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Abstract  
During the last few years, the understanding of the dysregulated hydrogen ion dynamics 

and reversed proton gradient of cancer cells has resulted in a new and integral pH-

centric paradigm in oncology, a translational model embracing from cancer 

etiopathogenesis to treatment. The abnormalities of intracellular alkalinization along 

with extracellular acidification of all types of solid tumors and leukemic cells have 

never been described in any other disease and now appear to be a specific hallmark of 

malignancy. As a consequence of this intracellular acid-base homeostatic failure, the 

attempt to induce cellular acidification using proton transport inhibitors and other 

intracellular acidifiers of different origins is becoming a new therapeutic concept and 

selective target of cancer treatment, both as a metabolic mediator of apoptosis and in the 

overcoming of multiple drug resistance (MDR). Importantly, there is increasing data 

showing that different ion channels contribute to mediate significant aspects of cancer 

pH regulation and etiopathogenesis. Finally, we discuss the extension of this new pH-

centric oncological paradigm into the opposite metabolic and homeostatic acid-base 

situation found in human neurodegenerative diseases (HNDDs), which opens novel 

concepts in the prevention and treatment of HNDDs through the utilization of a cohort 

of neural and non-neural derived hormones and human growth factors.  

 

Introduction. A brief historical account of cancer-related homeostasis. 
 

In the 1920´s, Claude Bernard had created the philosophical and physiological concept 

of the milieu interieur [1, 2]. Walter Cannon followed with a similar idea and 

terminology to initiate the first studies on homeostasis. From these seminal 

considerations the concept of homeostasis was extended to include acid-base 

homeostasis [3]. These precedents inspired Hans Selye to create his famous General 

Adaptation Syndrome [4]. While the term homeostasis initially referred to a balanced, 

dynamic and systemic physiological situation, the term allostasis refers to multiple 

interactions between the body and cellular systems to maintain a physiological stability, 

given that some of those systems can become overactived or dysregulated [5, 6]. These 

classical medical visions, that considered all body systems and the organism as a whole, 

inspired our interest on how the hierarchical organization of physiopathological acid-

base systemic deviations could be applied to cancer biology. In that vein, we initially 

referred to the cancer situation as a “chronic anti-adaptation syndrome”, a parallel 

concept of allostasis [7], and showed the existence of a systemic alkalotic acid-base 

deviation of the blood of patients with different solid tumors [8].  

During the last few years and after one hundred years of metabolic cancer research 

following the seminal findings of Otto Warburg [9], there has been a fast and growing 

interest on the dysregulation of proton [H+]-related mechanisms, which underlie the 

initiation and progression of the neoplastic process [10-17]. This new pH-centric 

paradigm of cancer is based upon the fact that all cancer cells and tissues have a pivotal 

energetic and homeostatic/allostatic disturbance of their metabolism that is completely 

different from all normal tissues. This is an aberrant regulation of hydrogen ion 

dynamics leading to a reversal of the normal intracellular/extracellular pH gradient 

(↑pHi/↓pHe, or “proton gradient reversal”, PGR) [18, 19], where malignant intracellular 

alkalinization has become a selective and specific hallmark of cancer intracellular 

homeostatic failure, in both solid tumors and leukemias, since it has not been described 

in any other disease process [18].  

This PGR of the cancer cell is associated with the origin of the malignant process and 

with cellular transformation, proliferation, local growth, motility, migration, activation 
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of the metastatic process, resistance to chemotherapy and with the phenomenon of the 

spontaneous regression of cancer [18, 20]. Therefore, measuring intracellular pH (pHi) 

in tumors seemed to be essential for the monitoring of cancer progression and the 

response of cancer cells to various treatments. This is why new methods to determine 

pHi in tumors have been developed [21]. On the other hand, attempts to control and 

reverse the extracellular/intratumoral acidification have been thought to represent a 

viable therapeutic approach to control tumor growth and the metastatic process. To this 

end, proton pump V-ATPase inhibitors (PPI) were initially proposed and have been 

later used in preclinical and clinical studies, but not always succesfully when associated 

to chemotherapy [20, 22-27], as well as in the overcoming of resistance to certain 

chemotherapeutic drugs [23].  Also, the utilization of alkaline diets using bicarbonate or 

other buffer infusions have been tried but proved not to be feasible in bedside oncology, 

either because toxicity or lack of effect [28, 29]. These studies illustrate why it is 

important to take into account that tumor interstitial acidity is a consequence of a 

pathological induction of intracellular alkalinity as a result of proton transport extrusion 

driven by up-regulation of one or more of membrane-bound proton transporters (PT) 

[9]. This is the reason why we support a more etiological, and thus radical therapeutic 

approach rather than struggling directly against the extracellular acidification of 

malignant tumors, which at the most it will be a collateral and beneficial side-effect of 

this new pH-centric approach to cancer treatment. The idea is to induce a selective 

intracellular acidification of cancer cells by blocking acid extrusion through the 

utilization of pharmacological dosages of a cohort of proton transport inhibitors (PTIs) 

[30] and/or other non PT-derived cell acidifiers with known anticancer properties (see 

later sections). Furthermore, PTIs would decrease the extracellular/intratumoral 

acidification of malignant tumors and reverse the tumor-selective malignant PGR 

known to stimulate local invasion and the metastatic process. Thus, intracellular 

acidification becomes fundamental in any attempt to induce a selective apoptosis of 

malignant cells [31-34]. In this review, we will analyze the different classes of 

anticancer drugs currently available to induce cellular acidification as a new approach to 

the treatment of cancer. 

 

Ion channels as a transversal bridge between oncology and research into 

neurodegeneration. 

 

Ion channels contribute in the mediation of important aspects of both cancer and 

neurodegeneration, among which pH regulation is a fundamental one. This makes the 

knowledge of ion channel physiopathology a useful tool for bridging research between 

oncology and neurology. Its study also permits the translation of the pH-centric 

paradigm from the cancer field to some fundamental aspects of the etiopathogenesis and 

treatment of human neurodegenerative diseases (HNDDs). This widening of perspective 

from oncology to HNDDs is developed here as an attempt to embrace two otherwise 

widely separated areas of research within one encompassing and integrated vision 

(transversal research) [35]. This new approach is based upon the fact that these two 

situations are apparently opposite regarding cellular acid-base and H+-related cellular 

homeostatic balance: an alkaline pHi that occurs in malignancy (high pHi-mediated 

anti-apoptosis or pathological anti-apoptosis) while an acidic pHi occurs in certain 

HNDDs like Alzheimer’s disease (AD) (low pHi-mediated “spontaneous” apoptosis or 

pathological apoptosis) (Table 1) [35-39]. Therefore, on the basis of the dynamics of 

the hydrogen ion (H+) both situations belong to opposite ends of a metabolic spectrum 

that determine the fate of cells in cancer and HNDDs. Finally, this integrated 
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homeostatic perspective can also open novel strategies for the prevention and treatment 

of HNDDs through the use of a cohort of human growth factors (hGF) and hormones 

that increase pHi and stimulate cellular metabolism by activating some of the alkalizing 

proton transporters, mainly the Na+/H+ exchanger (NHE), that are over-expressed or 

over-activated in cancer (Figure 1). 

 

Rationale. Proton transport and pH dynamics as an approach to 

cancer etiopathogenesis and treatment. 
 

The primary phenomenon that leads to a reversed hydrogen ion gradient in cancer 

metabolism is the pathological regulation of hydrogen ion dynamics of malignant cells 

and tissues (↑pHi/↓pHe) [11, 18, 19, 40] (Table 1). Seminal research in this area first 

demonstrated that the stimulation of the Na+-H+ exchanger isoform 1 (NHE1) was 

fundamental to oncogene-driven neoplastic transformation. The activation of NHE1 

stimulates proton extrusion with a resultant intracellular alkalinization and extracellular 

acidification [41]. This cytosolic alkalinization was shown to be the primary driver of a 

series of transformation hallmarks, namely, increased growth rate, substrate-

independent growth, growth factor independence and glycolysis in aerobic conditions 

and tumor growth [41, 42]. In addition, it has been demonstrated that some oncogenes 

utilize NHE1-induced alkalinization to induce the cancer specific pH dysregulation of 

cancer cells [19, 43]. However, from pH-driven transformation to tumor growth and 

metastatic progression in different malignant tumors can also be mediated by the 

overexpression and/or overactivation of other PTs like monocarboxylate transporters 

(MCTs) [44-51].  

In the same vein, a direct cause-effect relationship between the elevation of pHi in 

cancer and the multiple drug resistance (MDR) phenotype has also been described by 

different research groups [52-56]. Indeed, the failure to kill tumor cells following 

chemotherapeutic treatment appears to be highly dependent on their resistance to 

undergo intracellular acidification, a situation that is apparently necessary as a prior 

condition that forces cancer cells to engage in a tumor-specific apoptotic or para-

apoptotic processes [31, 33, 57]. This is part of the defensive anti-apoptosis strategy of 

all types of cancer (“the neostrategy of cancer cells and tissues”) [18], known to be 

mediated by multiple and different cellular anti-acidifying mechanisms [53, 58-60]. 

Recently, it has been demonstrated that H+ efflux alone is sufficient to induce dysplasia 

and potentiate growth and invasion by oncogenic Ras and, furthermore, that inhibiting 

this H+ efflux produced cell death in invasive primary tumor cell lines that was related 

to a secondary mitochondrial depolarization [61]. Similar results have been obtained by 

the group of Fliegel, showing that NHE-mediated H+ extrusion by itself has a 

carcinogenic effect on breast cells [62, 63]. In these studies, NHE1 hyperactivity 

appears to be an early and decisive driver in breast cancer carcinogenesis [42]. 

Furthermore, an increased pHi and increased proton efflux with a secondary acidified 

microenvironment has been implicated in the transition and progression from 

precancerous ductal carcinoma in situ to invasive breast cancer, with the precancerous 

lesion already showing a higher than normal proton export rate [64]. We agree with the 

conclusion that H+ efflux is the main and final cause of breast cancer, independently of 

the many other mediating factors that can be involved in the development of this cancer. 

Moreover, this seems primary to the fact that a very acidic extracellular 

microenvironment secondary to proton transporters (PTs)-mediated H+ efflux is known 

to be a specific hallmark of all malignant tumors [11, 12, 19, 61, 65]. In these very 

hostile conditions, cancer cells of all tissue origins and showing different genetic 
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alterations defend themselves from highly toxic microenvironment by activating H+ 

efflux through a series of proton pumps, exchangers and transporters [11, 19, 22, 66]. 

Thus, the induction of a selective intracellular acidification of cancer cells with PTIs 

and/or PPIs [22] in-order-to block different PTs, either singly [67-70] or simultaneously 

[30], and/or with other cell acidifying molecules of different origins and natures is 

increasingly becoming a promising choice in a new and different attitude towards 

modern cancer chemotherapeutics [9, 13, 33, 71-76].   

 

Searching for universal root-mediating mechanisms of pH-related 

carcinogenesis. 

A cancer-specific intracellular alkalosis represents a common final pathway in cell 

transformation and an anti-apoptotic defensive mechanism in cancer cells. This has been 

demonstrated to be induced by a myriad of factors. These include the 

overexpression/hyperactivity of different PTs apart from NHE [11, 19, 49, 51, 77-84] 

and PPs [85], the MDR promoting effects of certain oncogenes, virus and viral proteins, 

gene products, like Bcl-2 [58, 86], a dysfunctional p53, various growth and/or trophic 

factors (GFs) [87-91] and a number of chemical carcinogens. Other carcinogenic NHE-

related factors are chronic hypoxia and hypoxia-inducible factor (HIF) [66, 92], 

different hormones and even high glucose loads [93] (Table 2 and Figure 1).  

Importantly, if a myriad of unrelated factors coming from many different origins and 

natures are carcinogenic, we are constrained to hypothesize that the hyperactivity of 

NHE1 and its pHi raising ability, as well as the overexpression of other PTs, may 

constitute a general phenomenon that can perhaps be extended to many other 

unidentified carcinogenic factors. This seems to suggest “a universality of phenomenon 

involved in human carcinogenesis” (Table 2) [41, 58, 59, 87-89, 94-98]. Or, in other 

words, as Otto Warburg wrote concerning his famous, however controversial, “damaged 

respiration” theory [99] on the primary cause and origin of cancer: “there are 

uncountable secondary causes: almost everything causes cancer, even time” [100, 101]. 

This statement by Warburg saying that even “time” causes cancer seems to be 

confirmed by recent research showing that NHE activity increases during ageing in 

humans [102]. Finally, environmental acidification, mediated by overexpression of 

either NHE and/or other PTs, is known to play a role in hindering DNA repair, 

increasing mutagenesis and driving genomic instability in cancer [103-111]. Thus, the 

acidic pHe role in genomic instability can be considered as the last step in closing the 

vicious cycle of a single and multidimensional process ending up in a very dynamic and 

highly self-organized chaos (“the neostrategy of cancer cells and tissues”) [9, 18]. 

Incidentally, some recent reviews on environmental carcinogenesis have not taken into 

consideration this association between pH/NHE1/PTs and environmental carcinogenesis 

[112, 113]. However, other groups have paid close attention to these observations [96]. 

Finally, DNA damage has also been associated with NHE1 expression, intracellular 

alkalinization and Bcl-xl deamidation, this preceding apoptosis in different tumor cell 

lines. No matter that this may seem to be a paradox at first sight, since cell 

alkalinization has rarely been associated with apoptosis [114], this association can also 

help to link the new pH-centric paradigm with the classical DNA-paradigm in cancer 

research and treatment.  
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Going after NHE1: further along the new anticancer road.  
 

Indeed, as described above, it is well established that there is an increased expression 

and/or activity of one or more of the pH regulators in most or all cancer cells of 

different origins [19, 46, 72, 115, 116]. Among all the known pH regulators, the Na+/H+ 

exchanger type 1 (NHE1) has drawn a lot of attention because not only it is 

overexpressed but also over-activated in many kinds of cancer cells, from breast to 

ovary [42, 63, 65, 117, 118]. Besides, its hyperactivity is associated with cancer cell 

survival, migration, invasion and metastatic progression [65, 119]. NHE1 catalyzes the 

electroneutral exchange of H+ and Na+, driven by the inwardly directed electrochemical 

Na+ gradient [120], and it is ubiquitously expressed at the plasma membrane of all 

mammalian cells. It is considered to be a “house-keeping” intracellular H+ regulator, 

protecting normal cells from intracellular acidification [121]. NHE1 is quiescent at 

physiological pHi (pHi ≥ 7.2), but its activity increases rapidly upon intracellular 

acidification following a dimeric Monod-Wyman-Changeux cooperative mechanism 

[122]. Its activity is tightly regulated and its sensitivity to pHi is increased in situations 

that can be found in the context of cancer, such as when it is activated by growth 

factors, hormones, different mitogens and environmental carcinogens [123-125] (Figure 

1). Finally, it is also involved in cancer cell motility and matrix degradation [126, 127] 

despite a relatively low alkalinized pHi [65]. For all these reasons, during the last few 

years NHE1 has become a very important target in selective cancer therapeutics [9, 67, 

71, 86, 115, 128-131]. Most recently, inhibition of NHE1 and cancer proton reversal 

have been correctly regarded as the latest concept in cancer treatment [22, 30, 51, 132, 

133]. 

 

Anticancer and other diseases potential of the new and potent NHE 

inhibitors. Cellular acidification and apoptosis. 
 

Decreasing NHE1 expression or inhibiting its activity leads to hyperacidification of the 

intracellular space, inhibition of glycolysis, tumor cell growth arrest and selective 

apoptosis [33, 134, 135]. Indeed, it has been shown that cariporide (CP, HOE 642), a 

selective and potent NHE1 inhibitor, reduces proliferation and induces apoptosis 

through a decrease of intracellular pH and induces apoptosis in cholangiocarcinoma 

cells [136]. While intracellular acidification inhibits the expression of vasoendothelial 

growth factor (VEGF) when NHE is inhibited [137], cariporide also inhibits 

angiogenesis and the growth of leukemia cells by inhibiting the Na+/H+ exchanger, 

[138]. Cariporide has also been proved to be useful in overcoming metastatic 

progression and multiple drug resistance (MDR) [139]. 

Furthermore, in combination with inhibitors of the Na+-dependent Ca2+ transporter, 

cariporide induces a non-apoptotic death in glioma cells [140]. In the same line, 

cariporide acts synergistically with erlotinib in reducing growth and invasion of 

pancreatic ductal adenocarcinoma (PDAC) [141]. Regarding cariporide, it is most 

surprising that it has not raised any interest to facilitate its preclinical and/or 

translational research in the field of oncology, more if its international patent literally 

reports that “there is a surprising prolongation of life of cancer in the elderly to an 

extent which has to date been achievable by no other group of drugs or by any natural 

products. This is a unique effect of NHE inhibitors like cariporide (CARIPORIDE 

PATENT WO2004007480, SANOFI-AVENTIS, 2005).  

Importantly too, the 5-aryl-4-(4-(5-methyl-1H-imidazol-4-yl) piperididn-1-yl) 

pyrimidine analog (compound 9t) was reported to be 500-fold more potent against 
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NHE1 than cariporide and to have a greater selectivity for NHE1 over NHE2 (1400-

fold) [142]. Additionally, compound 9t is orally bioavailable, has low side effects in 

mice and shows a significantly improved safety profile over other NHE1 inhibitors 

(BRISTOL-MYERS SQUIB PATENT  WO 01 27107 A2, PCT/US00/27, 2001,US 

6887870 B1; EP 1224183 B1).  Surprisingly too, this drug has never been tested as an 

anticancer drug to date and, somehow, has been lost “missing in inaction” due to a lack 

of further interest by the discoverers and/or patent holders concerning its possible 

utilization in preclinical and/or clinical oncology and in spite of its most promising 

antitumoral characteristics and selective anticancer potential. 

Another potent and selective NHE1 inhibitor, the aminophenoxazine derivative Phx-3, 

has been shown to trigger apoptosis in a variety of cancer cell lines. In animal models, 

Phx-3, effectively and without noticeable toxicity reversed tumor growth after 

subcutaneous injection of adult leukemia cells [31, 57]. In any case, these new and 

selective NHE1 inhibitors show a great potential to become potent anticancer agents in 

preclinical trials and, eventually, in cancer patients. At the present time, research along 

this line in different malignancies shows that several PTs and their inhibitors are very 

selective as diagnostic, predictive and potential anticancer agents [54, 69, 143].  

On the contrary, while decreasing intracellular pH induces a cell death program (CDP), 

apoptotic, para-apoptotic or necrotic, in malignant cells, the elevation of cellular pH by 

different methods protects cancer cells by preventing them from entering the apoptotic 

cascade. In this case too, this suggests a universality of phenomenon concerning the role 

of pH in cell fate [144]. Interestingly, clinical trials using the new NHE inhibitor 

rimeporide are being conducted in neuromuscular processes like Duchenne Muscular 

Dysthropy, the only disease outside the cancer context where a high pHi has been 

shown to be involved in its pathogenesis [145, 146]. In terms of mechanisms, it is 

known that decreasing intracellular pH induces a cell death program, either via 

apoptosis, para-apoptosis or necrosis, while the elevation of cellular pH by different 

methods protects cancer cells by preventing them from entering the apoptotic cascade. 

On the low pHi therapeutic-apoptotic side, striking results in leukemia cells were 

initially reported with the amiloride derivative and potent NHE1 inhibitor 5-(N,N-

hexamethylene) amiloride (HMA). This compound decreases the pHi below the survival 

threshold leading to selective apoptosis in a variety of human leukemic cells [33]. An 

increasing number of later studies in the same line have led to the conclusion that 

inducing a low pHi-mediated apoptosis can be a cancer-specific therapeutic strategy for 

all cancer cells and tissues [13, 35, 62, 68, 69, 134, 137, 147-152]. Most recently, HMA 

has shown selective cytotoxicity to breast cancer cells irrespective of their molecular 

profile, proliferative status or species of origin, suggesting a necrotic cell death 

mechanism common to all mammary tumor subtypes [153]. Moreover, acting not only 

on NHE1 but also on other PTs leads to a significant control of malignant growth and 

tumor angiogenesis, also showing an important role in the overcoming of MDR [137, 

138, 154-157]. The final aim should be to target the selective acid-base disruption of 

cancer cell metabolism based on the H+-dependent thermodynamic advantages that 

malignant cells possess over their normal counterparts, in order to exploit such 

differences in selective cancer therapeutics.  

Interestingly, Marches et al. elegantly showed the intimate link between cancer 

biochemistry, molecular biology and cancer-related immunity by demonstrating that the 

anti-IgM-mediated induction of cell death in human B lymphoma cells is dependent on 

NHE1 inhibition and subsequent intracellular acidification. This important publication 

conceptually unified three different fields of oncology research: biochemistry, 

molecular biology and cancer immunity under one wider embracing unit [52, 158]. The 
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concerted utilization of PTIs as a primary cancer treatment, as well as an adjuvant 

measure in overcoming MDR, has been advanced by our group in several publications 

approached from different perspectives, ranging from basic physics to bedside 

therapeutics [35, 52, 133, 159]. A successful, etiological/radical treatment in cancer 

would thus be mediated by the activation of an acidic pHi-mediated apoptotic chain 

reaction cascade ending in cancer cell death (therapeutic apoptosis) (Tables 1 and 3). 

Finally, preliminary trials in a clinical setting using different PPs and PTIs, either on 

their own or associated with chemotherapy, have been recently published in basic 

studies [141], animal models [160, 161] and humans patients with cancer [22, 133, 161-

164]. However, some recent studies have shown a negative effect of the combination of 

certain chemotherapy protocols with proton pump inhibitors [27, 165]. 

 

pH dynamics and multiple drug resistance (MDR): an integral 

approach. 

Historically, there have been different theories concerning MDR in cancer. The first one 

that was put forward stemmed from basic pharmacokinetics and the impact of 

protonation in drug uptake into the body from the acidified stomach. This theory states 

that low extracellular pH should oppose drug uptake since drug protonation impedes 

their transmembrane movement across the cellular bilayer membrane, especially if the 

drugs are weak bases, such as doxorubicin (pKa~8) [23, 56, 166]. While this can apply 

to weak bases, the pH gradient should not interfere with drugs that are weak acids or 

neutral. To understand the efflux of drugs in these cases, a P-glycoprotein (P-gp)-

mediated resistance was then suggested. Initially, the P-gp approach to justify MDR 

seemed to fit with all the most important aspects of biochemistry. However, little 

attention had been paid until recently to the fact that drug-handling via P-gp also needs 

a pH gradient to function. So, the question as to whether and how the drugs come into 

contact with P-gp to be expelled has remained open for a long time.  Furthermore, the 

ability of P-gp to handle, literally, almost hundreds of chemically different compounds 

challenges the notion of specificity (defined as very high affinity). Indeed, how a single 

glycoprotein can interact so efficiently with all those chemically different compounds is 

at least paradoxical.  

To resolve this and other issues, a more integrated mechanism to explain MDR has been 

recently developed. This is based upon the modification of the dynamics of the tumor 

microenvironment through changes in the extracellular and intracellular pH [54, 55, 95, 

167-174]. This model highlights the impact of the pH gradient in P-gp expression [175]. 

It has been demonstrated that the pH gradient stiffens cell membranes, constraining 

drugs to remain trapped within them for longer times, thereby increasing the probability 

of drug-P-gp interactions followed by extrusion [166, 172, 173, 176]. In this context the 

term “stiffening” refers to an imbalance between lipid interaction forces due to a pH 

change (Figure 2). From a parallel therapeutic perspective of pH-related resistance to 

therapy, the specific acid-base abnormalities of cancer metabolism significantly 

contribute to decrease, and even completely block, any immune reactivity against 

malignant tumors [177]. In all these cases, the therapeutic failure to induce cytoplasmic 

acidification and/or reverse PCR has been proposed to be the main underlying factor for 

MDR, because it also means resistance to the induction of the low pHi-mediated 

therapeutic apoptosis in either normal, slightly alkaline and/or highly alkaline cancer 

cells [18, 58, 150, 151]. The expression of P-gp leading to an elevation of pHi also 

correlates with a decreased plasma membrane potential in cancer cells, an electrical 

change that for a long time has also been regarded as a potent mitogenic and 
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carcinogenic stimulus [178]. This is apparently due to a pH-related P-gp overexpression 

and not to exposure to chemotherapeutic drugs [179, 180]. In line with this hypothesis, 

P-gp mediated resistance to imatinib in BCR-ABL-positive leukemia is reversed by 

NHE1 inhibitors like cariporide [181]. Similarly, intracellular acidification both 

decreases P-gp resistance in leukemia cells with high P-gp expression while also 

increases the cytosolic accumulation of drugs like doxorubicin [182]. Further, P-gp 

expressing cancer cells exhibit a significantly higher pHi than non-P-gp expressing 

cells, which to a certain degree accounts for the P-gp-mediated resistance [52]. Indeed, 

the fact that cells with an active P-gp transporter show a high degree of cytoplasmatic 

alkalinization has led some authors to conclude that P-gp can be mainly considered as a 

proton extrusion pump [159, 168, 171, 183]. Finally, intracellular acidification down-

regulates P-gp, while extracellular acidification increases the activity of P-gp and 

induces MDR in rat prostate cancer cells and tissues [184] as well as in other tumors 

[185].  

 

An integral interpretation of the Warburg effect for a selective 

antimetabolic approach to cancer therapy. 

Another unique hallmark of cancer cells is their shift to glycolytic metabolism over 

oxidative phosphorylation (OxPhos), even under aerobic conditions. This was first 

described by Otto Warburg [186] and it is known as the Warburg Effect [100, 101]. 

During the last decade, the number of publications that explain the Warburg effect and 

how it functions have increased dramatically. However, apart from considering its early 

role in oncogenesis, a full explanation of the dynamics of its development in cancer 

cells and how it leads to cancer is still unresolved [187]. Early experiments of controlled 

oncogene activation showed that the first appearance of glycolytic metabolism occurs 

very early in the oncogene-driven transformation of normal cells and that its 

development was dependent on the initial oncogene-dependent cytoplasmic 

alkalinization [188, 189]. Indeed, as both the processes of OxPhos and gycolysis are 

exquisitely but oppositely pH sensitive, a rapid shift of cell metabolic patterns follows 

alkalinization. No matter that these concepts belong to the new pH-centric paradigm, a 

discussion of the effects of acid-base changes on glycolysis and the dependence of the 

metabolic balance between glycolysis and oxidative phosphorylation on pH was already 

described more than four decades ago. However, at that time there was the exclusive 

emphasis on a physiological and not on an oncological perspective [190]. 

Besides, there is increasing evidence that both pHi and pHe are important in driving this 

ever increasing dependence on glycolysis and decreasing dependence on OxPhos as the 

tumor progresses [134, 191]. Indeed, as both the processes of OxPhos and gycolysis are 

exquisitely but oppositely pH sensitive, a rapid shift of cell metabolic patterns follows 

alkalinization. Besides, a great deal of evidence supports the fact that it is the alkaline 

pHi present in cancer cells which is the primordial driver of this metabolic shift, and 

that this change is one of the ‘corner-stones’ in the altered metabolism underlying 

neoplastic transformation and progression and such reciprocal metabolic shift may well 

be one of the most sensitive pHi sensors of a cell. This adds further weight to the 

current opinion that among the uncountable allosteric factors that regulate the glycolytic 

sequence, the intracellular pH (pHi) is by far the most decisive one [71].                                                                                                                            

Indeed, recent publications also lead to the conclusion that the Warburg Effect may be 

completely explained through the elevation of pHi in cancer cells [31, 57, 71, 192].  

Lower extracellular pH (pHe) (in both the presence and absence of extracellular lactate) 

also shows profound effects on tumor cell gene expression, including genes involved in 
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glycolysis [103]. Furthermore, the inhibition of NHE1 results in changes in the 

expression patterns of a number of genes including many that regulate cellular 

metabolism [193]. Recently, the relationships between pH and every step of the 

glycolytic chain, as well as the metabolic changes relating pH, glycolysis and the 

pentose phosphate pathway and their respective roles in tumor metastasis have been 

thoroughly reviewed [71, 194]. Therefore, these complex dynamics of the role of pH in 

intermediary metabolism starts with the first oncogene-driven pHi change and it is this 

very early alteration of pH dynamics and the consequent metabolic disruption, which 

sets the stage for the conditions necessary for tumor growth and metastatic progression, 

further illustrating the pH-centric paradigm for carcinogenesis and metastasis.  

Interestingly, neoplastic progression is considered to be the result of a clonal selection 

of increasingly more aggressive cells. However, the accumulation of genetic defects 

resulting in malignant cells is faster than theoretically predicted. Recently, this 

contradiction has been solved with the observation that the tumor microenvironment 

drives the selection of aggressive cells within a tumor by contributing to tumor genetic 

instability [104-106]. Thus, cancer is a prototype of the paradigm of a positive feedback 

of genotype and phenotype interactions in which the resulting phenotype from the initial 

genotypic alteration promotes further genotypic alterations in a self-fed vicious and 

thermodynamically-wise advantage cycle [43]. This fundamental role of pH regulation 

(driven by NHE1 and other proton transporters) in modulating cellular metabolism is 

perhaps not surprising considering the postulated role of an ancient NHE together with 

ATP synthase in the origin and development of chemiosmotic coupling and 

bioenergetics [195]. Indeed, the proper functioning of mitochondrial OxPhos 

metabolism is dependent on a high, constant and finely regulated cytosol-mitochondrial 

proton gradient [43, 196, 197]. 

pH and the Warburg effect in therapeutics. 

From the therapeutic point of view, inhibiting tumor glycolysis [198] and reversing the 

Warburg effect by selective intracellular acidification has already been considered as a 

treatment in cancer therapeutics [31, 95]. Indeed, in the light of both older and more 

recent contributions [19, 31, 199, 200] it can be concluded that counteracting the 

Warburg effect and aerobic glycolysis to selectively induce intracellular acidification 

and/or reverting PGR in cancer cells now appears to represent the same phenomenon [9, 

31, 57]. This advances a rational and firmly based approach to cancer treatment of all 

malignant tumors. In summary, the most potent and promising amiloride and non-

amiloride derivatives, such as Cariporide, Phx-3 and compound 9t [57, 71, 142] need to 

be urgently included in pre-clinical and clinical trials as an important part of the 

anticancer armamentarium, either alone as single anticancer drugs and/or associated to 

other synergistic methods and therapies, such as antiangiogenics [137, 138]. In addition, 

the most potent NHE1 inhibitors, as well as other PTI inhibitors, should be considered 

as chemotherapeutic agents on their own, since they are able to induce intracellular 

acidification and/or reverse the abnormal PGR of cancer cells and tissues. It can be 

advanced that they show a great promise as a new and selective approach to the 

treatment of a wide array of different malignant tumors, even leukemias, and their use in 

bedside oncology should help to overcome the present impasse and flat progress in 

cancer treatment [201]. 
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Non-proton transport intracellular acidifiers with strong anticancer 

properties. 

 
There is a large family of cellular acidifiers not directly related to PTI that have shown 

strong anticancer properties and, here, are considered as a group for the first time. 

 

Salinomycin 

Salinomycin is a K+ ionophore antibiotic isolated from Streptomyces albus known to 

have a strong anti-cancer activity. Salinomycin kills cancer stem cells in different types 

of human cancers by interfering with ABC drug transporters, the Wnt/β-catenin 

signaling pathway, mitochondrial function and other CSC pathways [202, 203]. By 

comparing the chemical structures and cellular effects of this drug with those of 

valinomycin (K+ ionophore) and nigericin (K+/H+ exchanger), these authors concluded 

that salinomycin mediates K+/H+ exchange across the inner mitochondrial membrane. 

Clinically, this drug has been able to induce partial regressions of heavily pretreated and 

therapy-resistant cancer patients [204]. The antitumor mechanisms described for 

salinomycin activity include the efflux of intracellular K+ and a reduction of pHi, an 

increase in intracellular Ca2+ and a down-regulation of MDR. Such antitumor 

mechanisms are connected to its strong affinity especially to potassium cations. 

Salinomycin promotes the outflow of K+ from the mitochondria as well as cytoplasm, 

and similar to other ionophores mediates in a H+ /K+ exchange across lipid membranes. 

This in turn leads to an increase in intracellular Ca2+ and a down-regulation of MDR 

[205]. However, the inhibition of mitochondrial Na+/Ca2+-exchangers (NCX) by CGP-

37157 was shown to inhibit the mitochondrial Ca2+ accumulation induced by 

Salinomycin, while maintaining its antineoplastic efficacy [206]. While this approach 

indicates a route to reduce or prevent salinomycin-induced neuropathy, it also rules out 

a main potential anti-cancer mechanism, i.e. mitochondrial Ca2+ accumulation. The 

antineoplastic effect of this and other ionophores is believed to be mainly due to their 

ability to directly acidify the intracellular environment since DNA synthesis stops as 

cell pHi decreases [207], confirming a direct relationship between pH and DNA 

synthesis, a feature that has been known for decades [208]. Finally, it has been recently 

shown that the cytotoxic effect and authopagy inhibition associated with Salinomycin 

was dramatically enhanced in acidic conditions, cellular acidification that increases 

autophagic elimination of mitochondria (mitophagy), a feature that has also been 

proposed to underlie the pathogenesis of several neurodegenerative diseases [209, 210]. 

Therefore, acidity iarond tumors may represent the fuel supporting the transfer of 

cations across biological membranes via K+/H+ exchange. 

 

Valinomycin 
Valinomycin, another K+ ionophore, triggers a rapid loss of mitochondrial membrane 

potential and precedes cytoplasmatic acidification in murine pre-B cell lines, which 

leads to cysteine-active-site protease activation, DNA fragmentation and cell death 

[211]. 

 

Niclosamide 

Niclosamide belongs to the anthelmintic family especially effective against cestodes 

that infect humans. Niclosamide has been shown to exert antiproliferative activity in a 

broad spectrum of cancers, including acute myeloid leukaemia cells and solid tumors, 

like colon cancer, breast cancer and prostate cancer [212, 213]. Besides the fact that 

niclosamide is known to hit many different intracellular signaling pathways (e.g. β-
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catenin, Notch, and mTORC1 pathways) [212], experiments in both breast cancer cells 

and cell-free systems demonstrated that this drug possesses cellular protonophoric 

activity by pumping protons from lysosomes to the cytosol down their concentration 

gradient, therefore leading to an effective lowering of cytoplasmic pH [214]. 

 
Disulfiram 

The thiocarbamate alcoholism drug disulfiram, normally used to block the processing of 

alcohol in the body, has been shown to block the P-gp extrusion pump and to inhibit the 

transcription factor nuclear factor-kappaB (NFKB). In this way, it sensitizes tumors to 

chemotherapy, reducing angiogenesis and inhibiting tumor growth in vitro [215]. 

Disulfiram has also been shown to inhibit human melanoma growth in vitro, both in 

mice and in a patient with metastatic disease. This study also reported that, at currently 

approved doses for alcoholism, the combination of oral zinc gluconate and disulfiram 

also induced a >50% reduction in hepatic metastases and produced a long term clinical 

remission in a patient with stage IV metastatic ocular melanoma. While the 

relationship of pHi to Disulfiram is not known, an acidic tumor microenvironment 

enhances the cytotoxicity of disulfiram/Cu2+Antabuse complexes in MCF-7 breast 

carcinoma and HT-29 colon carcinoma cells [216]. 

 

Lovastatin 

It has been previously shown that statins exhibits antiproliferative activity against 

cancer cells, representing a category of drugs available for clinical use. Recent trials 

show that the addition of statins to traditional chemotherapeutic protocols increases the 

efficacy of chemotherapy in statin-sensitive tumors [217]. It has also been demonstrated 

that Lovastatin (LOV)-induced apoptosis is associated with dose-dependent intracellular 

acidification, and this correlates with the extent of DNA degradation. Importantly, this 

activity was suppressed by NHE1-driven intracellular alkalinization [218]. These 

observations provide a further connection between the activation of the NHE1 and the 

suppression of apoptosis seen in resistance to chemotherapy [144]. Finally, LOV, as 

other statins like atorvastatin and simvastatin, is known to be a MCT1 inhibitor [219].  

 

 

Non-steroidal anti-inflammatory drugs  (NSAIDs) 

Some NSAIDs, such as Diclofenac, Diflunisal and Aspirin are also known for having 

anti-cancer effects. Lactate is transported out of the cancer cell by monocarboxylate 

transporters (MCTs) [36] and NSAIDs with monocarboxylic acid structures, such as 

Diclofenac, have been reported to inhibit MCTs [220]. Since Diclofenac blocks tumor 

cell proliferation via MYC and ciclo-oxigenase (COX)-dependent and independent 

mechanisms, it was concluded that Diclofenac holds a potential as a clinically 

applicable MYC and glycolysis inhibitor to be utilized together with established tumor 

therapies [220]. In this regard, a significant intracellular accumulation of lactate in cells 

treated with Diclofenac preceded the observed effects on gene expression, suggesting a 

direct inhibitory effect of Diclofenac on lactate efflux, probably through a lowering of 

pHi. These results further show that lactate efflux, PGR, pH, glycolysis and tumor 

growth are closely related as belonging to the same integral, hierarchically organized 

and selective metabolic strategy of cancer [18, 69, 221]. 
  

 Metformin  
There is growing evidence for a role of metformin in tumor chemotherapy [222], for 

instance in breast cancer [223, 224]. Metformin should be suggested as a supporting 

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0CCEQFjAAahUKEwi-v5WN0NrHAhVH2BoKHaJfAQI&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNonsteroidal_anti-inflammatory_drug&usg=AFQjCNGeAfU6kcwyVt5HfcoGczNiHLlb_g&bvm=bv.101800829,d.d24
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element for treatment with PTIs because it acts through on mitochondrial respiration by 

inhibiting the complex I of the electron transport chain, hence blocking oxidative 

respiration. As a result of this effect, the dependence of cancer cells on glycolysis is 

increased, and it can additionally be targeted with PTIs. Also, metformin may potentiate 

the therapeutic strategy of disrupting the export of lactate by blocking MCT1 function. 

Consequently this leads to an accumulation of intracellular lactate and a decrease in pHi 

that rapidly disables tumor cell growth and glycolysis [225, 226]. Furthermore, 

metformin is also effective in inhibiting colony formation and proliferation by targeting 

acidic melanoma cell populations, this disclosing a potential addition to the treatment of 

advanced melanoma therapy [227]. Finally, another biguanide, like phenformin, has 

also been ascribed to have an anticancer effect via mechanisms involving disruption of 

MCTs [221]. 

 

Perillyl Alcohol (POH). 

The monoterpene perillyl alcohol (POH) is isolated from the essential oils of several 

plants. It shows anti-cancer effects presumably related to its Na+/K+-ATPase inhibitory 

properties as well as to its activity as an intracellular acidifier, similar to cardiac 

glycosides [228, 229]. POH has been used in the treatment of several malignant tumors, 

including gliomas [230]. It also induces growth arrest and apoptosis of leukemia cells 

[231]. There are occasional but impressive reports of complete remissions of recurrent 

glioblastoma treated with POH via intranasal administration [232]. Also, POH 

administrated via inhalation, concomitantly with oral temozolomide, has been reported 

to halt the progression of recurrent glioblastoma [233].  

 

3-Bromopyruvate (3BP)  

A certain success in treating advanced cancers with 3BP has already been demonstrated 

in the clinical setting [234, 235]. Multiple reports indicate that the small molecule 

“energy blocker” 3BP transport into cancer cells is mediated by H+-coupled or Na+-

coupled MCTs. MCT1, in particular, is essential to its cytotoxic action [234, 236]. 

Indeed, these studies on the mechanism by which 3BP enters cancer cells suggest that 

the pH gradient from the extracellular environment to the cell cytoplasm may be crucial 

since the tumoral extracellular acidic pH increases the affinity for 3BP uptake, an effect 

possibly due to the up-regulation of MCTs. As a result, this will enhance its selective 

cytotoxic effect in tumor cells [234, 236]. This typical acid-base abnormality of the 

malignant tumor microenvironment could also explain the lack of secondary effects of 

3BP already described in in vivo studies. In addition, it has also been shown that 3-BP 

inhibits glycolysis and mitochondrial respiration inducing cell death in leukemia cells 

while also acting as a chemosensitizing agent [237]. 

 

Dichloroacetate (DCA)  

Dichloroacetate-treated tumor cells show inhibited expression of two key pH regulators: 

MCT1 and V-ATPase, apart from altering the expression of GLUT1 and HIF-1. DCA 

shows a tumoricidal effect on murine T cell lymphoma cells by triggering apoptosis, 

showing that DCA-dependent alteration of tumor cell survival involves pH homeostasis 

and glucose metabolism [238]. Different case reports of human malignancies reversed 

by DCA have been published [239]. 

 

Nigericin    

Many other cellular acidifying agents have been studied as anticancer agents for at least 

the last three decades. Among these compounds were: stilbene disulfonates (Cl-/HCO3
-
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exchanger inhibitors), nigericin, DIDS, or the protonophore carbonylcyanide-3-

chlorophenylhydrazone (CCCP).  Along with amiloride and some of its analogs, 

nigericin was one of the first intracellular acidifiers studied by the group of Tannock in 

a series of seminal publications in the field [240-245]. These authors also showed an 

increased anti-tumoral effect of amiloride when combined with nigericin [240]. More 

potent amiloride derivatives, such as 5-(N,N-hexamethylen) amiloride (HMA) and 

ethylisopropyl amiloride (EIPA), together with nigericin, were also reported to 

consistently inhibit tumor growth [242]. Finally, the cell acidifying role of nigericin can 

be explained because nigericin is a ionophore that exchanges K+ for H+  across most 

biologic membranes in a similar way than Salinomycin does [246]. 

 

Hyperthermia and radiation and the NHE1-pHi relationship. 

There has recently been a renewed interest in treating tumors with hyperthermia. 

Hyperthermia has been reported to decrease pHi [247]. A number of studies show that 

lowering pHi (almost all by targeting NHE1) can strongly enhance the thermosensitivity 

of cancer cells [248-252]. Therefore, there are very real possibilities for the combined 

use of PTIs together with hyperthermia [253]. Furthermore, the combination of 

hyperthermia and radiation has also been exploited in cancer treatment [254]. Other 

relationships between pH, radiation and hyperthermia have been reviewed elsewhere 

[255]. 

 

Docosahexaenoic acid (DHA) and polyunsaturated Omega-3 long-chain fatty acids 

The polyunsaturated n-3 fatty acid DHA (docosahexaenoic acid, 22:6n-3) is effective in 

increasing survival and chemotherapy efficacy in breast cancer patient with metastasis 

[256], in controlling cancer cell growth [257], in inhibiting the growth of malignant 

cells [258]  and inhibiting survival pathways in cancer cells [259]. The ion channel 

NaV1.5 has been shown to promote MDA-MB-231 breast cancer cells invasiveness by 

potentiating the activity of NHE1 [260, 261] . DHA inhibits NaV1.5 current and NHE1 

activity in human breast cancer cells, and in turn reduces NaV1.5-dependent cancer cell 

invasiveness [262]. Similarly, the use of nutritional lipids in the diet, like omega-3 long-

chain polyunsaturated fatty acids has been suggested to reduce the invasion of breast 

cancer cells and to block the development of metastases [263]. This kind of dietary 

interventions might represent further therapeutic opportunities in association with 

conventional anti-cancer treatment.  

 

Cardiac glycosides  

By inhibiting Na+ /K+-ATPase, cardiac glycosides have been shown to secondarily 

inhibit NHE1, induce intracellular acidification and, thereby, stimulate apoptosis in 

cancer therapy [229]. Digoxin and digitoxin have been shown to be anticancer agents at 

doses used in human cardiological settings [228, 264-267]. Other cardiac glycosides 

that have shown anti-cancer properties are bufalin, oleandrin and ouabain. Finally, 

agents like phenytoin, carbamazepine, valproate, lamotrigine, ranolazine, ropivacaine, 

lidocaine, mexiletine, flunarizine and riluzole have been recently reviewed and 

therapeutically repurposed because of their capacity to act as antimetastatic agents after 

targeting voltage-sodium channels [268]. 

 

Urocanic acid  

When an effective amount of urocanic acid is administered, this drug is able to acidify 

the cytosol causing inhibition of proliferation of both transformed and non-transformed 
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cells. The use of urocanic acid as an enhancer of other therapeutically active agents has 

also been disclosed [269]. 

 

Photodynamic acidification 

Using a photosensitizing agent the pHi of MDA-MB-231 triple negative breast cancer 

cells (TNBC) drops leading to apoptosis, suppressing tumor growth and increasing 

survival in mice [270].  

 

Ion channels in cancer and neurodegeneration. 

 
Some ion channels are significantly involved in both the regulation of pHi/pHe in 

cancer cells and in the acquisition of proliferative and pro-invasive capacities. Ion 

channels regulate several cell processes, such as cell proliferation, resistance to 

apoptosis, cell adhesion, cancer cell motility and extracellular matrix invasion. They 

also participate in tumor progression through non-excitable functions [271-278]. 

Consequently, an altered physiology of ion channels has also been proposed as a new 

hallmark of cancer cells and as a potential target for selective therapeutics [273-281]. 

On the contrary, cellular acidification resulting from brain ischemia, either preceding or 

accompanying the clinical manifestations of certain HNDDs in the central nervous 

system (CNS), has been shown to be dramatically deleterious in provoking 

neurodegeneration through the participation of pH-sensitive or pH-regulating ion 

channels [35, 37, 271, 272] (Figure 3).  

 

A) Relationships between deregulated tumor pHi/pHe and voltage-gated ion 

channels in cancer. 

The homeostasis and allostasis of the pHi/pHe gradient also participates in the control 

of cellular resting membrane potential (Em) [282]. This is critical in excitable cells, 

such as in neurons, for triggering and propagating action potentials This is critical in 

excitable cells, since it both triggers and propagates action potentials. In non-excitable 

cells, membrane hyperpolarization is associated with normal stem cell differentiation 

and inhibition of mitosis [178]. On the contrary, a depolarized Em has been identified as 

an important parameter favoring cancer cell proliferation and migration, and proposed 

to be essential to maintain cancer stem cells abilities. In this regard, there are several ion 

channels that are directly gated or their activity modulated by extracellular H+ including 

the Acid-sensing Ion Channels (ASIC) [283], the sensory and pain receptor Transient 

Receptor Potential Vanilloid receptor 1 (TRPV1) [284, 285], the Transient Receptor 

Potential Ankyrin repeat receptor 1  (TRPA1) [286, 287], some two-pore domain (K2P) 

[288], inwardly rectifying K+ channels (Kir)  [289] and the voltage-gated Na+, Ca2+ and 

K+ channels [290]. As a result, a deregulated pH homeostasis will also have dramatic 

results in either hypo- or hyper-excitability in excitable cells [271] and will also affect 

cell volume, secretion and proliferation, properties which are also under the dependence 

of ion channel activity in non-excitable cells, such as in epithelial cells [291]. 

On the other side, there is a group of voltage-gated H+ channels (Hv) and their 

activation results in an outward current, extruding the excess of intracellular H+ and, 

therefore, participating in the acidification of the extracellular compartment while 

affecting membrane potential [292]. Some studies have identified Hv as being involved 

in cancer progression. In highly invasive breast cancer cells from the MDA-MB-231 

cell line, Hv1 was found to be highly expressed, while it was not, or it does it very 

weakly, expressed in poorly invasive MCF-7 cells. The down-regulation of Hv1 reduces 
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breast cancer cell migration and invasion in highly metastatic cells and is responsible 

for inducing intracellular acidification, which indicates a role of Hv1 in the regulation of 

resting pHi [293]. In another study, the same authors showed that Hv1expression was 

significantly correlated with tumor size and clinical stage [294]. Furthermore, the high 

expression of Hv1 in biopsies was associated with poor prognosis and a shorter 

recurrence-free and overall survival. In vitro, knockdown of Hv1 expression in invasive 

MDA-MB-231 cells decreases cell proliferation, invasiveness and tumor growth, 

inhibiting proton secretion, acidification of the extracellular microenvironment and 

ECM degradation. Hv1 was also found to be strongly expressed in colorectal 

adenocarcinomas, but not or lowly expressed in normal tissues or in hyperplastic polyps 

[295]. Also in this kind of tumor, the levels of Hv1 expression correlate with tumor size, 

lymph node status and clinical stage [295]. Besides, high Hv1 expression is significantly 

associated with shorter overall and recurrence-free survival, and the inhibition of Hv1 

activity in colorectal cancer decreases cell invasion and migration by blocking proton 

extrusion and intracellular pH recovery [295]. Finally, different inhibitors of the Hv1 

voltage-gated proton channels are now being studied as anticancer agents [296]. 

 

B) Relationships between pH, NHE1 and the voltage-gated sodium channels in 

cancer.  

Voltage-gated sodium channels (NaV), carrying inward charges upon gating, are known 

to be responsible for membrane depolarization and critical for “excitable” cells such as 

neurons, skeletal and cardiac muscle cells, as well as for the initiation and propagation 

of action potentials [297, 298]. They were initially identified as being characteristic of 

excitable cells. However, they are also found to be unexpectedly expressed in cancer 

cells, especially in those of epithelial origins (prostate, breast, lung, colon, cervix and 

ovary), while they are not expressed in the same non-cancer tissues. This has led to 

consider them among the new hallmarks of cancer [281]. Their function is associated 

with cancer progression [277, 299, 300], metastases and patient death [301, 302] (Figure 

3). In highly aggressive human breast cancer cells, the activity of the NaV1.5 isoform 

was not associated with the triggering of action potentials but it enhanced extracellular 

matrix (ECM) degradation and cancer cell invasiveness by increasing the activity of the 

extracellular cysteine cathepsins B and S [300, 303] which have maximal activity in 

acidic conditions [304]. While the mechanistic details by which NaV promotes cancer 

cell invasiveness are not fully characterized, it has been demonstrated that invasiveness 

of malignant cells takes place by persistent NaV1.5 activity (through a persistent 

window current at the membrane potential). This occurs through the interaction of 

NaV1.5 with NHE1, which by extruding H+ and so acidifying the pericellular 

microenvironment then activates cathepsins [260, 303]. Indeed, NaV1.5 activity is 

responsible for the allosteric modulation of the NHE1, rendering it more active at pHi 

values between 6.4 and 7. It was suggested that the sodium current was responsible for 

this regulation[260, 261]. Furthermore, NHE1 and NaV1.5 proteins can be co-

immunoprecipitated and may physically interact in invadopodia [260, 261]. In 

summary, the activity of NaV channels in cancer cells has been identified as an 

important parameter favoring cancer migration through a persistent sodium current that 

would tend to depolarize the membrane potential of malignant cells [305] while 

favoring the reversed proton gradient in cancer cells. 

From a therapeutic point of view, the use of NaV-inhibiting drugs has been proposed in 

order to reduce cancer progression, so increaseing survival time in patients with cancer 

[268, 277, 306, 307]. Indeed, inhibitors of NaV that are clinically used for the treatment 

of other pathologies, such as ranolazine for the treatment of chronic angina or phenytoin 
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as an anticonvulsant, are powerful pharmacological tools that have been shown to 

prevent metastatic colonization of organs of immunodepressed mice [308, 309]. These 

studies indicate that inhibitors of NaV channels, already approved for other clinical uses 

such as antiarrhythmics, anticonvulsants [302, 310] and anaesthetics [311], as well as 

other compounds [268], can be repurposed for antiinvasive cancer treatment and even 

for the prevention of metastatic development.  

 

C) Ca2+ homeostasis and NHE1. 

 

In glioma cells there is a persistent NHE1 activity consistent with depolarized 

membrane potentials, calcium loading, high intracellular pH and Na+ levels. 

Importantly, while inhibition of NHE1 by cariporide is not toxic to glioma on its own, 

its combination with the inhibition of the Na+/Ca2+ exchanger NCX1.1 selectively kills 

these brain tumor cells [140]. This is consistent with the growing evidence that Ca2+ 

homeostasis is importantly remodeled through the participation of multiple Ca2+ 

channels and transporters. These are expressed at the plasma membrane or in 

intracellular compartments, participating in enhanced proliferation, cancer cell survival 

and invasion [279]. A graphic representation of ion channels and their effects on cancer 

and neural cells is shown in Figure 3. Changes in intracellular Ca2+ concentration, 

would, in turn, modulate the activity of NHE1, known to be Ca2+-sensitive through the 

binding of calmodulin to a specific domain of NHE1 [312, 313]. Therefore, the activity 

of numerous Ca2+-permeant ion channels that are deregulated in cancer might also 

participate in the regulation/deregulation of pHi/pHe and associated cellular functions. 

 

D) Relationships between pH and ion channels in neurodegeneration.  

The central nervous system (CNS) demands a tight control of acid-base homeostatis 

within very narrow limits in order to properly maintain neuronal excitability, synaptic 

transmission and neurotransmitter uptake [37, 271, 272, 314]. Changes in pHe, mostly 

resulting from metabolic stress are deleterious to the CNS and can result in several 

HNDDs [37, 271, 272, 314]. Indeed, ischemic brain injuries that induce toxic 

intracellular Ca2+ overload produce a deviation towards cellular acidification followed 

by downstream activation of proteolytic cascades in neurons [315, 316] (Figure 3). This 

Ca2+ overload was initially proposed to be mediated by the excessive release of the 

neurotransmitter glutamate leading to the over-activation of glutamatergic excitatory 

NMDA receptors [310, 317]. 

Furthermore, activation of acid-sensing Ca2+- permable channels expressed during 

acidosis in peripheral and CNS neurons also modulates network electrical activity and 

exacerbates neuro-degeneration in mice [318]. Spontaneous neurotransmitter release 

was reduced by ASIC1a activation at motor nerve terminals and these effects were 

emulated by acid solutions [319]. In this respect, it has been hypothesized that the 

intracellular H+ concentration, acting as a second messenger or via modulation of ion 

channel activity governs neuronal excitability [320]. This lowering of CNS pHi 

stimulates the opening of ASIC1 channels and a cellular entry of Ca2+, which further 

damages many cellular functions and even provokes neural cell death (Figure 3) [321]. 

In amyotrophic lateral sclerosis (ALS), intracellular acidification-mediated apoptosis is 

involved in the Ca2+-dependent glutamate mediated neural cell death that is considered 

to be responsible for disease progression [321, 322]. 
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The hypoxic tumoral microenvironment is quite similar to what happens during brain 

ischemic hypoxia or strokes and, apparently, also in certain HNDDs (Figure 3). In these 

situations, oxygen depletion forces brain cells to use anaerobic glycolysis for the 

production of ATP, which induces the accumulation of lactic acid and H+ in the 

extracellular compartment and causes pHe acidification to values between 6.0 and 6.5 

[323]. These low pHe conditions further aggravate ischemic brain damage, neuronal 

injury and glial cell death [296, 324, 325]. Importantly, cell death induced by acidosis 

was inhibited by ASIC blockers and cells lacking endogenous ASICs were resistant to 

acid injury [272]. This pHe-driven and ASIC-dependent mechanism was further 

demonstrated in vivo in focal ischemia, for which the intracerebroventricular injection 

of ASIC1a blockers, or knocking-out the expression of the ASIC1a gene, protected the 

brain from ischemic injuries [326]. Multiple studies have supported the participation of 

homomeric ASIC1a channels, as well as of heteromeric channels composed of ASIC1a 

and ASIC2b [327] in acid-mediated neurotoxicity. Recently, it was demonstrated in 

CA1 hippocampal neurons, which are highly vulnerable to ischemic stroke, that ASIC1a 

activation under extracellular acidosis contributes to post-ischemic glutamatergic Ca2+-

permeable AMPA receptor plasticity. This identifies a functional interaction between 

acidotoxicity and excitotoxicity and suggests that ASIC1a and Ca2+-permeable AMPA 

receptors are potential drug targets for neuroprotection [328]. In addition to ischemic 

stroke, ASICs have now been implicated in many other pathologies in the CNS, such as 

multiple sclerosis, Huntington’s disease, Parkinson’s disease and spinal cord injury (for 

a review, see ref [329]). Thus, the pharmacological targeting of ion channels such as 

ASICs [261, 276, 326], glutamatergic Ca2+-permeable receptors and/ or even NaV 

channels [307] could represent new strategies for the treatment of either malignant 

disease and in the prevention and treatment of post-ischemic and neurodegenerative 

pathologies. In summary, there is an increasing amount of evidence that pH-linked ion 

channels pathophysiology present a potential therapeutic effect both in human cancer 

and in improving understanding of HNDDs pathogenetic mechanisms as well as leading 

the way towards novel and cutting-edge forms of treatment in both situations. 

Cell death and neuroprotection in HNDDs. A transversal extension 

from the pH-centric translational cancer paradigm to the 

etiopathogenesis and therapeutics of neurodegeneration.  

The pH-centric cancer paradigm in HNDDs.  

Is the intracellular pH a key homeostatic factor for understanding and treating 

human neurodegenerative diseases?  

 

The pH-centric paradigm can be applied to HNDDs in order to improve our 

understanding of the nature of the abnormalities underlying the pathological 

deregulation of neural cell death and/or malfunctioning [330-334]). In this context, a 

pH-related approach helps to clarify many of these two metabolically and biochemically 

opposed situations: cancer and neurodegeneration. This new approach is based upon the 

fact that, regarding cellular acid-base homeostasis, cancer and HNDDs, such as 

Alzheimer’s disease (AD) and other HNDDs can be looked at as two situations at both 

opposite ends of the metabolic spectrum (Table 1) [35-39, 331, 334, 335]. This 

perspective also leads to a new integral paradigm pointing towards a unified theory of 

the apoptosis-antiapoptosis machinery and/or the cellular programmed pro-death/anti-

death mechanisms.  It will also help to understand the scientific reason behind the fact 

that in epidemiological studies AD and cancer show an inverse association among them 

[336]. 
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In order to better understand these dynamics it is necessary to take into account the 

effects of acid-base disturbances on neuronal functions and what is known about the 

role of acid-base regulatory mechanisms in blocking the lowering of neuronal pHi under 

physiopathological conditions, a subject that has been increasingly

considered over the years [37, 38, 271, 272, 314, 330, 333, 335, 337-340]. Intracellular 

acidification has been found to be more pronounced in the brains of AD patients [272, 

335] and ß-amyloid aggregation in AD is induced by acidosis and is reverted upon 

microenvironmental alkalinization [341]. Most importantly, while acidification 

provokes neural cell death, pHi alkalinization shows beneficial effects on the evolution 

of ALS in mice [307, 321, 335, 341]. Seminal work in this area [39] showed that 

lowering pHi of neurons from 7.36 to 7.09/7.00 through exposure to nitric oxide (NO) 

sets in motion a programmed cell death program, increasing DNA fragmentation and 

decreasing neuronal survival (“low pHi-mediated metabolic collapse”). Indeed, 

intracellular acidification determines apoptosis and other related cell death programs 

and mechanisms [36, 37, 271, 342, 343]. In neuronal injury this apoptotic phenomenon 

is induced by the activation of three low pHi-dependent endonucleases [39, 344].) Thus, 

the importance of maintaining a strict and narrow range of pHi/pHe homeostasis in the 

CNS neural cell protection becomes evident since it controls neuronal hyper- and hypo-

excitability, synaptic transmission, neurotransmitter uptake, intercellular 

communication, nociception and inflammation. Indeed, the cellular death that 

spontaneously takes place in HNDDs like AD [345] seems to represent the same 

phenomenon that occurs in cancer therapeutics designed to selectively induce pro-

apoptotic acidification that aim to lower pHi below survival levels through a wide array 

of different approaches and methods as discussed above (Tables 1 and 3).  

Recent studies in an in vitro model of excitotoxic neuronal death reported that the 

potent NHE1 inhibitor cariporide, perhaps paradoxically at first sight, protected neurons 

from ischemic injury and this effect was ascribed to the prevention of CNS apoptosis. In 

that study, cariporide (100 nM) was found to reduce both glutamate-induced necrotic 

and apoptotic neuronal cell death. Cariporide attenuated glutamate-mediated 

mitochondrial death pathways involving loss of mitochondrial membrane potential as 

well as Ca2+ and reactive oxygen species (ROS) accumulation [346]. These results 

further suggest that, at least indirectly, NHE1 participates in the necrotic cell death 

process and that its inhibition offers a means of preventing both necrosis and apoptosis. 

In the same vein, PPIs seem to increase the risk of dementia, probably through a pH 

effect [347].  

Also the more general NHE inhibitor, amiloride, has been shown to have protective 

effects in different neurodegenerative situations by preventing acidosis-induced cation 

overload and preserving myelin levels in hypoxic and inflammatory conditions [348]. 

These results further suggest that, at least indirectly, NHE1 participates in the necrotic 

cell death process and that its inhibition offers a means of preventing both necrosis and 

apoptosis. Among the different proton transporters, NHE1 appears to be the main 

mechanism that drives neural cells to a pathological decrease in pHi and, therefore, 

towards cellular death through cytosolic acidification [37, 349]. That is, blocking NHE1 

activation with cariporide may provide neuroprotection following brain hypoxia by 

protecting cells from Ca2+ entry and ROS [350]. Interestingly, it has also been shown 

that patients’ Interestingly, it has also been shown that the patients’ lymphoblasts mirror 

that which takes place in the nervous tissue in terms of NHE1 activity and pH 

regulation, suggesting that this might serve as a potential non-invasive test of the 

response of neural disease to different therapies [314]. Namely, treatments that best 
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return lymphoblast pH towards physiological values should do the same to the nervous 

tissue [314]. 

Finally, while the genetic conditioning and background of the pH/NHE system has been 

considered in the field of oncology [33, 193], we are not aware that these relationships 

have been ever considered in HNDDs in spite of multiple studies following different 

research lines in the study of the genetics of HNDDs [351-353]. 

 

Growth factors and melatonin in HNDDs and cancer. Lack of trophic 

factors leads to decreased trophism and mobility. 
 

A)  Deficiencies of human Growth Factors (hGFs) and other hormone deficiencies 

in HNDDs. 

 

In many cell types, including those of the hematopoietic system, removal of essential 

growth factors results in apoptosis [354]. The general concept behind this perspective is 

very simple: HNDDs have been shown to lack of different trophic and/or growth 

factors, and a general characteristic of HNDDs is “lack of trophism and/or mobility 

[35]. Thus, the most rational therapeutic approach would be to provide the missing 

trophic factors and/or to stimulate the deficient systems involved. Perhaps, a certain 

unawareness of this feature is behind the overall failure in the treatment of HNDDs and 

many other degenerative processes, from joint degeneration in chronic arthritis to 

peripheral nerves neurodegeneration [36, 37, 355]. The problem is to know why and 

how the lack of certain hGFs leading to neurodegeneration appears, and whether a 

decrease of neural and/or non-neural hGFs factors is directly responsible for the 

different neurodegenerative processes. In this line, there is evidence from animal and 

human studies that link cognitive deficits with changes in brain and peripheral trophic 

factors, while exercise, by increasing the levels of IGF-1 and other neural and non-

neural in origin growth factors, induce cognitive improvements in different HNNDs 

[356]. 

An important aspect of this concept is that pH regulation and NHE1 activity is known to 

be a fundamental mechanism in the pHi regulation in the CNS [349]. It has also been 

known for a long time that different growth factors, platelet-derived (PDGF) or 

otherwise, activate NHE [123, 357]. This increases intracellular pHi and stimulates 

cellular metabolism and DNA synthesis [358]. From these pathogenetic associations a 

direct therapeutic consequence is easy to recognize now [98, 123, 359] possibly leading 

to the right approach to the treatment of at least some HNDDs (Figure 1) [35, 36].  

B) Human growth hormone (hGH) in HNDDs and melatonin (MT) in HNDDs and 

cancer. A beneficial side-effect of the new therapeutic trends? 

I -hGH in HNDDs  

Ageing is related to the progressive lack of a number of neurotrophic factors, including 

human growth hormone (hGH) among them, this decay being considered a 

physiological process [360]. For decades, hGH administration in elderly people has 

been reported to improve cognition and metabolic alterations typical of old age [361]. 

The effects of hGH on cognition have been widely documented, particularly on learning 

and memory [362, 363]. Moreover, a recent study in injured rats demonstrated that hGH 

treatment had a positive effect on cognitive function, most likely by increasing 

expression of hippocampal and prefrontal Brain Derived Nerve Factor (BDNF) and 
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Tyrosinkinase B (TrkB) [364]. hGH and its receptor (GHR) are produced in neural stem 

cells in all animal species studied and this local production leads neural stem cells to 

proliferate, differentiate, migrate and survive. For these effects Pi3K/Akt and ERK 1/2 

play a key role [321]. In rats, growth hormone (GH) administration cooperates with 

locally-produced GH (non human growth hormone) in brain repair after an injury and 

peripheral GH induces neural cell proliferation in the intact adult rat brain. However, 

the last upstream factor responsible for cellular survival is the activation of jun n-

terminal kinase (JNK) [365]. Indeed, exogenous hGH administration cooperates with 

locally-produced hormone in increasing the proliferative response of hippocampal 

progenitors to an injury [366]. Moreover, hGH may facilitate brain plasticity and early 

hGH treatment promotes relevant motor functional improvement after severe frontal 

cortex lesions in adult rats [367].  

Importantly, hGH also induces the expression of a number of neurotrophic factors (IGF-

I, EGF and its receptor, EPO, VEGF, NGF) (Figure 1) and increases the cerebral 

metabolic turnover of NA (Noradrenaline) and DA (Dopamine) [360, 367-372]. While 

wit is known that neural progenitors are produced at the cerebral level in different 

neurogenic niches along the whole life, their production also progressively decreases as 

the subject ages. It remains to be established whether the effect of hGH administration 

might compensate this physiological age-related decrease production and/output of 

different human growth factors (HGF), neural-derived or otherwise, but preliminary 

results from our group indicate that this occurs [373]. While the neurotrophic effect of 

hGH, either exerted by itself or by inducing the expression of a number of neurotrophic 

factors is now clear (Figure 1), no long ago it seemed that this effect was exerted only 

after a traumatic brain injury (TBI) or after a stroke or in children with cerebral palsy, 

when suffering GH-deficiency as a result of the brain insult. However, the positive 

effects played by GH on brain repair after an injury have been also demonstrated in TBI 

patients without GH-deficiency [374, 375]. In spite that hGH concentrations are low in 

the cerebrospinal fluid of patients with Amyotrophic Lateral Sclerosis (ALS), a clinical 

trial demonstrated that hGH administration exerted no effect in the clinical progression 

of this fatal neurodegenerative disease [375, 376]. However, studies in vitro and in 

animal models of ALS demonstrated that GH administration played a protective effect 

on mutant SOD-1-expressing motor neurons, increasing the survival time and 

improving motor performance and weight loss of GH-treated transgenic mice [377]. On 

the other hand, it has been shown that in animal models the intra-hippocampal injection 

of the hormone improves spatial cognition [378] as well as learning and memory in AD-

like rats [379]. Therefore, a possible usefulness of hGH in AD has been recently 

postulated [380]. It is possible that the time at which hGH administration is given in 

relation to the development of AD may play a significant role in the results obtained. In 

fact, GH has been shown to prevent age-induced reduction in the expression of some 

components in rats, including cytochromes b and c of the mitochondrial respiratory 

chain [381, 382]. 

 

II - Melatonin (MT) in HNDDs 

 

Cell death and survival are known to be critical events for the evolution of 

neurodegeneration [35], while mitochondria being increasingly seen as an important 

determinant of both processes. Indeed, mitochondrial dysfunction is considered to be a 

major etiopathogenic factor in Alzheimer's disease (AD), Parkinson's disease (PD), 

Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) [383]. The 

mechanisms thought to be involved in impaired mitochondrial function include 
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increased free radical generation, enhanced mitochondrial inducible NO synthase 

activity and NO production, pH  changes, a disrupted electron transport system and 

mitochondrial permeability transition [39, 383, 384]. Furthermore, the CNS is very 

sensitive to oxidative stress, which is considered to be a key factor in the 

pathophysiology of neurodegenerative disorders.  

Melatonin (MT) has been shown to be effective in preventing the oxidative stress/NO 

stress-induced mitochondrial dysfunction seen in experimental models of AD, PD and 

HD [383]. This hormone has unique biochemical properties such as scavenging of 

hydroxyl, carbonate, alkoxyl, peroxyl and aryl cation radicals and stimulation of the 

activities of important antioxidative enzymes like glutathione peroxidase and 

superoxide dismutase and  can suppress nitric oxide synthase. For all these reasons it 

may have an important role in the treatment of HNDDs [384].  

Therefore, recent studies have considered the potential clinical role of MT in the main 

HNDDs like AD, PD, ALS and multiple sclerosis (MS). In mouse models of AD, a 

significant clinical improvement with chronic MT treatment at daily dosages of 10 

mgr/kg/day was obtained [385], with improvement of cognition and memory and 

reduction of the deposits of Aβ [386]. Most recent data on ALS patients indicate that 

high doses of MT can be useful in delaying the progression of this fatal disease. 

Importantly, MT also appears to be most beneficial in other neurovascular diseases like 

the highly invalidating Horton's disease ("cluster headaches) when used in high 

pharmacological doses, from 50 to 350 mgr/day, or even higher dosages, similar to how 

it has been used in patients with ALS [387, 388]. Similar beneficial effects have been 

recently described in an animal model of sporadic AD (OXYS rats). In this situation, 

early treatment with MT induces a decrease of amyloid-β1-42 and amyloid-β1-40 levels 

in the hippocampus and of amyloid-β1-42 levels in the frontal cortex [389]. In addition, 

treatment of OXYS rats with this hormone slowed down the increase in anxiety and 

deterioration of reference memory typical of AD [389]. These properties make this 

hormone unique for protecting the organism against the oxidative stress by inducing a 

reduction in the oxidative damage which, as above described, is considered as a key 

factor in the etiopathogenesis of HNDDs [383, 390]. In summary, MT administration at 

pharmacological dosages should be considered a promising adjuvant treatment of 

certain HNDDs. 

 

III - Melatonin (MT) as an oncostatic and cytotoxic agent.  

 

It is known that MT is produced not only at the pineal level but in all the cells of any 

living organism, vegetables and unicellular organisms included, where it plays a key 

role in maintaining normal cellular homeostasis, most likely by regulating cell oxidative 

metabolism [391, 392]. Some effects of MT on cellular homeostasis also seem to be 

strong in cancer cells showing a metabolic profile consistent with aerobic glycolysis 

(Warburg effect, increased glucose uptake, LDH activity, lactate production and HIF-1α 

activation). Here, MT is able to revert this metabolic profile inducing cytotoxicity, 

while in cancer cells where the Warburg effect is not seen it inhibits proliferation [393]. 

Finally, the differential regulation of metabolism by MT could also explain why the 

hormone is harmless for a wide spectrum of normal cells and a minority of malignant 

cells while it kills specific tumor cell types [394, 395].  

These effects of MT on cancer could be surprising since the hormone has been 

considered for some time as a simple synchronizer between the organism and 

the environment. MT also behaves as an oncostatic agent [396]. At both physiological 

and pharmacological doses, MT has been shown to be effective in suppressing 
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neoplastic growth in a variety of tumors like melanoma, breast, prostate, ovarian and 

colorectal cancer [393, 397, 398]. It seems that this effect is mediated by the direct 

augmentation of natural killer (NK) cell activity as well as the stimulation of cytokine 

production, for example, interleukins IL-2, IL-6, IL-12 and interferon (IFN)-gamma 

[397]. The same authors have suggested that the physiological surge of MT at night 

could be considered a "natural restraint" on tumor initiation, promotion and progression, 

and it has been recently advanced that disrupting circadian nocturnal melatonin rhythms 

promotes human breast cancer growth and resistance to chemotherapy [393]. It is 

therefore logical that MT is increasingly becoming an adjuvant therapy in some human 

malignancies, even preventing adverse side-effects produced by chemo/radiotherapy 

such as mucositis [399]. In summary, MT appears not only to be a protecting agent 

against the development of certain HNDDs but also seems to be beneficial in 

counteracting the progression of a number of malignant tumors. However, further 

clinical experience in this new area is necessary. 

 

C)  Neural and platelet-derived human growth factors (PDGFs) in the treatment of 

HNDDs. 

 

These new approaches clearly open the possibility of using different human growth 

factors (hGFs) for neuronal protection in HNDDs, either derived from hGFs 

stimulation, also induced by hGH [373, 374] or derived from platelet concentrates 

(Figure 1). This was initially suggested by our group within the frame of a new concept 

that was called “the trophic factor withdrawal syndrome” (TFWS) [35, 36]. In this vein, 

it has been recently shown that intranasal delivery of platelet-derived plasma rich in 

growth factors (PRGF) enhances hippocampal neurogenesis and reduces 

neurodegeneration in an amyloid precursor protein/presenilin-1 (APP/PS1) mouse 

model of AD [400]. PRGF also reduces neuropathologic hallmarks and improves 

cognitive functions in the AD mouse model [401]. In a parallel study, these authors 

have shown that hGFs from PRGF preparations induce neuroprotection in rodent 

models of Parkinson's disease (PD) by modulating pro-inflammatory processes. In that 

study, the effects of PRGF as a therapeutic approach to PD were evaluated in the 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse and these effects 

were associated with a significant reduction in nuclear transcription factor-κB (NF-κB) 

activation and nitric oxide (NO), cyclooxygenase-2 (COX-2) and tumor necrosis factor-

alpha (TNF-α) expression in the substantia nigra [402]. From these studies, it can be 

concluded that PRGF can prevent dopaminergic degeneration via an NF-κBdependent 

signaling process. However, in spite that some relationships between platelet-derived 

growth factors (PDGFs), NO production and the acid-base cellular changes in HNDDs 

under these therapeutic measures have been described, they are still waiting to be fully 

understood  [35, 39, 344]. At the present time it is not known if the results of these 

experiments are always mediated by the stimulating effect of PRGF and/or hGH on 

maintaining cellular acid-base homeostasis within physiological limits, so preventing 

the metabolic collapse induced by cell acidification and subsequent cellular death 

through apoptosis or similar mechanisms (Table 1). However, some evidence seems to 

indicate that this can be a fundamental mechanism in preventing and/or controlling 

neurodegeneration (Figure 1 and Table 3) [35, 37, 38].  

Finally, in spite that the possibility of stimulating tumor growth with the utilization of 

hGH and/or hGFs and PDGFs has been raised [36, 403-406], the extensive clinical 

experience already available using PRGFs in many different areas of regenerative 

medicine appears not to have not shown any oncogenic danger [407].  
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Conclusions 
 

1) Historically, systemic acid-base balance was recognized by classic medicine as the 

fundamental parameter to define the general concept of homeostasis. More than a 

century later this concept can now be extended to the cellular level where the pH and 

hydrogen ion dynamics occurring in cancer and neurodegeneration are seen as 

deviations towards opposite ends of a biological and metabolic spectrum. Also, and for 

the first time, both the metabolism of cancer and HNDDs can be viewed under the same 

wide-ranged perspective at different levels of understanding, from both basic and 

clinical aspects and from etiopathogenesis to treatment. 

 

2) The pH-centric paradigm of cancer developed in this contribution permits a deep 

understanding of the many faces and stages of malignant disease, from cell 

transformation to local growth, dissemination and the metastatic process, as a single, 

integrated process driven by altered acid-base regulation at different phases of 

evolution and development. 

 

3)  Regarding cancer etiopathogenesis and treatment, the primary aim of this H+ ion 

dynamics-based approach (“the pH-centric paradigm”) is to manipulate the dysregulated 

pH abnormal dynamics of cancer cells and tissues in order to reverse tumor growth, 

control local invasion and deactivate the metastatic process. These abnormal cellular 

pH-dynamics of cancer and its consequences can be considered a chronic allostatic 

failure in maintaining cellular acid-base homeostasis within physiological parameters. 

 

4)  The main therapeutic aim of the pH-centric paradigm in translational and bedside 

oncology is the induction of a proapoptotic selective intracellular acidification of cancer 

cells using different membrane-bound inhibitors of proton transport and of other non-

proton transport derived cellular acidifiers. This would reverse the selective cancer 

proton reversal of malignant cells and tissues and consequently increase tumoral 

interstitial pH. At the same time, this would inhibit the Warburg effect and act as an 

antiglycolytic measure, thus controlling cancer growth and the metastatic process. This 

perspective represents a rational  approach to cancer therapeutics encompassing all 

stages of cancer development at the  same time and it has the potential of being 

selectively exploited in the treatment of many, if not all, malignant solid tumors and 

leukemias. 

 

5) Since cancer cells use different proton pumps and transporters to protect themselves 

from an intracellular accumulation of hydrogen ions, it is probable that an integrated 

and concerted utilization of all known inhibitors of proton extrusion in 

pharmacological dosages will be necessary in the therapy of human malignancies. This 

is due to the fact that there are multiple pH regulators at the membrane of cancer cells 

that can be co-expressed at the same time in hostile conditions and also that the  

inhibition of one transporter will be compensated by the overactivation of other/s (“the 

neostrategy of cancer cells and tissues”). 

 

6) For the first time, the basic to clinical approach within the field of oncology research 

advanced here (translational research) is now enriched by an interdisciplinary effort to 

stimulate a more outreaching vision in order to integrate within the same theoretical 

frame an otherwise separated area of research like neurology (transversal research). 

This wide-ranged perspective of the entire pH-related cellular homeostasis field and 
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metabolic spectrum offers the opportunity to significantly improve the understanding of 

the contradictory nature of the acid-base and energetic abnormalities underlying the 

pathological deregulation of cell death in these two specular processes. In this context, 

an intracellular pH (pHi)-related approach to these two metabolically opposed situations 

like cancer and human neurodegenerative diseases (HNDDs) provides a new integral 

model and new paradigm pointing towards a general and unified theory of the 

apoptosis-antiapoptosis dualistic machineries and/or cellular programmed pro-death and 

anti-death mechanisms. 

 

7) One of the main aims of this contribution is to promote the new pH-centric paradigm 

on the therapeutic utilization of proton transport inhibitors and other non proton 

transport-derived intracellular acidifiers as well as drugs affecting ion channels 

physiopathology in human cancer.  

 

 

8) Finally, we advance that the utilization of a wide array of human growth factors 

(hGFs) and hormones like human growth hormone (hGH) and melatonin (MT), may 

have an important role in the oncoming treatments of HNDDs like Alzheimer disease 

and that those therapeutic measures seem to be able to reverse the acidification-

dependent neural toxicity and apoptosis characteristic of neurodegeneration by 

stimulating cellular metabolism and defending its homeostasis through the therapeutic 

activation of NHE1 and other membrane-bound proton transporters.  
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Figure Legends 

  
Figure 1  
The role of human growth factors (hGFs) and growth hormone (hGH) on NHE and on 

cellular metabolic stimulation. The possibility of malignant transformation after 

treatment with hGH [403-405] or PDGF [406] has been raised but has not been shown 

in regenerative medicine [407]. On the contrary, lack of hGFs and/or hGH keeps levels 

of cell metabolism very low and induces cellular acidification and apoptosis. For more 

information see text and references [35, 354, 357-359, 366, 370, 373, 380]. 
 

Abbreviations: VEGF: Vaso endothelial growth factor; IGF-1: Insulin growth factor 1; FGF: 

Fibrobalast growth factor; PDGF: Platelet-derived growth factors; EPO: Erythropoietin; EGFR: 

Endothelial growth factor receptor; NGF: Nerve growth factor. 

 

 

Figure 2 

 

Effect of pH on lipids packing. 
(A)  Assuming a leaflet composed of charged lipids. The optimal area per lipid is 

determined by the competition between an attractive energy that reflects lipids attraction 

linked to their hydrophobic tails and a repulsion energy, which we will assume to be 

linked to a net charge carried by all the lipids. The competition between these two 

defines a minimum of energy. Note that in the figures, a0 corresponds to the optimal 

distance between adjacent lipid heads.  

B) Thus the minimum of energy provides the optimal distance between lipids 

including their optimal area in the monolayer. Note that the packing of lipids is not 

always defined by hard core contact/steric repulsion and that, accordingly, there is room 

to change this packing.  

C) With regard to negatively charged lipids, an increase in the concentration of 

hydrogen ions allows more of them to interact with lipids’ head. Thus by masking their 

negative charges, the long-range repulsion between lipids is disturbed. The resulting 

effect will be an alteration of the positioning of the minimum energy, which will move 

closer to the lipids.  

D) Top view of a portion of a membrane. The lipid’s hard core head is colored in red 

and the optimal area per lipid driven by repulsive/attractive interactions, is drawn in 

blue. Changes in pH are expected to redefine the optimal area per lipid and thus their 

packing. In the figure, a decrease in the pH is represented. In conclusion, a low 

cytosolic pH is expected to decrease the surface area per lipid (Modified from Rauch 

[176]). 

 

Figure 3 
 

General scheme showing some shared aspects of the role of altered intracellular 

pH (pHi) and extracellular pH (pHe) and ion channels in cancer, brain ischemia 

and HNDDs.  

Alterations in both intracellular (pHi) and extracellular (pHe) pH are tightly involved 

regulating cancer progression and cell death in both brain ischemia and HNDDs (see 

text for details). In cancer cells, protons (H+) produced by the glycolytic metabolism are 

extruded by Na+/H+ exchanger (NHE1) and/or other membrane-bound proton 

transporters and the voltage-gated proton channel, Hv1 [292-296]. The activity of 
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NHE1 is enhanced by voltage-gated sodium channels that are abnormally expressed in 

cancer cells [260, 261, 305], as well as by increases in the intracellular Ca2+ 

concentration, which is regulated by the Na+/Ca2+ exchanger (NCX) activity [140] with 

the participation of numerous Ca2+- permeable channels also up-regulated in cancers 

[279]. Both the increase in intracellular pH (pHi) and the decrease in extracellular pH 

(pHe) drive cancer processes such as transformation, proliferation, survival, migration, 

and ECM proteolysis/invasion. The opposite situation takes place in both ischemia and 

HNDDs where the low pHi of cells in either condition can be secondary both to an 

intracellular acidosis of a metabolic origin (metabolic/aerobic acidosis) and/or to 

acidosis related to a lack of oxygen (hypoxic/anaerobic acidosis). This is associated 

with the over-activation of acid-sensing ion channels (ASICs), [272, 326-329] in 

ischemia [318-322] and in HNDDs, with glutamate ionotropic receptors (AMPA and 

NMDA receptors) generating Ca2+ overload [310, 315-317] and neuronal cell death [36-

39, 271, 342-344]. For further details see text. 

 
Abbreviations: Nav1.5: Voltage-gated sodium channel isoform 1.5; NHE1: Na+/H+ exchanger 

type 1; NCX: Na+/Ca2+ exchanger; ASIC1a: Acid-sensing Ion channel type 1a; Hv1: Voltage-

gated proton channel type 1; HNDDs: human neurodegenerative diseases; AMPA-R: (α-amino-

3-hyroxil-5-methyi-4-isoxazolepropionic acid receptor); NMDA-R: (N-methyl-D-aspartate 

receptor); GFRs: Growth Factor Receptors.   
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