magnitude of 367 

emission reduction needed to provide full protection (based on extrapolation from the 2020 results) 368 

indicated that an emission reduction of around 45% would be needed to protect Class 4 soils 369 

completely (compared with 35% in our 2020 scenario) and of around 85% for Class 3 soils.  Only very 370 

extreme (and probably impractical) reductions would offer protection to the most sensitive soils 371 

(Class 1).  The change of optimisation target from meeting CL to the use of AE has, however, allowed 372 

us to make progress in terms of policy assessment for the most sensitive soils in the face of 373 

uncertainties in deposition models and the CLs themselves. 374 

As the science in deposition modelling and CL assessments develops, there should be a narrowing 375 

(bounding) of uncertainties (see Introduction) and this should lead to a narrowing of the 376 

uncertainties in the emission reductions required to meet critical loads for Class 1 soils. There are 377 

reasons to suppose that some deposition estimates for GB have been overestimated (Dore et al., 378 

2015; see Hall and Smith 2015 for a specific example) and so our conclusions may well have 379 

underestimated the likely improvement in environmental protection afforded by our initial 380 

hypothetical emission scenario. It could be, however, that current emissions reduction targets will 381 

never be able to protect the most acid sensitive environments and that the recovery of both aquatic 382 

and terrestrial ecosystems could take decades, in spite of the marked decrease in exceedance since 383 

the peak in the 1970s and 1980s (De Wit et al., 2015).  384 

The importance of both considering and communicating uncertainty has come to the fore recently 385 

because of the debate around this issue in relation to anthropogenic climate change. The idea that a 386 

quantitative approach to uncertainty should be incorporated into environmental policy making has, 387 
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however, been around for more than 20 years (see Frey, 1992 in relation to the US EPA).  As Cooke 388 

(2015) observes ‘There are formidable pitfalls when reasoning under uncertainty, into which both 389 

the scientific community and the general population repeatedly fall’ (p. 8), but there is no doubt that 390 

handling uncertainty in its various forms is now a key part of developing environmental policy in a 391 

variety of domains, as was suggested by Schneider and Kuntz-Duriseti (2002).  We have set out one 392 

approach to achieving this, focusing on the implications of taking uncertainty into account in 393 

controlling emissions of acidifying pollutants.  It should certainly play a part in developing strategies 394 

for policy initiatives such as the latest iteration of the Convention on Long-range Transboundary Air 395 

Pollution (Gothenburg Protocol, see Introduction) as it attempts to provide the scientific basis and 396 

an effects based approach to addressing a widening range of atmospheric pollutant issues and their 397 

interactions with climate change and biodiversity (UNECE, 2016). The point of this study was to show 398 

how uncertainties could be handled rather than to make a formal assessment of acid deposition 399 

policies, but it is evident that in this case, as in others, uncertainty cannot be used as a reason to 400 

limit action (Drouet et al., 2015). 401 
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FIGURES  516 

 Figure 1 – Single Column 517 

 Figure 2 – Double Column (for legibility) 518 

 Figure 3 – Single Column 519 

 Figure 4 – Single Column 520 

 Figure 5 – Double Column (4 maps) 521 

Figure 1. Critical loads in keq ha-1 yr-1 for the dominant soil type at a spatial scale of 10 km x 10 km 522 

for Great Britain using the Skokloster categories Class 1 (most sensitive: in black) to Class 5 (least 523 

sensitive: in blue) estimated using the steady state mass balance method (Hornung et al., 1995). 524 

Inset shows detail for Peak District grid square. 525 

Figure 2. A sketch illustrating the methodology adopted for the estimation of the 526 
frequency distributions of the differences in accumulated critical loads exceedance in a 527 
given 10km grid square between 2005 and 2020. The upper plots show the CL ranges for 528 
individual soil classes as coloured bars, a) Class 1, b) Class 2, c) Class 3, d) Class 4. The 529 
divisions within these bars indicate sampling within these ranges. The upper middle plots 530 

show accumulated exceedance for each individual soil class under the 2005 (in black) and 531 
2020 (in blue) scenarios.  The lower middle plots show the difference (reduction) in 532 
accumulated exceedance for each individual soil class between 2005 and 2020.  The 533 
bottom  plot (e) shows accumulated exceedance for all soil classes under the 2005 (black) 534 
and 2020 (blue) scenarios.   535 

Figure 3. Box-and-whisker plots of the dispersion in the estimates of the reductions in 536 
accumulated exceedance between 2005 and 2020 for each soil class in the Peak District 537 
grid cell. 538 

 539 

Figure 4. Box-and-whisker plots of the dispersion in the estimates of the reductions in 540 



23 
 

accumulated exceedance between 2005 and 2020 for each soil class across GB. 541 

 542 
Figure 5. Spatial variations in the 50-percentile points of the distribution of the estimates of the 543 

reduction in accumulated CL exceedance between 2005 and 2020 for a) Class 1 soils, b)  Class 2 soils, 544 

c) Class 3 soils and d) Class 4 soils. 545 

 546 

TABLES 547 

Table 1. Percentile points in the reduction in AE between 2005 and 2020 for each Skokloster soil 548 

class across GB in keq yr-1.  549 
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Table 1.  550 

 551 

Percentile Class 1 Class 2 Class 3 Class 4 All classes 

5%-ile 250,000 900,000 445,000 1,000 1,596,000 

16%-ile 283,000 1,030,000 620,000 6,000 1,939,000 

25%-ile 303,000 1,100,000 725,000 12,000 2,140,000 

50%-ile 354,000 1,275,000 1,010,000 42,000 2,681,000 

75%-ile 415,000 1,465,000 1,345,000 111,000 3,336,000 

84%-ile 445,000 1,565,000 1,515,000 167,000 3,692,000 

95%-ile 499,000 1,735,000 1,790,000 317,000 4,341,000 

 552 

553 
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