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Abstract:

Micro metal droplet deposition manufacturing shows great potential

applications in many industrial areas such as micro circuits printing, thin-wall

metal parts, porous metal parts, and heterogeneous material parts. However,

excessive overlapping of metal droplets in corners deteriorates the quality of

printed parts. To solve this problem, the droplet center-to-center distance must

always keep uniform and be in an ideal range. First, reasons of excessive

overlapping in corners are analyzed and a mathematical model is proposed. Then

droplet center-to-center distance is optimized and compensated according to

corner angle of contour lines and number total of droplets so that the distance

between adjacent droplets is proper. The coordinate of rearranged droplets is

obtained by calculation. To verify this method, uniform solder droplets were
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ejected and deposited on a flat substrate. A series of deposition experiments were

carried out. Some triangle contours were formed. The results show that quality

of the formed parts had been significantly improved by using the proposed

method.

Keywords: excessive overlapping; corners; contour forming; uniform micro

metal droplet deposition manufacturing

1. Introduction

Micro metal droplet deposition manufacturing is an additive manufacturing

technology in which 3D metal parts are fabricated by printing molten metal

droplets. In the process, molten metal droplets are generated to form a metal part

directly without expensive energy source or special powder. Molten micro

droplets deposition process was first put forward by Gao et al. (1994). Later,

uniform metal droplets printing apparatuses were developed. Orme et al. (2000)

developed molten aluminum alloy droplet generator for application to net-form

manufacturing of structural components. Orme et al. (2000) studied enhanced

aluminum properties by means of precise droplet deposition. Liu et al. (2001)

introduced the principle of the solder droplet printing technology and potential

application of the technology in microelectronics industry. Molten metal

droplets ejected by a pneumatic droplet-on-demand generator were investigated
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by Cheng et al. (2005). Some samples such as straight lines, circles, triangles,

grids were formed by the deposition of molten metal droplets by Fang et al.

(2008). Then Fang et al. (2009) discussed heat transfer during deposition of

molten aluminum alloy droplets to build vertical columns. Although several

rapid prototyping systems based on metal droplet had been developed in recent

years to produce various parts, some geometry control problems still exist, such

as overlapping parameter of adjacent droplets, uniform height of contour, and

contour closure. These problems will affect the quality and accuracy of the

formed parts.

Furthermore, the above problems should exist in droplet deposition of the

other materials, as long as they are made of solidifying matter (e.g. polymers

and metals) or even yield stress materials (e.g. hydrogels). The problem is

relevant for a wide range of scales : (1) 1~10 μm droplets, as produced with 

Laser-induced Forward Transfer (LIFT), which is applied in bio-printing (Mézel

et al., 2010), Deoxyribonucleic acid (Colina et al., 2005; Serra et al., 2004) and

metal Nano-paste deposition (Visser, 2015; Zenou et al., 2015). (2) 10~100 μm 

metal and hydrogel droplets (Li et al., 2011; Um et al., 2008), as achieved with

inkjet printing. (3) 100~1000μm metal droplets, as achieved with recently 

developed metal printers, which is concerned by this paper. The addressed

problem will benefit each solidifying droplet-based technique for 3D printing,

so the urgency and broad scope is not limited to
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metal droplets. Subsequently, these problems about geometry control of closed

contour forming will be addressed with a model material (Sn63%Pb37% metal

alloy) in this paper which can be reproducibly ejected as a droplet.

In the droplet deposition process, a single droplet is used as a manufacturing

unit. The size of the metal droplet can’t be changed. Therefore, re-arranging the

position of every micro droplet is an effective method to eliminate the excessive

overlapping in corners which was put forward by Horii et al. (2009), but the

rearranged method has a great influence on the forming accuracy, because actual

scanning path could stray away from the ideal path. Profile error and extruding

aperture for the RP (rapid prototyping) parts were studied using the fused

deposition modeling process by Chang et al. (2011). Algorithm for detecting and

solving the problem of under-filled pointed ends based on 3D printing plastic

droplet generation was also developed by Jelena Prša et al. (2014). However,

there are still some problems about overlapping in corners, uniformity of contour

lines, and contour closure and so on. The above several issues about effective

geometry control of closed contour forming still need to be solved. First, the

reasons of excessive overlapping in corners of contour segments needs to be

analyzed. Second, the contour closure strategy needs to be studied.

In uniform micro metal droplet deposition manufacturing process, if the

droplet center-to-center distance is controlled in a proper range, it is possible to
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eliminate the excessive overlapping in corners. First, reasons of excessive

overlapping in corners is analyzed and a mathematical model is proposed. Then

the droplet center-to-center distance is compensated according to the corner

angle of contour line and the droplet total number in contour line, and the

coordinate of rearranged droplets is obtained.

2. Experimental System and Method

Uniform micro metal droplet deposition manufacturing system is shown in

Fig. 1, which is explored by our team formerly (Luo et al., 2008). It mainly

consists of a three-dimensional platform, a metal melting crucible, a protective

gas system, a pulse generator, a temperature measurement system, and a

substrate heating system. The Numerical Control (NC) code generated by the

host computer is downloaded into the Programmable Multi Axis Controller

(PMAC), which controls the three-dimensional platform to go to the

corresponding positions, then triggers the piezoelectric ceramic. The stress wave

is produced by micro vibration of the bar in the metal liquid. On the peak of the

stress wave, a small amount of liquid is squeezed out of the nozzle. On the trough

of the stress wave, the metal liquid near the nozzle is retracted and separated

from the metal liquid out of the nozzle. Micro metal droplets are ejected onto the

substrate out of the micro-sized nozzle. On the moment of colliding with the

substrate, a hemispherical droplet is formed, the diameter of which is slightly

larger than the diameter of the original one. Then the three-dimensional platform
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is located to the next point position and the next metal droplet is ejected.

Subsequently, the part is piled up layer by layer.

Uniform micro metal droplets were ejected by the above experiment system.

The droplet material was Sn63%Pb37%. The initial temperature of droplet was

573K. Substrate temperature was 293~298K. Back pressure was 3.0~5.0 kPa.

Pulse width time was 1 ms. Oxygen content of environment was 50~60 PPM

(parts per million). Nozzle diameter was 300 μm. 

The parameters involved in the calculation are shown in Table 1.

3. Theoretical Analysis and Results

3.1 Analysis of excessive overlapping in corners

The droplet center-to-center distance between two adjacent droplets is also

called scanning step distance. If the scanning step distance is too small,

excessive overlapping would occur. If the step distance is too far, partial

overlapping takes place. The scanning step distance will be the best, when the

merging height of the two adjacent droplets just is equal to the highest point of

the hemispherical droplets.
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The droplet impacted and solidified on the substrate is defined as a spherical

cap. The theoretical value of the ideal step distance is calculated by the

solidification angle and the diameter of the droplet just ejected from the nozzle

(Qi et al., 2012).

In the ideal state, the distance between every two adjacent droplets is in the

ideal range, but in corners, the smaller the corner angle is, the smaller the actual

distance between two adjacent droplets is than the ideal distance. As shown in

Fig. 2, the actual step distance c' is smaller than the sum of a and b due to a, b

and c' forming a triangle. The actual step distance c' must be smaller than the

ideal step distance c.

Without considering the change of the speed in Numerical Control (NC)

system, the actual step distance between two adjacent droplets in corners could

be represented by equation (1).

180
cos)(2)( 22 

 bbcbbcc (1)

Where, b is the distance from the end droplet to the inflection point, c is the ideal

step distance, c' is the actual step distance, and θ is the corner angle.

A series of corner angles have been used: 0°, 30°, 45°, 60°, 90°, 120°, 150°

and 180°. The related curves were drawn according to the distance from the end
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droplet to the inflection point b as abscissa and the actual distance c' between

two adjacent droplets as ordinate, as shown in Fig. 2, and the ideal step distance

c is supposed to 200 μm.

In the process of forming corners, because of the excessive overlapping of

two adjacent droplets, the actual distance between the centers of two adjacent

droplets in corners is smaller than the ideal step distance. When the corner angle

is smaller or b is closer to half of the ideal step distance, the excessive

overlapping is much more serious in corners.

To solve the problem of excessive overlapping, two conditions need to be

met: (i) The location of droplet deposition is still on the scanning line; (ii) The

actual distance between two adjacent droplets in corners is in the ideal range.

When the corner angle is in the ranges of 0°~45°,or 45°~90° and b <c·cotθ,

the starting distance a and the ideal step distance c could be represented by

equation (2).

sin

c
a  (2)

When the corner angle is 90°~180°,or 45°~90° and b >c·cotθ, It could be

represented by equation (3), as shown in Fig. 3.
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3.2 Analysis of excessive overlapping in the contour closure

The majority of 3D printed objects have a lot of closed contours, which can

only be filled with an integer number of droplets in uniform micro metal droplet

deposition manufacturing. However, the end droplet and the first droplet is

possibly partial or excessive overlapping. Therefore, in order to prevent this type

of defect, a method is proposed to slightly adjust the droplet droplet-to-droplet

distance.

As shown in Fig. 4, excessive overlapping in corners could be solved by

adjusting scanning step distance except in the contour closure. Scanning step

distance is a constant in contour lines. If the distance between the end droplet

and the first droplet of a contour closure is not in ideal range, excessive

overlapping would occur in the contour closure.

To solve the problem, a compensation method is used to adjust the step

distance. And compensation values are equally distributed to the distance

between every two droplets. So forming quality will be slightly affected.

Firstly, the number of droplets on the current line Li is obtained by the

optimized scanning step distance. Then the distance between the end droplet and
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the first droplet at the contour closure is determined. At last, the excessive

overlapping would be eliminated by the step distance compensation.

The number mi of droplets needed for the current line i:








 


c

aL
m ii

i int (4)

Where, mi is the droplet number on the current line i, Li is the length of current

line, ai is the distance from the starting point of the current line i to the first

droplet center.

The sum of ai and all the step distance is equal to the length from the starting

point to the current droplet j:

22 )_()_( syysxxcja jji  (5)

Where, (x_s, y_s) is the coordinate of the starting point of line i, (xj, yj) is

the coordinate of the current droplet j in line i.
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Where, (x_s, y_s) is the coordinate of the end point of line i, k is the slope

of line i.

Combining equation (5) and (6), the coordinate equation of droplet j in line i:
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(7)

The distance bi between the end point of current line i and the end droplet:

cmLb iii  (8)

ai+1 of line i+1 is calculated by bi and θ:

(9)

Combining equation (4)~(8), all the droplet coordinate and bi+1 can be

calculated in next scanning line i+1.

The compensated step distance ccmp:

N

a
cc n

cmp  (10)

Where, an is the distance from the starting droplet of the first line to the end

point of the last line, N is the number of all the droplets on contour.

When the compensated step distance is close to the ideal step distance, the

contour is fully closed. When the contour is longer, the error e between the
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compensated step distance and the ideal step distance becomes smaller, as

shown in Fig. 5.

The error e between the compensated step distance and the ideal step

distance:

N

a
cce n

cmp  (11)

where

N

c
ecan  00 (12)

As the droplet diameter is micron-sized, and the length of the contour line is

centimeter-sized generally, the error could be neglected.

4. Experimental Results

In the process of forming closed contour parts, the geometry shape are

mainly affected by the nozzle diameter, material, droplet spreading and

substrate temperature, etc. In different droplet generation techniques, such as

LIFT, the theory still holds.

The sample is formed by continuous lines. Corners are composed of adjacent

lines. In order to investigate the effect of process parameters on corners, a series
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of experiments were carried out. Firstly, deposition morphology of single

droplet ejected from a 300 μm diameter nozzles was analyzed in order to obtain 

the proper scanning step distance. Then, a closed triangle contour before and

after optimization with three layers was formed.

4.1 Determination of optimal step distance c

Solidification angle θsld is the angle which is formed by tangent line at the

point contacting with substrate. α is complementary angle of θsld.

asld   (13)

Where, the angle α is obtained by height h and spreading radius R, as shown

in Fig. 6(a).

R

Rh 
 arccos (14)

Where, h is the height of spreading droplet; R is the radius of spreading

droplet.

At the case of the ideal step distance, the shape of merger part is a rectangle

at the interface. Width of the rectangle is the ideal step distance c, height of the

rectangle is height h of the spreading droplet, area of the rectangle SABCD is area
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of a single droplet Sdroplet, as shown in Fig. 6. The ideal step distance c is

obtained by equation (15).

(15)

The droplet spreading radius R was 183±10 μm. The droplet spreading 

height h was 345 ±5 μm. The droplet solidification angle θsld was 108°. Step

distance c in the theory was 252.5μm. 

4.2 Closed contour forming

A triangle contour with 3 layers was formed. The triangle angle is

respectively 30°, 60°, 90°. The side length of the triangle is respectively 3mm,

6mm, 5.196mm. The unoptimized sample was shown in Fig. 7(a), the sample

optimized by the corner calculation was shown in Fig. 7(b) and the sample

optimized by the compensation calculation for closed contour was shown in

Fig. 7(c).

The parameters involved in the calculation are shown in Table 2. In no

optimization, a and b is equal to c; In the corners optimization, mi, ai and bi

were calculated by equation (4) and (9); In the contour optimization, ccmp, mi, ai

and bi were calculated by equation (4), (9) and (11). The overlapping error of
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the final droplet was 7.5 pm. The distance between the starting droplet and the

end droplet was fallen from 0.183 mm to 0.027 mm.

When the corner angle of the triangle was 30º, the measurement was shown

that maximum height of the unoptimized sample was about 795 pm, and

maximum height of the optimized sample was about 597 pm. Difference of the

maximum height in corners (30°) is about 98 pm. Height difference of a single

layer is about 32.6 pm. When the corner angle of the triangle was 60°, the

measurement was shown that maximum height of the unoptimized sample was

about 652 pm, and maximum height of the optimized sample was about 558 pm.

Difference of the maximum height in corners (60°) is about 94 pm. Height

difference of a single layer is about 31.3 pm. Quality of the final formed parts

have been improved a lot with the help of the algorithm, especially in corners.

In no contour optimization, the distance between the starting droplet and the end

droplet was not equal to the ideal scanning distance, as shown in Fig. 7(b).

Height of excessive overlapping was 796 pm, which is far higher than the mean

overlapping height. After the contour optimization, excessive overlapping in

contour closure had been eliminated, as shown in Fig. 7(c). The optimized

triangle contour can be fully closed and excessive overlapping does not occur in

corners or the end point.
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5. Conclusions

This paper analyzes excessive overlapping of the corners at the contour-

segments in uniform micro metal droplet deposition manufacturing. The

efficiency of the control strategy has been verified by experiments.

1) The unoptimized actual step distance is smaller than the ideal step

distance in corners. When the corner angle is smaller or distance from the

droplet center to the inflection point is closer to half of the ideal step

distance, the excessive overlapping is more serious in corners.

2) The mathematical model used to solve the problem of excessive

overlapping in corners is effective. Two conditions could to be met:

(i)The location of droplet deposition is still on the scanning line; (ii)The

actual distance between two adjacent droplets in corners is in the optimal

range.

3) The longer the contour is, the smaller the overlapping error of the final

droplet due to non-integer of contour droplet number is. As the droplet

diameter is micron-sized, and the length of the contour line is centimeter-

sized generally, the error could be neglected.

4) The results of experiments demonstrates that a triangle contour can be

fully closed by the geometry control strategy. Quality of the final formed
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parts have been improved a lot with the help of the compensation method,

especially in corners.

5) The compensation method could be applicable to droplet disposition of the

other materials, as long as they are made of solidifying matter (e.g.

polymers and metals) or even yield stress materials (e.g. hydrogels).
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Figures:

Fig. 1 Schematic diagram of uniform micro metal droplet deposition
manufacturing experimental system.

Fig. 2 The actual step distance under different angles θ and different distances
from droplet center to inflection point b.

Fig. 3 Geometry control at different angles.

Fig. 4 Rearrange for droplets position of contour closure

(a)Excessive overlapping in the contour closure; (b) Contour formed by
compensated optimal step distance.

Fig. 5 Error of step distance after optimized.

Fig. 6 The samples with different corner angle.

Fig. 7 Optimization of a triangle sample.

(a) No optimization; (b) Corner optimization; (c) Contour optimization
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Fig. 1 Schematic diagram of uniform micro metal droplet deposition

manufacturing experimental system.
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Fig. 2 The actual step distance under corner angle θ and the distance from the

end droplet to inflection point b.
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Fig. 3 Geometry control at different angles.
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Fig. 4 Rearrange for droplets position of contour closure

(a)Excessive overlapping in the contour closure; (b) Contour formed by

compensated step distance.
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Fig. 5 Error of step distance after optimized.
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Fig. 6 Merge of droplets.
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Fig. 7 optimization of a triangle sample.

(a) No optimization; (b) Corner optimization; (c) Contour optimization.
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Table 1 The related parameters of experiment environment

Parameter Value

Droplet material Sn63%Pb37%

Droplet initial temperature (K) 573

Substrate temperature (K) 293~298

Spraying back pressure (kPa) 3.0~5.0

Pulse width (ms) 1

Deposition distance (mm) 1~5

Oxygen content of environment(PPM) 50~60

Nozzle diameter (μm) 300
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Table 2 The related parameters of optimization calculation

Optimized method
c/ ccmp

(μm)

e

(μm)
i mi

bi

(mm)

ai

(mm)

1 20 0.146 0

No optimization 252.5 0 2 23 0.086 0.106

3 11 0.056 0.166

1 20 0.146 0

Corner optimization 252.5 0 2 21 0.192 0.505

3 10 0.183 0.292

1 21 0.060 0

Contour optimization 245 7.5 2 22 0.129 0.489

3 11 0.027 0.282


