
Accepted Manuscript

Title: A Gaussian process and image registration based
stitching method for high dynamic range measurement of
precision surfaces

Authors: M.Y. Liu, C.F. Cheung, C.H. Cheng, R. Su, R.K.
Leach

PII: S0141-6359(16)30137-4
DOI: http://dx.doi.org/doi:10.1016/j.precisioneng.2017.04.017
Reference: PRE 6569

To appear in: Precision Engineering

Received date: 4-8-2016
Revised date: 24-2-2017
Accepted date: 24-4-2017

Please cite this article as: Liu MY, Cheung CF, Cheng CH, Su R, Leach
R.K.A Gaussian process and image registration based stitching method for
high dynamic range measurement of precision surfaces.Precision Engineering
http://dx.doi.org/10.1016/j.precisioneng.2017.04.017

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.precisioneng.2017.04.017
http://dx.doi.org/10.1016/j.precisioneng.2017.04.017


A Gaussian process and image registration based 

stitching method for high dynamic range 

measurement of precision surfaces 

M. Y. Liua,b, C. F. Cheunga,*, C. H. Chenga, R. Sub, and R. K. Leachb 

aPartner State Key Laboratory of Ultra-precision Machining Technology, Department of Industrial and Systems 
Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China 

bManufacturing Metrology Team, Faculty of Engineering, University of Nottingham, University Park, Nottingham 

NG7 2RD, United Kingdom 
*benny.cheung@poylu.edu.hk 

Highlights： 

 It makes use of Gaussian process to model the sub-aperture measurement datasets 

to obtain the mean surface for registration, which is a novel method as comparing 

to traditional filtering methods, and provides better registration accuracy. 

 Image registration and z shift method are used to simplify the 6 degrees of freedom 

3D point cloud registration to a 3 degrees of freedom registration. 

 Edge intensity data fusion method is used to fuse the overlapped region to provide 

a better transition between two datasets. 

 It provides a novel stitching solution for a wide range of optical measurement 

instruments for achieving high dynamic range optical measurement of precision 

surfaces 

 

Abstract: Optical instruments are widely used for precision surface measurement. However, 

the dynamic range of optical instruments, in terms of measurement area and resolution, is 

limited by the characteristics of the imaging and the detection systems. If a large area with a 

high resolution is required, multiple measurements need to be conducted and the resulting 

datasets needs to be stitched together. Traditional stitching methods use six degrees of freedom 

for the registration of the overlapped regions, which can result in high computational 

complexity. Moreover, measurement error increases with increasing measurement data. In this 

paper, a stitching method, based on a Gaussian process, image registration and edge intensity 



data fusion, is presented. Firstly, the stitched datasets are modelled by using a Gaussian process 

so as to determine the mean of each stitched tile. Secondly, the datasets are projected to a base 

plane. In this way, the three-dimensional datasets are transformed to two-dimensional (2D) 

images. The images are registered by using an (x, y) translation to simplify the complexity. By 

using a high precision linear stage that is integral to the measurement instrument, the rotational 

error becomes insignificant and the cumulative rotational error can be eliminated. The 

translational error can be compensated by the image registration process. The z direction 

registration is performed by a least-squares error algorithm and the (x, y, z) translational 

information is determined. Finally, the overlapped regions of the measurement datasets are 

fused together by the edge intensity data fusion method. As a result, a large measurement area 

with a high resolution is obtained. A simulated and an actual measurement with a coherence 

scanning interferometer have been conducted to verify the proposed method. The stitching 

result shows that the proposed method is technically feasible for large area surface 

measurement. 

Keywords: Surface measurement; stitching; high dynamic range; Gaussian process; image 

registration 

1. Introduction  

In precision metrology, one challenge is the high dynamic range measurement of precision 

surfaces, which require both large measurement area and high resolution data [1]. This is 

especially true for the measurement of surfaces with multi-scale characteristic which have large 

scale topographic and small scale structure. Due to the limited field of view (FOV) and 

resolution of the camera, it is difficult to obtain a result with a satisfactory range in a single 

measurement which measures multi-scale information. One of the possible solutions is to 

perform multiple measurements and stitch the results together to form a dataset with a larger 

area to reveal the large topographic information without losing the high resolution information 

to characterize the micro-structure pattern [2].  



Stitching has been reported for a sub-aperture stitching interferometer for both spherical 

and flat surface measurements [3-6]. Preibisch et al. [7] used a phase-correlation method to find 

the translation matrix between image pairs and performed global optimal stitching. Chen et al. 

[8] proposed a sub-aperture stitching and localization algorithm for spherical and planar 

surfaces. Moreover, they developed a coarse-to-fine stitching strategy. Zhang et al. [9] 

developed a simultaneous reverse optimizing reconstruction method which is based on system 

modelling technique for aspheric sub-aperture stitching interferometer. Ye et al. [10] used an 

optimal stitching planning method to measure large aspheric optical surface with ±4 mm range 

of probe and 20% of overlapped region. Wiegmann et al. [11] evaluated the accuracy of the 

sub-aperture stitching method using virtual experiments and found that the overall accuracy of 

stitching result outperformed the direct measurement method by a factor of about 3. For surface 

measurement instruments such as coherence scanning interferometers, which are widely used 

today for precision surface measurement, some commercial products can provide a stitching 

function for relatively flat surfaces [12]. 

However, most of the stitching methods make use of six degrees of freedom for registration 

in the overlapped regions and the computational complexity is relatively large. For instance, the 

Iterative Closest Point (ICP) algorithm [13] has ( )p xO N N  complexity for a single iteration. For 

a registration with 
tN and qN initial translations and rotations, the total complexity is 

( )p x t qO N N N N which is considerably high. Moreover, the error caused by the stitching algorithm 

is accumulated when the number of sub-surface measurements is increasing, especially for the 

rotational error, which is difficult to compensate. Marinello et. al [14] pointed out that the 

translational error is biggest source of errors, while the Roll, Pitch and Yaw error can be as 

small as several arc-sec. With the help of high precision linear stages in which the rotational 

error can be considered to be minimal or negligible, registration can be simplified to a three 

degrees of freedom translation problem with the complexity reduced to ( )p x tO N N N .  



In this paper, a stitching method based on Gaussian process and image registration together 

with an edge intensity data fusion is developed. The working principle of the method is 

discussed. A simulation and an actual measurement were conducted to verify the method. Some 

technical aspects are also discussed and the edge effect is improved as compared with the 

traditional method. The results of the experiments show that the proposed method is suitable 

for stitching of measurement results of areal measurement instruments, which provides a 

technically feasible solution for high dynamic range optical measurement for precision surfaces. 

2. The principle of the Gaussian process and image registration based stitching method 

The framework of the proposed Gaussian process and image registration based stitching method 

is shown in Fig. 1. First, the sub-aperture measurement datasets are modelled using a Gaussian 

process [15] so as to obtain the mean surfaces, which can reduce the registration error caused 

by measurement noise and outliers. The datasets are converted to two-dimensional images and 

the images are registered using an intensity based algorithm, which can determine the (x, y) 

translation parameters. The MATLAB Image Registration Toolbox [16] has been used to 

implement this algorithm. In this study, 20 % overlapped area for the measurement datasets is 

chosen for the best balance between efficiency and accuracy [17]. After the (x, y) translation is 

determined, the z axis translation is calculated by using a least-squares error method so as to 

minimize the z distance between the two mean surfaces. The next step is to calculate the data in 

the overlapped region with an edge intensity data fusion method. Finally, the datasets are 

stitched together to form a dataset combining all the (x, y, z) translation information and fused 

overlapped data. 



 

Fig. 1: Diagram of the Gaussian process based stitching method 

2.1 Gaussian process modelling of original surfaces 

Noise in the measurement processes and outliers in the result may affect the registration 

accuracy. Huang et al. [18] pointed out that both the standard deviation of the noise and the 

mean error of the noise have influence of the registration error. Traditional methods utilise 

filtering techniques to remove noise and outliers in the original measurement results. However, 

filtering is limited by distortion and edge effects [19]. The Gaussian process modelling involved 

in the proposed stitching method aims to improve the registration accuracy [20]. The original 

measurement results can be described as a discrete function of ( , )i iz x y , which means the 

z-coordinate of the i-th point is a function of the lateral position ( ,i ix y ). Let ( , )i i ix yv , so the 

measured datasets can be represented as ( )iz v ,  i = 1, 2, … , N, where N is the number of points. 

The measurement process can be considered as a Gaussian process which is a stochastic process, 

with underlying surface and measurement noise, which can be expressed as 

( ) ( )i iz f  v v     (1) 

where ( )if v is the underlying surface and  is the measurement noise, which is assumed to 

have a Gaussian distribution
2~ (0, )N   , with zero mean and 2

 variance. 

In order to model the underlying surface, Gaussian process modelling is used in this study. 

A Gaussian process is a random process where the probability distribution function to the 

associated observation is normal and the joint probability distributions associated with any finite 



subset of the observations are also normal. A Gaussian process can be modelled as a mean 

function and a covariance function, which can be expressed as:   

( ) ( ( ), ( , ))i z i z i jf GP m kv v v v     (2) 

where ( )z im v  is the mean function, ( , )z i jk v v is the covariance function with  

( ) [ ( )]z i im E zv v  and ( , ) [( ( ) ( ))( ( ) ( ))]z i j i z i j z jk E z m z m  v v v v v v . The mean function  

represents the expected z value at 
iv while the covariance function represents the variance of 

the z value when 
i jv v and the covariance between the z values when

i jv v . 

In this study, the mean function is designed to be zero function since the measured surface 

is unknown. Moreover, a squared exponential function is used to represent the covariance of 

the Gaussian process model: 
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where 
i jv v is the distance between

iv  and jv , 2

z is the constant variance of the Gaussian 

process model and l is the characteristic length-scale.  

The parameters of the covariance function corresponding to unit characteristic length-scale 

and unit signal standard deviation are first initiated to be zeros and the likelihood parameter was 

initiated to be log(0.1) , which denotes the standard deviation of the noise to be 0.1 mm. The 

parameters of the Gaussian process was then optimized by minimizing the negative log 

marginal likelihood. After the parameters are optimized, the mean surface and the covariance 

surface of the measured data are fully determined. In this study, the implementation of the 

Gaussian process modelling is based on the Gaussian processes for machine learning (GPML) 

toolbox [21].  



2.2 Image registration for x-y alignment 

After Gaussian process modelling, the mean surfaces of the original measurement datasets are 

modelled. The three-dimensional datasets are then projected on to the x-y plane as 2D images. 

Image registration is used to align the overlapped images. Generally, there are four types of 

transformation for image registration, i.e. translation, rigid, similarity and affine. In this study, 

the translational type is used since only x-y translation is considered. The technique used in the 

image registration process is intensity-based automatic image registration. The intensity-based 

automatic image registration is an iterative process. Firstly, the overlapped regions of two 

images are identified, one is set as the fixed image while the other is set as the moving image. 

Hence, a metric, an optimizer and the transformation type are specified. Since the measurement 

datasets are taken from the same instrument, the metric and optimizer are configured as 

monomodal. For each iteration, a transformation matrix applied to the moving image is 

determined and the metric comparing with the transformed moving image with a bilinear 

interpolation to the fixed image is determined. The iteration stops when the stop condition is 

detected, e.g. when it reaches a point of diminishing returns or reaches the maximum number 

of iterations. 

2.3 z axis alignment 

In the previous step, the overlapped region is registered in the x-y direction. The datasets in z 

axis are then aligned to minimize the distances of the overlapped surfaces. This is a least-squares 

problem and the objective function can be determined by 

2

1

N

i i

i

F z z


          (5) 

where
iz and

iz are the corresponding points in the two surfaces, and
iz denotes the translated 

data points of the alignment process along the z axis. Translation in the z axis can be calculated 

by minimizing the objective function in Eq. (5).  



2.4 Data fusion for the overlapped area 

When all the (x, y, z) translation information is determined, the datasets can be stitched together 

to form an overall measurement result. For the overlapped region, the data is fused together 

with a data fusion algorithm. There are many kinds of data fusion methods such as simple or 

weighted means, weighted least-squares fusion and residual approximation-based fusion [22]. 

In this study, the edge intensity data fusion method [23] is used. For a dataset ( )R m n , the edge 

intensity is defined by  

( , )

( , )

1
R i j

f i j m
E

m n


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For two datasets ( , )A i j  and ( , )B i j , the weighting functions are determined by 
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Hence, the fused dataset F is determined by   

( , ) ( , )( , ) ( , ) ( , )A i j B i jF i j W A i j W B i j         (8) 

3. Simulation verification 

To verify the proposed stitching method, a simulation using MATLAB was conducted. As 

shown in Fig. 2, a synthetic large sinusoidal surface was considered as the targeted measuring 

surface. The design of the surface is determined by   

(0,0.1)
500

sin( ) cos( )
z GN

x y



     (9) 

where (0,0.1)GN is the added Gaussian noise with zero mean and 0.1 µm variance. 



The peak-to-valley distance of the surface was 8 µm. The area of the whole surface was 

(100×100) mm which was divided into nine sub-regional measurements. The highlighted area 

in Fig. 2 denotes the overlapped area between nearby measurement datasets. 

 

Fig. 2: Simulated stitching surface 

As shown in Fig. 2, the nine measurements have the same size and are marked as 11~13, 

21~23 and 31~33 respectively. The area of the individual measurement was (40×40) mm while 

the width of the overlapped area (highlighted in the figure) was 8 mm, which was 20 % of the 

width of the dataset, as suggested elsewhere [17].  

After the Gaussian process, the mean and variance of the original surface were determined 

and Fig. 3 shows the mean and variance of surface 11. The result shows that the standard 

deviation of the majority of the modelled surface is about 0.1 µm, while the simulated noise 

level is 0.1 µm, which demonstrates the effectiveness of the Gaussian process.  



 

Fig. 3: Results after Gaussian process. (a) original surface, (b) 2D section profile illustrating mean and covariance, 

(c) zoom-in view of mean and covariance 

The mean surfaces after Gaussian process modelling were then transformed into 2D 

grayscale images to perform image registration. The registration result of the overlapped 

regions of surface 11 and surface 12 are shown in Fig. 4. The result shows that the two sub-

regions are well registered. 

 

Fig. 4 Zoom-in view of one pair the registration results. (a) fixed image, (b) moving image, (c) registered pair images 

After image registration, the (x,y) translation relationship of the nearby regions was 

determined. The next step was to register the datasets in the z direction. The process was to 

search for the minimum distance between the two mean surfaces by using the least-squares error 

method. For surface region 11 and surface region 12, the aligned result is shown in Fig. 5. The 

result shows that the two surfaces are well registered in the z direction. 



 

Fig. 5: z axis registration result. The colour-coded surface represents surface 11 and the black dots represents 

surface 12 

After the (x, y, z) translation information was determined, the sub-regions could be stitched 

together. The data in the overlapped area was recalculated with the edge intensity method. Fig. 

6 shows the final stitching result. Fig. 6 shows that there are no obvious edges in the overlapped 

area, which indicates that the datasets are well stitched. The final stitching result is also 

registered to the original design surface with an iterative closest point (ICP) method [13] and 

the error map is determined as shown in Fig. 7. The root-mean-square (RMS) value of the error 

map is 0.108 µm. The error map shows that the error is evenly distributed and in most areas is 

close to zero. It is also interesting to note that the error in the centre area is relatively small 

compared to that in the surrounding areas. This is mainly caused by the accumulated errors in 

the image registration process since the surrounding datasets principally need more connections 

than those in the centre. The different patterns for the error map related to two nearby sub-

surfaces are the results from the registration error for the proposed method. The result shows 

that the registration error is in the level of sub-micrometer and the error for each nearby 

registration is randomly distributed, which depends on the data in the overlapped area. This is 

well demonstrated in different datasets for x direction, i.e. for different groups of datasets (11, 



12, 13), (21, 22, 23) and (31, 32, 33), the errors are distributed (from left to right) in a increasing 

manner, first decreasing and then increasing manner, and decreasing manner, respectively.  

 

Fig. 6: Stitching result 

 

Fig. 7: Error map comparing with the design surface 

4. Experimental verification and discussion 

4.1 Measurement of a diamond-turned sinusoidal surface 

To demonstrate the practical usage of the proposed method, a stitching 

measurement experiment was conducted by measuring a diamond-turned 

sinusoidal surface by a commercial coherence scanning interferometer (CSI, with a 



20× object lens and 1× and 0.55× zoom lens). The surface was measured in a manner 

similar to the simulation in a 3×3 matrix arrangement. The area of a single 

measurement is approximately (0.3×0.2) mm. A set of nearby sub-surfaces with an 

overlap marked region  is shown in Fig. 8 and all the original measurement data is 

shown in Fig. 9.  

 

Fig. 8: The 3D dataset for two nearby sub-surfaces, the overlap region is marked with dash line 

 



Fig. 9: Original data (measurement size of each dataset is approximately (0.3×0.2) mm and the colour bar gives 

height information in micrometres) 

After obtaining the individual measurement data, the data was modelled by a 

Gaussian process. The mean surfaces of the measurement data are shown in Fig. 10. 

The result shows that the overall deviations of the mean surfaces are greatly 

reduced and the intensities of the subfigures have better uniformity. This result 

demonstrates the advantage of using a Gaussian process to model the 

measurement data, especially when the measurement noise is large or the 

measurement result is affected by obstacles such as dusts and/or scratches. As 

reported by Huang et al. [18], the registration error is about 25 µm for a noise level 

with standard deviation of 150 µm,.   

 

Fig. 10: Mean surfaces of Gaussian process (measurement size of each dataset is approximately (0.3×0.2) mm and the 

colour bar gives height information in micrometres) and overlapped regions  

The mean surfaces were then converted to the grayscale images and the image registration 

was conducted among the eight overlapped regions (which are highlighted in Fig. 10 with 



notions of A to H). Fig. 11 shows the registration results of the overlapped regions for region 

A. The results show that the sub-surfaces are well registered. 

 

Fig. 11: One pair of the image registration result. (a) fixed image, (b) moving image, (c) registered pair images  

After image registration for the x-y plane, the next step was to perform z axis 

alignment. After that, the coordinate transformation information for all the three 

axes were obtained and the registration process was finished. In this study, the z 

axis alignment was divided into two steps. The first step was to align the sub-

surfaces in the horizontal direction and another step was to align the sub-surfaces in 

the vertical direction. The horizontal direction step aims to register the sub-surface 

in the horizontal direction, i.e. region A and B, region C and D, region E and F as 

shown in Fig. 10. The vertical direction step aims to register the sub-surface in the 

vertical direction, i.e. region G and H. As a result, the relationship of all the sub-

surfaces were determined.  

4.2 Result and discussion 

After registration, the overlapped data was fused together by using the edge 

intensity method. Fig. 12 shows the final stitching result after data fusion while 

Fig. 13 shows the stitching result provided by the CSI software. The detail of the 

stitching result from the proposed method and that from the CSI software is also 

shown in Fig. 12(b, c) and Fig. 13(b, c). The stitching result shows that the sub-



surfaces are well stitched together and the stitching result provided by the proposed 

method has better edge transition features than the stitching result provided by the 

CSI software. Fig. 12(b, c) shows a better transition area than Fig. 13(b, c) at the 

region near the edge of the original sub-surfaces. This is due to the characteristics of 

the edge intensity data fusion method, which combines both the features in the 

overlapped surfaces to generate a fused dataset. This is particularly useful when the 

two overlapped sub-surfaces have significantly different measurement results due 

to measurement noise.   

The final stitching result is also compared with that measured with a lower magnification 

setting (20×0.55) in a single shot measurement. To reduce the effect of the measurement noise, 

especially the different noise level at different magnifications [24], and evaluate the form error 

of the stitching method, both the results of the stitched measurements and the single shot 

measurement are bandwidth-matched through a Gaussian filtering. The cut-off spatial 

wavelength of the Gaussian filter is 0.01 mm. Moreover, the edge area with half a cut-off length 

is removed since this area has a large edge effect, which significantly affects the evaluation of 

the results. The two filtered results are then registered with the ICP method and the error map 

is calculated and shown in Fig. 14. The single shot measurement has a measurement area of 

(0.6×0.4) mm which covers the centre part of the final stitching measurement result and contains 

all the edges in the stitching result. The RMS error with our method is 0.31 µm. Similarly, the 

stitching result provided by CSI software was also registered to the single shot measurement 

result using the same method and the error map was obtained and shown in Fig. 15. The RMS 

error is 0.27 µm. The result shows that the errors are of the same order and both are evenly 

distributed.  



 

Fig. 12: Stitching result of the proposed method 

 

Fig. 13: Stitching result of the CSI software  



 

Fig. 14: Proposed stitching error comparing with a single shot measurement  

 

Fig. 15: CSI stitching error comparing with a single shot measurement 

The proposed stitching method makes use of a precision moving stage to simplify the 

stitching process from a 6 DOF problem to 3 DOF problem. For the stitching strategy as shown 

in the measurement experiment, the length of each sub-surface is about 0.3 mm, to achieve the 

sub-micrometer stitching accuracy, the angular motion error can be calculated to be less than 

0.1 μm
arctan( ) 0.33 mrad

0.3 mm
 . This requirement can be achieved by many commercial linear stages 

such as those from Aerotech [25], which rotation error is as small as 50 µrad.  

The proposed stitching method is a generic method which is suitable for measuring various 

kinds of surfaces with different patterns or different local curvature. However, its measurement 



ability is affected by the measuring range of the sensor and the moving stage. For the 

experiments as demonstrated in this study, the measurement ability is limited by the hardware 

of the instrument: measurement range in the z direction of the CSI and the X-Y stage, which 

results in the fact that it can only measure surfaces which are relatively flat. With the help of 

additional rotational stages, the measurement for high-departure aspheres is possible with the 

modified proposed method. The corresponding translation motion should be modified to the 

rotation motion. For some kind of surfaces with relatively less features such as those with longer 

spatial period, the registration accuracy may be largely affected, a pre-processing can be 

implemented to improve the registration accuracy by using the invariant features such as   

Gaussian curvature [26]. This will be considered in future work. On the other hand, for some 

workpiece without strong periodical patterns, the small local difference caused by surface 

roughness and discontinuity of materials can still be treated as features to ensure the registration 

accuracy [27].  

5. Conclusion 

A stitching method for high dynamic range optical measurement of precision surfaces is 

presented, which is based on a Gaussian process, image registration and data fusion techniques. 

For the overlapped areas, the data are fused with the edge intensity method. A simulation and 

actual measurement were conducted for the verification of the method. For both simulation and 

actual measurements, nine (3×3) sub-surface measurements were stitched together to form a 

holistic measurement result. The stitching result shows improved edge transition features in the 

overlapped area, which is an advantage, especially for overlapped sub-surface measurements 

that have significantly different results. It is concluded that the proposed method is technically 

feasible and suitable for sub-aperture stitching for large area measurement with optical 

instruments. 
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