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Abstract

We use asymptotic techniques to describe the bifurcation from steady-state to a periodic solution
in the singularly perturbed delayed logistic equationε ẋ(t) = −x(t)+ λ f (x(t − 1)) with ε ≪ 1. The
solution has the form of plateaus of approximately unit width separated by narrow transition layers.
The calculation of the period two solution is complicated bythe presence of delay terms in the equation
for the transition layers, which induces a phase shift that has to be calculated as part of the solution.
High order asymptotic calculations enable both the shift and the shape of the layers to be determined
analytically, and hence the period of the solution. We show numerically that the form of transition
layers in the four-cycles is similar to that of the two-cycle, but that a three-cycle exhibits different
behaviour. Asymptotic analysis, Differential–delay equation, transition layers

1 Introduction

The differential-delay equation (DDE)

ε
dx
dt

= −x(t)+ f (x(t −1)), (1.1)

has been used by a variety of authors to model a wide range of physical phenomena, from population
dynamics, as discussed by Gurneyet al (1980), to physiology, where the production of red blood cells
has been described by Mackey (1979); Mackey & Glass (1977); Glass & Mackey (1988) and Wazewska-
Czysewska & Lasota (1976), to the behaviour of an optical cavity resonator, as studied by Ikeda (1979,
1985); Ikedaet al. (1980). In all these cases, the feedback functionf (·) is nonlinear, having the form of a
‘humped’ function, that is, asx increases,f rises to a maximum and then decays. Variants of this system
include a delayed logistic equation of the form dx/dt = λx(t)[1− x(t −1)], analysed by Fowler (1982),
who used asymptotic methods to explain the periodic solution of large amplitude spikes separated by long
small amplitude plateaus.

Equation (1.1) has been analysed using a range of mathematical techniques, for example, Erneuxet
al. (2004) analyse the bifurcation to periodic solutions in theIkeda system. Chow & Mallet-Paret (1983)
investigate chaotic behaviour in singularly perturbed differential-delay equations. Hale & Huang (1994)
proved the existence of periodic orbits of (1.1) in certain parts of parameter space. The form of periodic
solutions has been investigated by Chowet al. (1992) who note that asε → 0, the waves become square,
and have period approximately equal to two. Fowler & Mackey (2002) also note that the limitε ≪ 1 is
singular, and use asymptotic analysis to describe the periodic solution in terms of relaxation oscillations.

Various properties about the form of the solution in the large time limit, and properties of the con-
vergence to the square wave in the limitε → 0 have been rigorously established by Mallet-Paret and
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Nussbaum. Nussbaum (1982) proved the existence of slowly-oscillating periodic solutions. Bounds on
their shape were established by Mallet-Paret & Nussbaum (1986), together with the fact that there may
be multiple periodic solutions and multiple extrema in eachperiod of oscillation. Mallet-Paret & Nuss-
baum (1986) went on to prove that the period of the two cycle is2+O(ε) and, by considering a coupled
problem for the two transition layer functions of the two-cycle, they establish bounds on the overshooting
behaviour. They note that such behaviour is reminiscent of Gibbs phenomena in truncated Fourier series.
The dependence of qualitative properties of the solutionx(t) on the form of the nonlinearityf (·) was
analysed by Mallet-Paret & Nussbaum (1989); in this paper they discuss how the solution profile approx-
imates the square wave solution in the limitε → 0 for several example functionsf (·). Mallet-Paret &
Nussbaum (1993) consider the DDE (1.1) in the case wheref (·) is a step function, and show that in this
case solutionsx(t) do not converge to solutions ofxn+1 = f (xn) in the limit ε → 0, but rather to a modified
map. In contrast to this rigorous work, the approach taken here is to use asymptotic techniques to give
simple explicit expressions for the shape of the transitionlayers.

Adhikari et al. (2008) also perform an asymptotic expansion of the waveform, obtaining an approx-
imation in terms of elliptic functions and an expression forthe period. Using global continuation of
heteroclinic orbits, Chowet al. (1989) prove that transition layers in the periodic orbit are monotone,
provided the nonlinearityf (x) is monotone. Fowler (1997) speculates that the onset of chaos is associated
with a homoclinic connection of a periodic orbit in phase space.

These examples and analyses use a variety of nonlinear feedback functions,f (x); in this paper we
focus on the simplest case, wheref (x) = λx(1−x), which corresponds to the logistic map. This function
is chosen for its mathematical simplicity, as it allows the period two cycle of the underlying difference
equation to be explicitly determined.

In the limit ε → 0, the differential delay equation (1.1) reduces to the logistic map, whose properties
we summarise in the remainder of this section. We also reviewthe Hopf bifurcations in the DDE which
occur for fixedλ asε > 0 is reduced, and which lead to smooth periodic solutions. Insection 2, we show
that whenε = 0 the solutionx(t) has the form of a sequence of plateaus separated by discrete jumps. For
0< ε ≪ 1, these plateaus are connected by narrow transition layers. Thus the bifurcation has quite distinct
properties which the standard Hopf analysis fails to explain. It is the purpose of this paper to describe
this bifurcation in more detail and, in particular, to analyse the form of these transition layers. In order to
facilitate analysis of the transition layers, we introducea reformulation of the problem, both for the general
transition layer, and in particular for the two-cycle. In section 3 we construct asymptotic approximations
to the solutions obtained whenε ≪ 1 andλ is increased throughλ = 3, which is the bifurcation point
where the period two solution is created. Our analysis of this case shares some similarity with that of
Adhikari et al. (2008); however, we avoid the use of elliptic functions. Section 4 contains a numerical
investigation of the transition layers in the period 3 and period 4 cycles. In Section 5 we conclude the
paper with a discussion of the key results.

1.1 Properties of the map

Whenε = 0 the differential-delay equation (1.1) reduces to the logistic map

xn+1 = λxn(1− xn), (1.2)

which has been extensively studied, for example by May (1976) and Holton & May (1993). Here we
summarise the results and properties of this map that are relevant to our later calculations, quoting the
behaviour which is observed in each range ofλ values:

• for 0≤ λ ≤ 1, there is only one fixed point in[0,1], namelyx = 0, and this is stable.

• for 1 < λ ≤ 3, there are two fixed points, namelyx = 0, which is unstable, andx = 1−1/λ , which
is stable.
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• for 3 < λ , the two fixed pointsx = 0 andx = 1−1/λ are both unstable. In this parameter regime,
there is a two-cycle, given by

x± =
1

2λ

[
λ +1±

√
(λ −3)(λ +1)

]
. (1.3)

• for 3 < λ ≤ 1+
√

6 ≈ 3.449 the two-cycle (1.3) is stable and is thus the attractor for the largen
iterates. In this paper, we are predominantly interested inthis range ofλ .

• for 1+
√

6 < λ < 3.544... the two fixed points and the two-cycle (1.3) are all unstable,and a four-
cycle forms the stable long-time attractor.

• asλ increases further (λ > 3.544), there is a succession of bifurcations to increasinglycomplex
behaviour.

1.2 Hopf bifurcation

Chow & Mallet-Paret (1983) consider the differential–delay equation (1.1) and show that there is a Hopf
bifurcation curve in (λ ,ε)-parameter space. We reproduce these results here, partlyfor the sake of com-
pleteness, but mainly to illustrate the qualitative difference between (i) the bifurcation and the form of
solution obtained when one fixesλ > 3 and reducesε, as Chow and Mallet-Paret consider, and, (ii) the
case when 0< ε ≪ 1 andλ increases through the valueλ = 3, which we focus on in Section 3.

Here we make no specific assumptions on the values ofλ ,ε, we treat them both asO(1) parameters.
We seek the region of parameter space where the uniform solution xs = 1−1/λ is stable, by substituting
x = 1−1/λ +δeγt+iωt into the governing equation (1.1) withγ,ω ∈ R and takingδ ≪ 1. At O(δ ) we
obtain

εγ +1 = −(λ −2)e−γ cosω, εω = (λ −2)e−γ sinω. (1.4)

This system of equations forγ,ω can be rearranged to give

tanω =
−εω
1+ εγ

, (1+ εγ)2+ ε2ω2 = (λ −2)2e−2γ . (1.5)

A bifurcation occurs when the growth rate,γ, changes sign: the curve on whichγ = 0 is given parametri-
cally by

ε = − 1
ω

tanω, λ = 2−secω. (1.6)

For smallε, solutions of the former equation can be approximated byω = nπ(1− ε + ε2) for anyn ∈ N.
Substituting this approximation into the latter expression of (1.6) leads to a family of curves in(λ ,ε)-
parameter space which are approximated by

λn(ε) = 3+ 1
2n2π2ε2, or εn(λ ) =

1
nπ

√
2(λ −3), for odd n. (1.7)

The first few curves are illustrated in Figure 1. The solid curve corresponds to the primary Hopf bifurca-
tion, n = 1; the curves corresponding ton = 3,5, . . . yield solutions with higher frequencies.

As well as finding the location of the Hopf bifurcation in(λ ,ε) parameter space, this method enables
us to explicitly find an approximation for the solution,x(t). Fixing λ with 0 < λ −3≪ 1, and reducingε
so that only the primary (n = 1) Hopf bifurcation curve is crossed, in (1.7), that is,

1
3π

√
2(λ −3) = ε3(λ ) < ε < ε1(λ ) =

1
π

√
2(λ −3), (1.8)
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Figure 1: Illustration of the first few Hopf curves in(λ ,ε) parameter space, as given by (1.6). To the left
of the solid line, the steady-state is stable. The solid linerepresents the primary Hopf bifurcation curve.
The dashed curves represent higher frequency instabilities which mean that whenε is arbitrarily small,
the transition that occurs asλ increases fromλ < 3 toλ > 3 involves crossing many Hopf curves almost
simultaneously.

results in a solution of the form

x(t) ∼ 1−λ−1+α sin(πt(1− ε)), (1.9)

with α ≪ 1. On the bifurcation curve, the period of the oscillation,P, is given by the frequencyω, which
corresponds ton = 1, namely

P =
2π
ω

∼ 2+2ε = 2+
2
π

√
2(λ −3), (1.10)

with ε ≪ 1. If ε is reduced further, so that several (1≤ n ≤ J) other Hopf curves are crossed, that is,ε is
given by

1
(2J +1)π

√
2(λ −3) = ε2J+1 < ε < ε2J−1 =

1
(2J−1)π

√
2(λ −3), (1.11)

then a solution of the form

x(t) = 1− 1
λ

+
J

∑
j=1

α j sin((2 j−1)πt(1− ε)), (1.12)

is obtained, which has the form of a truncated Fourier series. These series are known to be subject to Gibbs
phenomenon, which is a term that describes the overshootingbehaviour occurring when a discontinuous
function is approximated by a Fourier series, for more details, see Gibbs (1898, 1899); Arfken (1985).

It should be noted that the solution (1.12) has been generated by fixingλ > 3 and reducingε, crossing
several of the Hopf curves illustrated in Figure 1. In the next section, we analyse the less standard case of
fixed ε > 0 with ε ≪ 1 and increasingλ through the valueλ = 3. Since a large number of Hopf curves
are crossed almost simultaneously, the description of the resulting periodic orbit is complicated by the
nonlinear terms. In Section 3, we propose a different methodof describing the transition from a stable
steady-state solution to an oscillatory state which occursin this case.
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Figure 2: Illustration of a numerical solution of the DDE (1.1), for the caseλ = 3.4 (left) andλ = 3.8335
(right); in both cases,ε = 0.01.

2 Preliminaries

2.1 General numerical results

Figure 2 shows a numerical solution,x(t), of (1.1) for two values ofλ (produced using matlab solver
dde23). The left panel shows a periodic solution with alternating high and low plateaus – a period 2
solution, which occurs whenλ = 3.4 andε = 0.01. There are sharp transition layers between the two
plateaus,x− andx+ with x± given by (1.3), so thatx+ = f (x−) andx− = f (x+). Whenε = 0, that is, for
the one-dimensional map (1.2), this solution is stable for 3< λ < 1+

√
6. When the solution of theDDE

(1.1) is considered withε > 0, the period of the oscillation is greater than two.
The right-hand panel of Figure 2, illustrates the solution of (1.1) whenλ = 3.8335, a value which

corresponds to the stable 3-cycle of the one-dimensional map (1.2). In theDDE (1.1), the plateaus clearly
follow the 3-cycle; however, in theDDE (1.1) the intervening transition layers do not show any formof
periodicity, instead they become increasingly complicated, gaining both in their width and the number of
oscillations. Thus the transition layers clearly show an instability. Our aim is to describe the initial stage
of this development of complexity in the transition layers.

2.2 An approximate Poincaŕe map

In order to describe and analyse the form of the transition layer, we rescale the time variable so that
changes within the layers occur on anO(1) timescale. To achieve this, we writet = n + ετ, so that
εd/dt = d/dτ, and we describe each layer via a different functionψn(τ) = x(t), with n = 0,1,2, . . .. Thus
the DDE (1.1) can be rewritten as

ψn(τ)+
dψn(τ)

dτ
= λψn−1(τ)(1−ψn−1(τ)). (2.1)

We note that this transformation completely removesε from the problem.
The form ofψn(τ) is such that forτ = O(1), ψn(τ) describes thenth transition layer. For large positive

and negativeτ, with 1≪ |τ| ≪ ε−1, ψn(τ) will be a constant, with potentially different constants atlarge
positive and large negative values ofτ. For 1≪ τ ≪ 1/ε, we have

ψn(−τ) ∼ ψ−∞, ψn(τ) ∼ ψ+∞, with ψ+∞ = λψ−∞(1−ψ−∞). (2.2)

We make a distinction betweenτ → ∞ and 1≪ τ ≪ 1/ε sinceτ = O(1/ε) corresponds to subsequent
(or previous) layers, before which,ψn has relaxed to the constants given in (2.2) with exponentially small
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corrections. At leading order, the matching conditions canthen be written in the form

ψn(τ) → ψ(n)
−∞, as τ →−∞, and

ψn(τ) → ψ(n)
+∞ = λψ(n)

−∞(1−ψ(n)
−∞) as τ → +∞. (2.3)

In addition, we haveψ(n−1)
+∞ = ψ(n)

−∞ andψ(n+1)
−∞ = ψ(n)

+∞.
The solution of (2.1) is

ψn(τ) = ψn(σ)eσ−τ +λe−τ
∫ τ

σ
esψn−1(s)[1−ψn−1(s)]ds, (2.4)

for arbitraryσ , which, in the limitσ →−∞, leads to

ψn(τ) = λe−τ
∫ τ

−∞
esψn−1(s)[1−ψn−1(s)]ds := F [ψn−1(τ)]. (2.5)

Due to its integral form, this version of the Poincaré map may be useful for numerical simulations;
however, our asymptotic analysis presented later will use the formulation (2.1). We will call the map
ψn = F [ψn−1] defined by (2.1) or (2.5) the ‘fast map’ since it describes theshape of the transition layers
which occur on the fast timescale. This has a similar form to amap used by Mallet-Paret & Nussbaum
(1993).

2.3 Simulations of the 2-cycle’s transition layers

For 0< ε ≪ 1 and 3< λ < 1+
√

6, we observe from numerical simulations ofx(t), that there is a
periodic solution, with period slightly larger than two. Infigure 3 we illustrate the transition layersψn(τ)
as calculated using (2.5), forn = 0,1,2,19,20,21. This figure shows that successive applications of
the mapF on the discontinuous initial functionψ0(τ) = x− + (x+ − x−)H(τ), produces increasingly
smooth iterates. For largen the iterates are, modulo a phase shift, periodic with periodtwo, that is
ψn+2(τ) = ψn(τ +2s) for some shift, which we write as 2s. Note that in the right-hand panel of Figure 3,
for largerλ , the transition layers arenot monotone, just before the descending layer starts its descent, it
first increases and slightly exceeds the level of the plateau. Thus, in this parameter regime, the fast map
(2.5) exhibits periodic behaviour with a period of two with ashift, s; that is

ψ2n(τ) → ψ̃(τ −2ns) asn → ∞, (2.6)

ψ2n+1(τ) → φ̃(τ − (2n+1)s) asn → ∞. (2.7)

and our aim now is to find the form of the functionsψ̃ , φ̃ .

2.4 Instability of the fixed point of the fast map

The fast map (2.5) has a fixed pointψ(τ) = 1− λ−1, which is the same as the fixed point of the one-
dimensional map (1.2). To investigate the stability of the fixed point of the fast map, we introduce

ψn(τ) = 1−λ−1 +δζn(τ), (2.8)

with δ ≪ 1 and linearising yields

ζn+1(τ) = L [ζn(τ)] := −(λ −2)e−τ
∫ τ

s=−∞
esζn(s)ds. (2.9)

Since this equation is a linear difference equation inn, it has solutions of the formζn(τ) = ρnζ (τ), where
L [ζ (τ)] = ρζ (τ). Due to the form of the operatorL , its eigenfunctions have the formζ (τ) = eiωτ . An
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Figure 3: Illustration of the iteratesψn(τ) plotted againstτ for n = 0,1,2,19,20,21 for the case ofλ =
3.03 (left panel) andλ = 3.4 (right panel). In both panels,ψ0 is the left-most dotted line,ψ1 is the
left dashed line,ψ2 is the left-most solid line,ψ19 is the right dotted line,ψ20 is the right dashed line,
ψ21 is the right solid line. The curves corresponding ton = 0,1,2 have transitions centred on 0< τ < 5
(black curves, on the left side of the graph); whilst those with transitions aroundτ ≈ 20 correspond to
n = 19,20,21, (red curves on the right). The online version is in colour.

instability occurs when|ρ| > 1. The eigenvalues are given byρ = −(λ −2)(1− iω)/(1+ ω2), which
have magnitude|ρ|= (λ −2)/

√
1+ω2. Maximising|ρ| overω to find the first unstable mode, we obtain

ω = 0, corresponding toζ (τ) = 1 andρ = −(λ −2). Thus, asλ increases through the valueλc = 3, ρ
decreases through−1 and there is a period-doubling bifurcation.

After the bifurcation in the nonlinear equation (2.1), the derivative term is small and, to ensure it is
involved in the leading order balance, we require∂τ = O(δ ), hence we introduce a long timescale given
by T = δτ.

2.5 Two-cycle of the fast map

The period-two oscillation of the solution of the DDE corresponds to a two-cycle of the fast map, by
which we mean that the second iterate of the fast map corresponds to a shift in the wave form, with no
change in shape. That is,ψn+2(τ −2s) = ψn(τ) for some shifts, so that if, say,ψn(0) = 1−1/λ then
ψn+2(2s) = 1−1/λ , that is, the crossing of the unstable fixed pointx = 1−1/λ will occur at largerτ
whenn is larger; equivalentlyψn+2(τ) = ψn(τ +2s) or F [F [ψ(τ)]] = ψ(τ +2s).

From the numerics shown in Figure 3, we observe that

ψ2n(τ +2ns) → ψ(τ), ψ2n+1(τ +2ns+ s) → φ(τ), as n → ∞, for fixedτ. (2.10)

Estimatings = 1, we obtain the results plotted in Figure 4. We observe that this leads to an almost com-
plete cancellation of the shift:ψ21(τ +21) is close to being coincident withψ19(τ +19); however, there is
still some difference, hences is not exactly unity. This estimate ofs = 1 in fact slightlyovercompensates
for the shift. In the following section, we use asymptotic techniques to extract a more accurate expres-
sion for the shift,s, and obtain explicit approximations for the shape of the transition regions,ψ(τ) and
φ(τ) = F [ψ(τ − s)]. In particular, note that figure 4 shows that the transition layers are nonmonotone at
larger values ofλ . Both the increasing and the decreasing layers explore the region outside that bounded
by the two plateaus, see in particular the region aroundτ ≈−6.
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Figure 4: Illustration of the iteratesψn(τ − n) plotted againstτ for n = 0,1,2,19,20,21 for the case of
λ = 3.03 (left) andλ = 3.4 (right). In both panels, the dotted square wave representsψ0, whilst ψ1 is the
steeper dashed curve containing a corner, andψ2 is the steeper solid curve;ψ19 is the other dotted line,
ψ20, the other dashed curve, andψ21, the other solid curve, almost coincident withψ19. Note the different
scales on the horizontal axes. The transition layers forλ = 3.03 are considerably more slowly varying
than those forλ = 3.4; also note that at largerλ , there is greater asymmetry in the shape of the transition
layers. Left panel: the more slowly-varying curves correspond ton = 19,20,21, whilst the steeper curves
illustraten = 0,1,2. Right panel: the layers corresponding ton = 0,1,2 are centred at−2 < τ < 0 are
shown in red, whilst those forn = 19,20,21 are centred onτ ≈ −3 and are shown in black. The online
version is in colour.

3 Asymptotic approximation of the 2-cycle of the fast map

3.1 Problem formulation

Given the form of the two-cycle (1.3), we put

λ = 3+δ 2, (3.1)

and write the transition layers as
ψn(τ) = M +αΨn(τ), (3.2)

where

M =
λ +1
2λ

=
4+δ 2

6+2δ 2 , α =

√
(λ +1)(λ −3)

2λ
=

δ
√

4+δ 2

6+2δ 2 , (3.3)

so thatΨn →±1 or∓1 asτ →±∞. To be precise, we requireΨn(±∞) =±(−1)n so that ifn is even then
Ψn is an ‘up’-layer (that is, increasing), and ifn is odd, thenΨn is a ‘down’-layer, (decreasing).

Note that in this subsection, no assumption is made about themagnitude ofδ . Only in the next
subsection (§3.2) do we assume thatδ is small. The effect of the fast map, which determines one transition
layer as a function of the previous layer is given by

dΨn+1

dτ
+Ψn+1 +Ψn = 1

2δ (1−Ψ2
n)

√
4+δ 2. (3.4)

To analyse the two-cycle, with some phase shifts, we introduce

Ψ(τ) = lim
n→∞

Ψ2n(τ +2ns), Φ(τ) = lim
n→∞

−Ψ2n+1(τ +2ns+ s), (3.5)

so that both transition layer functionsΨ(τ),Φ(τ) are increasing. The boundary conditions are thus
Φ(±∞) = Ψ(±∞) = ±1.
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RequiringΨ2n+2 to equalΨ2n modulo the phase shift,s, means that the shape of the transition layers
are governed by the coupled pair of differential–delay equations

Ψ(τ − s)+Ψ′(τ − s)−Φ(τ) = 1
2δ (1−Φ(τ)2)

√
4+δ 2, (3.6)

Φ(τ − s)+Φ′(τ − s)−Ψ(τ) = −1
2δ (1−Ψ(τ)2)

√
4+δ 2, (3.7)

where the determination ofs is part of the problem. Next we write

Ψ(τ) = ξ (τ)+ζ (τ), and Φ(τ) = ξ (τ)−ζ (τ), (3.8)

so thatξ (τ) = 1
2(Φ(τ)+Ψ(τ)) is the average shape of the transition layer, andζ (τ) = 1

2(Ψ(τ)−Φ(τ))
accounts for the asymmetry in the shape of the layers. The quantitiesξ (τ),ζ (τ) are governed by

ξ (τ − s)+ξ ′(τ − s)−ξ (τ) = δξ (τ)ζ (τ)
√

4+δ 2, (3.9)

ζ (τ − s)+ζ ′(τ − s)+ζ (τ) = 1
2δ (1−ξ (τ)2−ζ (τ)2)

√
4+δ 2, (3.10)

together with the boundary conditionsξ (±∞) = ±1 andζ (±∞) = 0.
Thus far, we have not made any use of asymptotic approximations, beyond the fast map in Section

2.2, nor have we assumedΦ(τ) = Ψ(τ), or Φ(τ),Ψ(τ),ξ (τ) have odd symmetry, orζ (τ) is even.

3.2 Asymptotic expansion

We now make use of the approximationδ ≪ 1. Equation (3.10) impliesζ = O(δ ), however, for the
simplicity of later calculations we introduce a slightly modified small parameter,ν, and write

ν = 1
2δ

√
4+δ 2, T = ντ, ξ (τ) = θ(T ), ζ (τ) = νη(T ), with θ ,η = O(1). (3.11)

We note that the boundary conditionsξ (±∞) = ±1 andζ (±∞) = 0 imply

θ(T ) → 1 as T → ∞, θ(T ) → −1 as T →−∞, (3.12)

η(T ) → 0 as T →±∞. (3.13)

Thus equations (3.9)–(3.10) imply

θ(T −νs)+νθ ′(T −νs)−θ(T ) = 2ν2θ(T )η(T ), (3.14)

η(T −νs)+νη(T −νs)+η(T ) = 1−θ(T )2−ν2η(T )2. (3.15)

Note that if we just consider the leading order terms in (3.14), we obtainθ(T )−θ(T) = 0. If we go to the
next order terms, we find(1− s)θ ′(T ) = 0, and sinceθ ′ = 0 is not a possible solution, we requires = 1,
to leading order. However, this has still not generated an approximation forθ(T ). To proceed further, we
expand the delays as

s = S0+νS1 +ν2S2+O(ν3), (3.16)

whereS0 = 1 has already been determined. We also write

θ(T ) = θ0(T )+νθ1(T )+ . . . , and η(T ) = η0(T )+νη1(T )+ . . . , (3.17)

whereθ0(T ), η0(T) are the leading order solutions.
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3.3 Leading order approximation of the 2-cycle

From the leading order terms in equation (3.15) it is clear that η0(T) = 1
2(1− θ0(T )2) and expanding

equation (3.14) toO(ν2) yields

ν(1− s)θ ′
0(T )+ 1

2ν2s(s−2)θ ′′
0 (T ) = ν2θ0(T )(1−θ0(T)2). (3.18)

Using (3.16) withS0 = 1 we obtain an autonomous problem forθ0, namely

θ ′′
0 (T )+2S1θ ′

0(T ) = −2θ0(T)(1−θ0(T )2). (3.19)

Multiplying through byθ ′
0(T ) and integrating fromT = −∞ to T = +∞ we find S1

∫ ∞
−∞ θ ′

0(T )2dT = 0;
henceS1 = 0 (since the integral must be strictly positive). This is thesecularity condition required by the
Fredholm alternative. TheODE (3.19) then simplifies and is solved byθ0 = tanh(T ). More generally, the
dynamics of this equation can be understood using phase planes; the system has a centre at(θ0,θ ′

0) =
(0,0) and saddles at(θ0,θ ′

0) = (±1,0). The homoclinic trajectory joining the two saddles is givenby
θ ′

0 = ±(1−θ2
0) and corresponds to the transition layers, which are our maininterest here.

Retracing our steps to find leading order approximations forΦ(T ) andΨ(T) we recoverΨ(T ),Φ(T) =
θ0(T)±νη0(T ) and, sinceη0(T) = 1

2θ ′
0(T ), the approximations forΨ(T ) andΦ(T ) are simply phase

shifts of θ0(T). Furthermore, sinces = 1+O(ν2), we have also shown that the phase shift is unity to
leading order. In order to determine a more accurate approximation for the phase shift, we go to higher
order inν, where we will also find a correction term for the transition layer. This more accurate shape
will explain the overshooting behaviour and asymmetry of the shape of the layers seen in Figures 3 and 4.

3.4 Higher-order terms

Substituting the expansions (3.17) into (3.14)–(3.15), and recalling that the delay term (3.16) simplifies to
s = 1+ν2S2, we obtain the equations

θ ′′
0 (T ) = −4θ0(T )η0(T ), 2η0(T) = 1−θ0(T )2, η1(T ) = −θ0(T )θ1(T ), (3.20)

1
2θ ′′

1 (T )+2η0(T )θ1(T ) = 1
3θ ′′′

0 (T )−2θ0(T )η1(T )−S2θ ′
0(T ). (3.21)

Using the leading order solutionsθ0 = tanh(T ), η0 = 1
2sech2(T ) to simplify (3.21), we obtain

θ ′′
1 +2θ1(1−3tanh2 T ) = 2(1− tanh2 T )(2tanh2 T − 2

3 −S2). (3.22)

As before, to find the correction to the phase shift,S2, we multiply through byθ ′
0 and integrate overT , to

obtain

S2 = −
∫ ∞

−∞
2sech4(T )(2tanh2(T )− 2

3)dT

/∫ ∞

−∞
2sech4(T )dT = − 4

15
. (3.23)

Thus, for 0< λ −3≪ 1 the shift per iterate of the fast map can be approximated by

s ∼ 1− 4
15ν2 ∼ 1− 4

15δ 2 ∼ 1− 4
15(λ −3). (3.24)

This explains why the unit shift applied between Figures 3 and 4 very slightly overcompensates for the
shift.

Furthermore, the perturbation to the shape of the solution,θ1(T), can be calculated explicitly. The
complementary function for (3.22) has the form

θ1(T ) = A0sech2(T )+B0u(T ), u(T ) = 3Tsech2(T)+3tanh(T )+2sinh(T)cosh(T ), (3.25)
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Figure 5: Illustration of the transition region functionsΨ,Φ plotted againstT including the first correc-
tions to the tanh profile. The dotted lines representΦ = Ψ = ±1 andΦ = Ψ = tanh(T ); the solid line
shows tanh(T)+νθ1(T ), which is nonmonotone, having values below -1 forT in the range forT<∼−1.18.
Here we have chosen a reasonably large value ofν, namely 0.46 to illustrate the behaviour. We also plot in
dashed lines the functions tanh(T)+ν[θ1(T)±0.5sech2(T )], which include the effect ofη0 = 1

2sech2(T)
in (3.29) and (3.30). At smaller values ofν, this simply causes a phase shift in the profile, but this larger
value ofν causes a more significant alteration to the shape. The right panel is a blow-up of the left, to
show more clearly the effect of including the nonmonotonic,or ‘overshooting’ behaviour.

with A0,B0 being arbitrary constants. A particular solution can be constructed by writing

θ1(T ) = A(T)sech2(T)+B(T )u(T), (3.26)

and using the method of variation of parameters, which yields

A(T ) = A0+ 4
5 log(sech(T ))+ 1

10sech2(T )
[
1− 1

3sech2(T)+3T tanh(T)sech2(T)
]
, (3.27)

B(T ) = B0− 1
10 tanh(T)sech4(T). (3.28)

Since the functionu(T)∼ e2T asT →∞, and we require boundary conditions in whichθ1→ 0 asT →±∞,
we chooseB0 = 0. The combinationB(T)u(T) then decays to zero asT → ∞, with B(T )u(T)∼O(e−2T ).
The constantA0 is left arbitrary, as adding a small component, namelyνA0sech2(T ), to the leading order
θ0(T) = tanh(T) solution merely corresponds to a phase shift, namelyθ0(T + νA0) = tanh(T + νA0).
Note that whileA(T) grows linearly withT asT → ∞, the combinationA(T )sech2(T ) is bounded. This
product has the asymptotic decay ofθ1 ∼ Te−2T asT → ∞. The decay of this perturbation is thus slightly
slower than that of the leading order term, whose asymptoticbehaviour is tanh(T ) ∼ 1−O(e−2T ).

Inverting the transformations (3.8) to regainΨ, Φ, we find

Ψ(τ) = tanh(ντ)+ 1
2ν[2θ1(ντ)+sech2(ντ)], (3.29)

Φ(τ) = tanh(ντ)+ 1
2ν[2θ1(ντ)−sech2(ντ)]. (3.30)

These functions are plotted in Figure 5. Since, for smallε, the two-cycle exists for 3≤ λ ≤ 1+
√

6, the
maximum relevant value forδ is δ = 0.449, which yields a maximum value forν of ν = 0.46, which is
the value used in plotting Figure 5.

Relating our final time variableT back to the original variablet, we find

t −n = ετ =
εT
ν

=
εT

δ
√

1+δ 2/4
. (3.31)
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Figure 6: Illustration of the numerical solution of the fastmap (2.1) whenλ = 3.5, corresponding to the
4-cycle of the logistic map. Top left, iterates 1, 5, 9, 13; top right, iterates 2, 6, 10, 14; bottom left, iterates
3, 7, 11, 15; bottom right, iterates 4, 8, 12, 16; in each panelthe iterates are denoted in the order ‘o’, ‘+’,
‘×’ and ‘2’; in each panel the third and fourth iterates appear identical.

We are interested in points in the transition layer, whereT = O(1) andt −n is small. Since bothδ andε
are small parameters, and we expect the above expression to be small, we requireε ≪ δ

√
1+δ 2/4≪ 1.

In the next section we explore cycles with longer periods numerically.

4 Transition layers in the period 3 and 4 cycles

In Figure 6 we plot the transition layers for the four cycle asdetermined by a numerical solution of (2.1).
In the logistic map the four-cycle is stable for 1+

√
6 ≈ 3.449< λ < 3.544. Results are presented for

the caseλ = 3.5 which is in the centre of this parameter range; the plateausare given byx1 = 0.521,
x2 = 0.884, x3 = 0.362, x4 = 0.819. We apply a numerically determined horizontal shift ofs = 0.9 to
the results to show the convergence in shape of transition layers at later iterates. Although six curves
are plotted in each panel, most of those corresponding to later iterates cannot be seen as they lie on top
of each other. The top left panel shows undershooting of the layer (ψ < x1) before converging to the
higher plateau,ψ = x2, whilst the layer plotted in the lower right panel exhibits both overshooting and
undershooting, that is,ψ > x4 and ψ < x1 for differing τ. Thus much of the behaviour discussed in
Sections 2.3, 2.5 and 3 persists in a qualitative fashion forthe period four cycle.

Figure 7 shows the corresponding results for the three-cycle. Here there is no convergence in shape
of the transition layers. Instead, with each iterate, the layers increase in width, gaining additional internal
oscillations. If we attempt to find a shift to superimpose layers on top of each other, there are two natural
choices. Firstly, usings = 0.35, the start of each layer can be made to coincide, as shown inthe left panels
of Figure 7. The shape of the start of the transition layers show no similarity once the move away from the
initial plateau has occurred. More interestingly, a value of s = 2 leads to the right-hand panels of Figure 7,
where the right-hand edges of each layer are superimposed. This shows greater similarity in the shape of
the later parts of the transition layer. For example, note that the dashed and solid black lines are coincident
not just in the final convergence to the plateaus, but also forseveral oscillations beforehand, as shown by
iterates 19 and 22 in the top right panel, iterates 20 and 23 inthe middle right panel, and iterates 21 and
24 in the lower right panel.
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Figure 7: Illustration of the numerical solution for the fast map (2.1) whenλ = 1+2
√

2, corresponding
to the 3-cycle of the logistic map. On the left, a shift ofs = 0.35 is applied so that the left hand edges of
the transition layers coincide. Top left, iterates 1, 4, 7, 10, 13, 16; middle left: iterates 2, 5, 8, 11, 14, 17;
bottom left: iterates 3, 6, 9, 12, 15, 18; in each case, the order in which the iterates are plotted is given by
solid thick line, dashed thick line, medium solid line, medium dashed line, thin solid line and thin dashed
lines. In the right-hand panels, a shift ofs = 2 is applied so that the right edge of the transition layers
coincide. Top right: iterates 1, 4, 7, 10, 13, 16, 19, 22; middle right: iterates 2, 5, 8, 11, 14, 17, 20, 23;
lower right: iterates 3, 6, 9, 12, 15, 18, 21, 24; in each case the order in which the iterates are plotted is
given by: very thick solid line, very thick dashed line, thick solid line, thick dashed line, medium solid
line, medium dashed line, narrow solid line, narrow dashed line.

5 Conclusions

Any differential-delay equation of the form (1.1) which undergoes a bifurcation whereby the steady-state
becomes unstable can be approximated by a quadratic. The analysis of the logistic map thus has a wider
relevance to singularly perturbed differential-delay equations. We have studied such a differential-delay
equation which, in the singular limit of smallε, reduces to the well-known one-dimensional logistic map.
We have shown that as the 1D map undergoes a bifurcation to a period two state, so does the delay
equation.

The analysis of Section 1.2 results in the formula (1.10) forthe period of the oscillation on the bifur-
cation curve. This formula only predicts the period of oscillation on the bifurcation curve (1.7), and is
only valid for the case where harmonic solutions are produced, that is, away from the limit 0< ε ≪ 1.

The solution of the singularly perturbed delay equation (1.1) has plateaus of approximately unit length,
separated by narrow transition layers. In Section 3 we studythe bifurcation which occurs asλ is increased
through the valueλ = 3 with ε ≪ 1. In this case, square wave solutions are produced, and the period
depends on bothλ andε, and these parameters are treated independently in the result (5.1) which holds
for more generalλ −3≪ 1, ε ≪ 1.

By introducing the ‘fast map’, which is an approximate Poincaré map, relating the form of each
transition layer to the previous one, we have generated a further system of differential delay equations for
the shape of the transition layers in the period-two cycle (3.7). In this system, the delay is an unknown
parameter, for which we have generated an asymptotic expansion. The first few terms of this expansion
are given in (3.24). In the original time variable (t) the period is

P = 2+2εs = 2+2ε − 8
15ε(λ −3). (5.1)
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This agrees with the result derived by Adhikariet al. (2008). For any particular choice of parameters, the
period of the periodic solution depends on bothλ andε.

Analysing the fast map using asymptotic techniques, we haveshown that, to leading order, the layers
have a tanh shape, as might be expected. More significantly, in section 3.4 we have shown that the
higher order perturbation terms give rise to more complex behaviour. In particular, the profile has an
asymmetric shape, with nonmonotonic behaviour, and slowerconvergence to the plateaus than the leading
order solution suggests. All these effects become more pronounced asλ increases beyond the bifurcation
pointλ = 3.

The form of the transition layers have been further exploredthrough a numerical solution of the fast
map in the cases of the four cycle and three cycle of the logistic map. In the four cycle, the transition
layers again rapidly converge to one of the four steady shapes. Denoting the plateaus byx1,x2,x3,x4,
there are four attracting shapes for the transition layers,one for each of thex1− x2, x2− x3, x3− x4, and
x4 − x1 layers illustrated in Figure 6. The transition layers between the three-cycle plateaus, however,
do not converge to a steady form. Instead, they grow in width,whilst showing some convergence in the
shape of their right-hand edges. This increasing complexity provides considerable challenges for more
theoretical analyses.
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