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Objective. Pain is a major symptom of osteoarthri-
tis (OA); currently available analgesics either do not pro-
vide adequate pain relief or are associated with serious
side effects. The aim of this study was to investigate the
therapeutic potential of targeting the resolvin receptor
system to modify OA pain and pathology.

Methods. Gene expression of 2 resolvin receptors
(ALX and ChemR23) was quantified in synovium and
medial tibial plateau specimens obtained from patients with
OA at the time of joint replacement surgery. Two models of
OA joint pain were used for the mechanistic studies. Gene
expression in the joint and central nervous system was
quantified. The effects of exogenous administration of the D
series resolvin precursor 17(R)-hydroxy-docosahexaenoic
acid (17[R]-HDoHE) on pain behavior, joint pathology, spi-
nal microglia, and astroglyosis were quantified. Plasma lev-
els of relevant lipids, resolvin D2, 17(R)-HDoHE, and
arachidonic acid, were determined in rats, using liquid chro-
matography tandem mass spectrometry.

Results. There was a positive correlation between
resolvin receptor and interleukin-6 (IL-6) expression in
human OA synovial and medial tibial plateau tissue. In
rats, synovial expression of ALX was positively correlated
with expression of IL-1(, tumor necrosis factor, and
cyclooxygenase 2. Treatment with 17(R)-HDoHE reversed
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established pain behavior (but not joint pathology) in 2
models of OA pain. This was associated with a significant
elevation in the plasma levels of resolvin D2 and a signifi-
cant reduction in astrogliosis in the spinal cord in the
monosodium iodoacetate—-induced OA rat model.

Conclusion. Our preclinical data demonstrate
the robust analgesic effects of activation of the D series
resolvin pathways in 2 different animal models of OA.
Our data support a predominant central mechanism of
action in clinically relevant models of OA pain.

Osteoarthritis (OA) is a highly prevalent degenera-
tive joint disorder characterized by loss of cartilage, sub-
chondral bone remodeling, and synovial inflammation
(1,2). Pain is the predominant symptom of OA, which
limits movement and causes disability (3). OA pain is signif-
icantly associated with synovial inflammation and changes
in the subchondral bone (4), and evidence of central sensiti-
zation and the spread of pain has been reported (5).
Existing drugs are poorly effective and/or are associated
with adverse side effects. Most often, total joint replace-
ment is the only successful therapeutic treatment (6).

Resolvins are endogenous specialized pro-resolution
lipid mediators derived from docosahexaenoic acid (DHA
[D series resolvins]) and eicosapentaenoic acid (EPA [E
series resolvins]), which exhibit potent antiinflammatory and
pro-resolution properties (7,8). Four resolvin receptors have
been identified: ALX (also known as N-formyl peptide
receptor 2), G protein—coupled receptor 32 (GPR32)
(9-11), chemokine-like receptor 1 (ChemR23) (12), and leu-
kotriene B, receptor (BLT-1) (13). Resolvin D1 (RvD1)
binds to and activates both ALX and GPR32 in human tis-
sue, while in murine tissue the actions of RvD1 are mediated
by ALX (14). ChemR23 and BLT-1 are the receptors
through which RvE1 and RvE2 act (14).

In the context of their therapeutic potential for
pain management, RvE1l and RvD1 (administered
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exogenously) attenuate pain behavior in models of acute
inflammatory pain (15,16) and a model of chronic
adjuvant-induced arthritis (17). RvD1 inhibits the activity
of some temperature-sensitive transient receptor potential
(TRP) ion channels expressed by the primary afferent sen-
sory fibers TRP ankyrin 1 (TRPA-1) (18) and TRP
vanilloid channel 3 (TRPV-3) (19), but not TRPV-1. Due
to the rapid degradation of resolvins, local (intraplantar or
intrathecal) routes of administration have been studied.
Spinal administration of RvE1l reduced capsaicin- and
tumor necrosis factor (TNF)-induced spontaneous pain
and hypersensitivity in mice and partially attenuated pain
behavior in models of neuropathic pain (20). RvD1 and
RvE1 can modulate TRPV-1 and TNF responses in the
spinal cord (20-22) and inhibit phosphorylation of N-
methyl-D-aspartate receptors and cytokine expression in
the spinal cord in the setting of chronic pancreatitis-
induced pain (23). Thus, both peripheral and spinal mech-
anisms of action contribute to the inhibitory effects of the
resolvins in models of inflammatory and neuropathic pain,
with predominant peripheral antiinflammatory mecha-
nisms including inhibition of neutrophil infiltration,
edema, and proinflammatory cytokine expression (21).

The therapeutic potential of exogenously adminis-
tered RvD1 and RvE1 may be limited by instability and short
durations of action. Treatment with precursors of the active
molecules offers an alternative longer-lasting and beneficial
approach (17), as does the development of chemically and
metabolically stable analogs such as 17R-hydroxy-19-para-
fluorophenoxy-resolvin D1 (24). Inhibitory effects of a
precursor of RvD1, 17(R)-hydroxy-docosahexaenoic acid
(17[R]-HDoHE), on mechanical hyperalgesia in a model of
inflammatory joint pain have been reported and associated
with reductions in hind paw levels of TNF and interleukin-
18 (IL-1B) and spinal cord expression of NF-«kB and
cyclooxygenase 2 (COX-2) (17). These data suggest that
exogenous augmentation of resolvin precursors has
therapeutic potential for the treatment of pain states that are
underpinned by peripheral and/or central sensitization
mechanisms.

The aim of the current study was to provide new
clinical and preclinical evidence for the therapeutic poten-
tial of the D series resolvin pathway for the treatment of
OA pain. Using 2 different clinically relevant models of
OA joint pain, we performed mechanistic studies to inter-
rogate the contribution of peripheral joint versus spinal
cord sites of action of this novel class of analgesics.

PATIENTS AND METHODS

Subjects. Research using clinical samples was approved
by generic ethics committees for the Nottingham University
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Hospitals NHS Trust Biobank (reference no. RSCH 488).
Human synovial tissue and bone from the medial tibial plateau
were obtained from 15 patients who underwent total knee
replacement (TKR) surgery for OA pain. These tissues were
selected on the basis of established associations between inflam-
mation, bone remodeling, and pain (1,2). Fresh tissue samples
were collected from the surgical team and snap-frozen and
stored in a —80°C freezer at the Biobank, City Hospital, Univer-
sity of Nottingham. Fresh synovial tissue specimens (n = 15) and
medial tibial plateau specimens (n = 14) were used to quantify
gene expression.

Animals and model induction. Animal experiments
were approved by the Nottingham University ethics committee,
and all procedures were approved by the UK Home Office in
accordance with the Animals (Scientific Procedures) Act 1986
and conform to the guidelines of the International Association for
the Study of Pain. Adult male Sprague-Dawley rats (n = 166)
were used (Charles River). All procedures and testing were per-
formed in a blinded manner. The model of monosodium iodo-
acetate (MIA)-induced OA pain was generated as previously
described (25). The medial meniscal transection (MNX) induc-
tion model of OA pain was based on previously described meth-
ods (26) (see also Supplementary Methods, available on the
Arthritis & Rheumatology web site at http://onlinelibrary.wiley.
com/doi/10.1002/art.40001/abstract).

Pharmacologic interventions and assessment of pain
behavior. Weight-bearing asymmetry and hind paw mechanical
withdrawal thresholds were determined using a Linton incapacitance
tester and von Frey monofilaments (Linton Instrumentation; bend-
ing force 1-26g, respectively) as previously described (27) (see
Supplementary Methods). An RvD1 precursor, 17(R)-HDoHE,
also known as 17(R)-HDHA, was purchased from Cayman Chemi-
cal. This precursor gives rise to the production of 17R RvD1 and
17R RvD2, epimers of endogenous RvD1, RvD2, RvD3, and RvD4
(synthesized from 17[S}]-HDoHE), and aspirin-triggered epimers
(17R forms), when COX-2 is acetylated (14).

The 17(R)-HDoHE (stock solution 100 ug/ml in etha-
nol) was diluted in normal sterile saline to provide a concentra-
tion of 1 ng/ul. The vehicle solution consisted of 1% ethanol
solution in 99% saline. A series of different pharmacologic stud-
ies were performed using 300 ng of 17(R)-HDoHE in 300 ul
saline administered intraperitoneally. Study 1 determined the
effects of a single injection of 17(R)-HDoHE on pain behavior
on day 14 after induction of the model. Study 2 determined the
effects of repeated administration of 17(R)-HDoHE (300 ng in
300 wl saline, every other day from day 14 until day 28 after
induction of the model) on pain behavior in the MIA-induced
OA pain model and the MNX induction model of OA pain.
Study 3 determined the effects of discontinuous administration of
17(R)-HDoHE (300 ng in 300 wl saline, from day 14 to day 22
after induction of the model) on pain behavior, quantified until
day 35 after induction of the model. All of the drug intervention
studies were conducted in a blinded manner.

Quantitative real-time polymerase chain reaction.
At the end of the behavioral studies, the rats were killed via an
overdose of sodium pentobarbital, and fresh-frozen spinal cords
and synovial tissue were collected and stored at —80°C. Tissues
were homogenized in ice-cold TRI Reagent to extract total RNA
from the samples, as previously described (26). Human OA syno-
vial tissue collected at the time of TKR surgery was homogenized
in cold TRI Reagent, and RNA was extracted as previously
described. Bone from the mid part of the medial tibial plateau
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Figure 1. Expression of resolvin receptors ALX and ChemR23 in human osteoarthritis (OA) joint tissue. A and B, Transformed C; values for
resolvin receptors ALX and ChemR23 mRNA in synovium (A) and medial tibial plateau (B) specimens obtained from patients with end-stage
OA. Expression of ChemR23 was significantly higher than that of ALX in both OA synovium (n = 15 specimens) (A) and medial tibial plateau
(n = 14 specimens) (B), as shown by a larger transformed C, value (maximum cycle number for run — cycle number at which exponential amplifi-
cation occurs). Bars show the mean = SEM. #### =P <(.0001 by unpaired ¢-test. C-F, Correlations of ALX and ChemR23 with the cytokine
interleukin-6 (IL-6) and the enzyme 15-lipoxygenase 1 (15-LOX-1) in human medial tibial plateau tissue. G-J, Correlations of ALX and

ChemR23 with IL-6 and 15-LOX-1 in human synovium.

collected at the time of TKR surgery was pulverized in liquid nitro-
gen, and RNA was extracted in TRI Reagent. RNA samples were
kept in a —80°C freezer for future use (see Supplementary Meth-
ods, available on the Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.40001/abstract). ~ Expres-
sion of target genes was quantified using previously described
methods (26,28). Primers and probes were designed using Primer
Express 3.0 software (Applied Biosystems) and synthesized by per-
sonnel at MWG Biotech, and minor groove binder probes were
biosynthesized by personnel at Applied Biosystems (see Supple-
mentary Methods).

Glial cell immunofluorescence analysis. Rats were
killed by sodium pentobarbital overdose and transcardially per-
fused with saline and then 4% paraformaldehyde, pH 7.4
(Sigma). The lumbar spinal cord was removed, postfixed in 4%
paraformaldehyde, and stored in 30% sucrose. The spinal cord
was then sectioned, and immunohistochemical analysis was per-
formed using mouse anti-glial fibrillary acidic protein (anti-
GFAP) antibodies (1:100) (Fisher Scientific), as previously
described (26) (see Supplementary Methods).

Histologic staining and scoring of knee joints. Carti-
lage histopathology was scored from 0 (normal) to 5 (severe

degeneration), and a total joint damage score (range 0-15) was
obtained by combining the cartilage score with the score for joint
involvement (range 0-3) (29). Synovial inflammation was graded
on a scale of 0 (lining layer, 1-2 cells thick) to 3 (lining layer >9
cells thick and/or severe increase in cellularity), as previously
described (29). Sections from the posterior half of the knee joints
were dewaxed and recalcified with calcium chloride and magne-
sium chloride before tartrate-resistant acid phosphatase (TRAP)
staining was conducted using a commercially available kit
(F386A; Sigma-Aldrich). TRAP-positive osteoclasts were quanti-
fied as previously described (29) (see also Supplementary Meth-
ods, available on the Arthritis & Rheumatology web site at http://
onlinelibrary.wiley.com/doi/10.1002/art.40001/abstract).
Statistical analysis. Data were analyzed with GraphPad
Prism version 5 or 6 and are presented as the mean += SEM.
Behavioral data were analyzed by two-way analysis of variance
(ANOVA) with Bonferroni post hoc correction. Histologic scoring
was analyzed by one-way ANOVA with Bonferroni post hoc test or
by Kruskal-Wallis ANOVA followed by Dunn’s post hoc test for
nonparametric data. Gene expression levels were analyzed by
unpaired #-test (parametric data) or Mann-Whitney test (nonpara-
metric data). Correlations between gene expression of resolvin
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Figure 2. Expression of resolvin receptors ALX and ChemR23 in rat osteoarthritis (OA) joint tissue. A and B, Significant weight-bearing asym-
metry (A) and decreased ipsilateral paw withdrawal thresholds (B) following intraarticular injection of monosodium iodoacetate (MIA) into the
knee joints (MIA-treated rats) compared with saline-treated control rats (n =8 per group). Values are the mean * SEM. ###% = P <(0.0001 ver-
sus control, by two-way analysis of variance with Bonferroni’s post hoc test. C and D, Decreased synovial expression of ChemR23 in MIA-
treated rats compared with saline-treated control rats on day 14 (C) and day 35 (D). E and F, Comparable expression of ALX in the synovium
of MIA-treated rats and saline-treated rats on day 14 (E) and day 35 (F) (n = 7-8 per group). Bars in C-F show the mean = SEM. * = P <(0.05;

#x = P <(.01 by unpaired ¢-test.

receptors and pain behavior or genes of interest were analyzed using
Pearson’s correlation coefficient (parametric data) or Spearman’s
correlation coefficient (nonparametric data) analysis. For immuno-
fluorescence analysis, data were analyzed by one-way ANOVA with
Bonferroni post hoc test. Correlations between spinal GFAP expres-
sion and weight-bearing asymmetry and the ipsilateral paw with-
drawal threshold were determined by a Spearman’s correlation.

RESULTS

Expression of ChemR23 and ALX messenger RNA
(mRNA) in the OA joint. Both ALX and ChemR23 were
present in human synovium and medial tibial plateau bone
obtained following TKR surgery for OA (Figures 1A and
B). For the synovium, there was an approximate 6-C, differ-
ence between ChemR23 and ALX, and for the medial tibial
plateau bone there was a 2-C, difference, indicating higher
expression of ChemR23 compared with ALX in both
tissues. Given the role of these receptors in regulating
inflammatory signaling, it is noteworthy that the expression
of both ChemR23 and ALX was positively correlated with
mRNA expression of IL-6 in the medial tibial plateau bone

(Figures 1C and D). Expression of both ChemR23 and
ALX was also positively correlated with expression of the
enzyme 15-lipoxygenase 1 (15-LOX-1) in the medial tibial
plateau bone (Figures 1E and F). In the synovium, correla-
tions were less robust. Expression of ALX but not
ChemR23 was positively correlated with IL-6 expression
(Figures 1G and H), and expression of ALX was also posi-
tively correlated with 15-LOX-1 expression (Figures 11 and
J). There was no correlation between body mass index
(BMI) or age with expression of ALX, ChemR?23, or any
other genes studied in the synovium of OA patients (data
not shown). Analysis of the correlation of BMI and age with
expression of selected genes in medial tibial plateau bone
from OA patients revealed a significant negative correlation
between BMI and the expression of TNF. There was a sig-
nificant negative correlation between age and expression of
ChemR23 and 15-LOX-1 (data not shown).

The preclinical MIA model of OA pain was associ-
ated with marked weight-bearing asymmetry (P << 0.0001 ver-
sus saline + vehicle) (Figure 2A). In addition, MIA-induced
OA pain was associated with reductions in ipsilateral paw
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Figure 3. Correlations between synovial expression of ALX and markers of inflammation in rat synovium. Significant correlations between ALX
expression and synovial expression of interleukin-18 (IL-18), tumor necrosis factor (TNF), and cyclooxygenase 2 (COX-2) on day 14 (A-C) and
day 35 (D-F) in monosodium iodoacetate—treated rats (n = 7) were found.

withdrawal thresholds (P < 0.0001 versus saline + vehicle)
(Figure 2B), as previously described (25). Consistent with the
clinical data, synovium from saline-treated (control) rats
expressed both ChemR23 and ALX (Figures 2C-F). There
was a significant reduction in ChemR23 expression in the
synovium at both the earlier (day 14) (Figure 2C) and later
(day 35) (Figure 2D) time points in MIA-treated animals
compared with saline-treated controls. Synovial expression of
ALX was unaltered in MIA-injected rats compared to saline-
treated rats at either time point studied (Figures 2E and F).
Consistent with the clinical data, there was a trend
toward a correlation between ALX and IL-6 expression
(results not shown) at 14 days after induction of the model
(r=10.6826, P = 0.0621). At this time point, synovial ALX
expression was correlated with IL-18, TNF, and COX-2
expression (Figures 3A-C). At the later time point, syno-
vial ALX expression was correlated with IL-18, TNF, and

COX-2 expression in the synovium (Figures 3D-F). There
were no significant correlations between ALX expression
and IL-6, IL-1B3, TNF, and COX-2 expression in the syno-
vium of control (saline-treated) rats (data not shown).
There were no significant correlations between synovial
expression of ChemR23 and IL-183, TNF, and COX-2 in
the MIA-induced model of OA at either time point (data
not shown).

The number of ALX-positive and ChemR23-
positive cells in the synovium was compared in the MIA-
treated rats (day 28 after the MIA injection) and saline-
treated controls. The number of DAPI-positive nuclei,
ED1/CD68-positive cells, and the number of ALX-positive
and ChemR23-positive cells in synovial sections was evalu-
ated. The number of DAPI-positive cells was increased
(P<0.01) in the synovium of rats with MIA-induced OA
compared with saline-injected control rats (see
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(H&E)-stained knee joint sections from rats treated with saline, MIA + vehicle (Veh), or MIA + 17(R)-HDoHE. A, Chondropathy. Bars = 500
pm. B, Synovial inflammation. Bars = 100 um. C, Osteoclastogenesis. Bars = 100 um. Black arrows indicate areas of chondropathy and synovial
inflammation; yellow arrows indicate osteoclastogenesis. D-G, Significant joint pathology at 28 days in rats treated with intraarticular injections
of MIA compared with saline-treated rats. Repeated administration of 17(R)-HDoHE from day 14 to day 28 did not alter the chondropathy
score (D), synovial inflammation (E), chondrocyte appearance (F), or number of tartrate-resistant acid phosphatase (TRAP)—positive osteoclasts
(G) in the MIA-treated rats. Bars show the mean = SEM. * =P <0.05; ** =P <(.01; *** =P <0.001 by one-way ANOVA with Bonferroni’s
post hoc test (parametric data) or Kruskal-Wallis test with Dunn’s post hoc test (nonparametric data). See Figure 4 for other definitions.

Supplementary Figures 1A and B, available on the Arthritis
& Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.40001/abstract). In addition, the number of
ED1-positive cells (see Supplementary Figures 1A and C)
was also increased in the rats with MIA-induced OA
(P < 0.005), which is indicative of the likely infiltration of
ED1-positive macrophages in this model. Despite the
increase in the number of macrophages in the synovium of
rats with MIA-induced OA pain, the number of ALX-
positive and ChemR23-positive cells in the synovium was
significantly reduced in MIA-treated rats compared with
saline-treated rats (see Supplementary Figures 1A, D, and
E) (P < 0.05 for both ALX and ChemR23).

In order to confirm that the antibody staining was
not attributable to autofluorescence, we conducted nega-
tive control experiments with omission of the primary

antibodies (see Supplementary Figure 2, available on the
Arthritis & Rheumatology web site at http://onlinelibrary.
wiley.com/doi/10.1002/art.40001/abstract), in which positively
labeled cells were not evident either visually or by velocity
analysis. We attempted colocalization experiments for ED1-
positive cells and ALX and ChemR23, but unfortunately we
were unable to obtain sufficient quality of staining when
these antibodies were applied to synovial sections for
analysis.

Reversal of MIA- and MNX-induced OA pain by
the D series precursor 17(R)-HDoHE. In a series of inter-
vention studies, we evaluated the ability of systemic admin-
istration of 17(R)-HDoHE to reverse pain behavior in 2
models of OA. Systemic administration produced a pro-
nounced and complete reversal of MIA-induced weight-
bearing asymmetry and restored ipsilateral paw withdrawal
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Figure 6. Expression of the resolvin receptors in the spinal cord. A and B, ChemR23 expression in the ipsilateral dorsal horn of the lumbar spi-
nal cord (L3-L5) on day 14 (A) and day 35 (B) in MIA-treated rats compared with saline-treated rats. C and D, ALX expression in the ipsilat-
eral dorsal horn of the lumbar spinal cord (L3-L5) on day 14 (C) and day 35 (D) in MIA-treated rats compared with saline-treated rats. Bars
show the mean = SEM (n = 5-6 per group). * = P <0.05; #* = P <0.01 by unpaired ¢-test. E, Anti—glial fibrillary acidic protein (GFAP) immuno-
fluorescence in the ipsilateral L4 dorsal horn of the spinal cord 28 days following induction of the MIA model of OA pain, indicative of
increased astrocyte reactivity. Repeated systemic treatment with 17(R)-HDoHE (300 ng every other day from day 14 to day 28 after model
induction) resulted in a significant decrease in MIA-induced GFAP immunofluorescence. The boxed area shows the area evaluated for GFAP
quantification. F, Quantification of GFAP fluorescence. Bars show the mean = SEM (n = 7-8 rats per group). *##* =P <0.001; # =P <0.05 by
one-way ANOVA. G, Positive correlation between GFAP expression in the ipsilateral dorsal horn of the spinal cord and weight-bearing asymme-
try in all of the treatment groups. H, Negative correlation between GFAP expression in the ipsilateral dorsal horn of the spinal cord and the
paw withdrawal threshold in all of the treatment groups. See Figure 4 for other definitions.

thresholds toward control values at 1 hour after adminis- both weight-bearing asymmetry and hind paw withdrawal
tration; these effects lasted for 6 hours (Figures 4A and B). thresholds were sustained following repeated administra-
Importantly, the inhibitory effects of 17(R)-HDoHE on tion of 17(R)-HDoHE for 14 days (Figures 4C and D);
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there was no evidence of tolerance to this analgesic effect.
To consolidate the evidence that these inhibitory effects of
the resolvin precursor on MIA-induced pain behavior has
translational relevance, the effects of 17(R)-HDoHE on
pain behavior were also evaluated in the MNX-induced
model of OA. In this analysis, systemic administration of
17(R)-HDoHE (300 ng intraperitoneally every other day
from day 14 after model induction) significantly halted fur-
ther increases in MNX-induced weight-bearing asymmetry
(Figure 4E).

The final series of pharmacologic experiments
determined the extent to which 17(R)-HDoHE adminis-
tration altered pain behavior once treatment had ceased.
Following a 7-day treatment protocol with 17(R)-HDoHE
(days 14-22 after MIA/saline injection), pain behavior was
assessed for a further 13 days. It was evident that the anal-
gesic effects of 17(R)-HDoHE were sustained over a short
period of time once treatment had ceased, and then pain
behavior returned to levels observed in saline-treated rats
with MIA-induced OA pain (Figures 4F and G).

To further investigate the potential mechanisms
underlying the effects of17(R)-HDoHE on OA-induced
pain behavior, the effects of repeated treatment with
17(R)-HDoHE on joint pathology were determined (Fig-
ures SA-C). Intraarticular injection of MIA was associated
with a significant increase in chondropathy, synovitis, and
chondrocyte appearance and increased numbers of sub-
chondral osteoclasts (Figures SD-G). Following repeated
administration of 17(R)-HDoHE (300 ng in 300 ul every
other day from day 14 to day 28) there were no significant
changes in any of these features of OA joint pathology
(Figures SD-G). Similarly, repeated treatment with 17(R)-
HDoHE did not alter MNX-induced joint pathology (data
not shown).

Spinal effects of 17(R)-HDoHE correlated with
behavioral analgesia. Given the lack of effect of 17(R)-
HDoHE on joint pathology in 2 models of OA pain, we
investigated potential spinal mechanisms underlying these
effects. ChemR23 expression in the spinal cord on day 14
in MIA-treated rats was comparable with that in saline-
treated controls (Figure 6A); however, expression was
increased on day 35 in MIA-treated rats compared with
saline-treated controls (Figure 6B). The expression of
ALX in the ipsilateral dorsal horn of the spinal cord was
increased in MIA-treated rats compared with saline-
treated rats on day 14 (Figure 6C), while on day 35 there
was no difference in spinal ALX expression between MIA-
treated and saline-treated rats (Figure 6D).

We previously reported a significant increase in
GFAP immunofluorescence, a marker for astrogliosis, in
the spinal cord at later time points in the MIA-induced
model of OA (25). Consistent with previous findings,
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GFAP immunofluorescence was significantly increased in
the ipsilateral dorsal horn (Figures 6E and F) but not the
contralateral dorsal horn (data not shown) of MIA-treated
rats that received vehicle, compared with saline-treated
controls. Repeated systemic administration of 17(R)-
HDoHE (300 ng in 300 ul every other day from day 14 to
day 28) significantly inhibited GFAP immunofluorescence
in the ipsilateral dorsal horn of the spinal cord in MIA-
treated rats, compared with vehicle-treated rats with MIA-
induced OA pain (Figures 6E and F). Correlation analysis
revealed that spinal GFAP expression was positively corre-
lated with weight-bearing asymmetry (Figure 6G) and neg-
atively correlated with ipsilateral paw withdrawal
thresholds (Figure 6H).

Liquid chromatography tandem mass spectrome-
try (LC-MS/MS) quantitative analysis of resolvins and
17(R)-HdoHE. Plasma levels of 45 oxylipins, including
arachidonic acid, RvD1, RvD2, and the precursor 17(R)-
HDoHE were quantified 150 minutes following systemic
administration of 17(R)-HDoHE in MIA-treated rats,
vehicle-treated rats, and saline-treated controls. Levels of
arachidonic acid were not altered by systemic administration
of 17(R)-HDoHE (see Supplementary Figures 3A and D,
available on the Arthritis & Rheumatology web site at http:/
onlinelibrary.wiley.com/doi/10.1002/art.40001/abstract). As
expected at the time point studied, plasma levels of 17(R)-
HDoHE were not altered following 17(R)-HDoHE pre-
treatment (see Supplementary Figures 3B and E), but levels
of RvD2 were significantly increased in 17(R)-HDoHE-
treated rats with MIA-induced OA compared with vehicle-
treated rats with MIA-induced OA (see Supplementary Fig-
ures 3C and F). Although there were no significant differ-
ences in the group data for plasma levels of RvD1, this lipid
was detected in a larger number of samples following 17(R)-
HDoHE treatment (5 of 8 samples) compared with those
that received vehicle (3 of 8). Of the remaining oxylipins
quantified, only 9-oxo-10E,12Z-octadecadienoic acid (9-
0x00ODE) and 13-0x0oODE were significantly increased in
the group of rats with MIA-induced OA treated with 17(R)-
HDoHE compared with the group that received saline plus
vehicle (data not shown).

DISCUSSION

Herein we report that the resolvin receptors ALX
and ChemR23 are expressed at the mRNA level in both
the synovium and tibial plateau of OA patients. ALX
expression was positively correlated with expression of IL-
6, which is a clinically relevant knee pain biomarker in
patients with early OA and those with advanced-stage
knee OA (30), and positively correlated with expression of
15-LOX-1, a key enzyme involved in D series resolvin gen-
eration, in both OA synovium and medial tibial plateau
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bone. Associations between ChemR23, 15-L.OX-1, and IL-
6 expression were less consistent for both tissues. The
enzyme 15-LOX-1 is involved in the biosynthesis of D series
resolvins from DHA but not the production of E series
resolvins from EPA; therefore, correlations between 15-
LOX-1 and ChemR23 may reflect the more general role of
15-LOX-1 in inflammatory pathways. Although correlations
between these inflammatory mediators and resolvin recep-
tor expression do not necessarily reflect a causal relation-
ship, they do support the need for further investigation of
the role of the resolvin system in OA mechanisms. Due to
the lack of availability of fresh non-OA knee synovium and
tibial plateau bone, we were unable to evaluate whether
expression of ALX and ChemR?23 is altered in end-stage
OA. To overcome this inevitable hurdle of clinical research,
preclinical studies using well-established models of OA pain
in the rodent were undertaken.

Both ALX and ChemR?23 were present in control
rat synovium at the early and late time points in the model
of MIA-induced OA pain. The impact of this model of
OA on the expression of these receptors differed. Expres-
sion of ChemR23 mRNA was reduced in the synovium at
both the early and late time points in the MIA model of
OA. In contrast, synovial expression of ALX mRNA in
MIA-injected rats remained stable and comparable with
levels in saline-treated rats at both time points in the model
of MIA-induced OA pain. Synovial expression of ALX
mRNA in the MIA-induced model of OA pain was posi-
tively correlated with key inflammatory genes (TNF, IL-
1B, IL-6, and COX-2), which is consistent with the pres-
ence of synovial inflammation in this model of OA pain,
described herein and in previous studies (31-33), and the
expression of ALX by neutrophils, macrophages, and
fibroblast-like synoviocytes (34).

In addition to the findings of the gene expression
studies, we also demonstrated an increased number of
ED1-positive cells in the synovium of rats with MIA-
induced pain compared with control rats, reflecting a likely
increase in macrophage infiltration. These events were
associated with a decrease in the number of ChemR23-
positive and ALX-positive cells in the synovium of MIA-
treated rats compared with controls. Thus, there was a
consistent direction of effect for ChemR23 mRNA and
protein. In contrast, ALX mRNA expression was not
altered, but the numbers of ALX-positive cells were
decreased in the synovium of MIA-treated rats, which may
reflect posttranslational changes in this receptor.

Systemic administration of the D series resolvin pre-
cursor 17(R)-HDoHE produced robust inhibition of
established pain behavior in both the chemically induced
and surgically induced OA pain models. Systemic treat-
ment with a single dose of 17(R)-HDoHE rapidly reversed
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established weight-bearing asymmetry, and this reversal
was evident 1 hour posttreatment and was sustained for 6
hours. LC-MS/MS analysis of plasma confirmed that this
treatment significantly increased plasma levels of RvD2
and increased the number of samples in which RvD1 was
detectable. The dose of 17(R)-HDoHE studied was based
on the comprehensive pharmacologic evaluation of 17(R)-
HDoHE in a model of inflammatory arthritis (17). Consis-
tent with this previous study, we observed that a very low
dose of 17(R)-HDoHE has beneficial effects on pain
behavior, and that repeated treatment with 17(R)-HDoHE
has a sustained inhibitory effect on pain behavior over a 2-
week period in both the chemically induced and surgically
induced models of OA pain. Although there were subtle
differences in the rapidity of onset and magnitude of the
inhibitory effects of 17(R)-HDoHE between the 2 models
of OA pain, overall this treatment had a comparable inhibi-
tory effect in the 2 models. Unlike opioid-based analgesics,
sustained treatment with 17(R)-HDoHE did not lead to
tolerance.

To further investigate the underlying mechanisms
leading to the beneficial effects of 17(R)-HDoHE, the
effects of repeated treatment on joint pathology were quan-
tified in the model of MIA-induced pain. Consistent with
previous studies (26,35-37) and the key clinical features of
OA, the model of MIA-induced OA was associated with
significant cartilage damage, synovial inflammation, and
increased numbers of subchondral osteoclasts. Despite the
robust analgesic effects of 17(R)-HDoHE, this treatment
did not alter any of the features of knee joint pathology.
This was also the case in the model of MNX-induced OA
pain and joint pathology. This observation is consistent
with our demonstration that the numbers of ALX-positive
cells were reduced in the synovium of rats with MIA-
induced OA pain compared with saline-treated controls,
which is likely to limit/reduce any possible effects of 17(R)-
HDoHE at this level. We previously showed that
treatments that act to reduce osteoclast function can alter
the progression of joint pathology under identical experi-
mental conditions (29). Unlike RvE1, which can inhibit
osteoclasts and bone resorption (38) and protects against
bone loss (39,40), evidence for a role of RvD1 in bone mod-
ulation is sparse. It is feasible, however, that a higher dose
of 17(R)-HDoHE may alter pathologic knee changes seen
in these models of OA. Overall, our in vivo data demon-
strate that 17(R)-HDoHE can robustly block pain behavior
in the MIA model of OA in the face of overt joint damage
and synovial inflammation.

Once treatment with 17(R)-HDoHE was stopped,
pain behavior was blocked for an additional 5-7 days, sug-
gesting that augmentation of the resolvin system has longer-
term inhibitory effects on nociceptive signaling, which may
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represent alterations in both channel activity and signaling
pathways. Chronic pain states are often associated with
changes in the spinal signaling pathways and increased excit-
ability of spinal neurones, coupled with increased activation
of proinflammatory signaling pathways and changes in the
activation state of microglia and astrocytes (41).

RvD1 is known to suppress TRPA-1, TRPV-3, and
TRPV-4 channel activity in primary sensory fibers (18,21);
therefore, systemic administration of 17(R)-HDoHE may
act to reduce sensory nerve activity arising from the dam-
aged knee joint. It is noteworthy that deletion of TRPA-1
attenuates joint pathology and pain behavior in the mouse
model of MIA-induced OA (42). It is possible that 17(R)-
HDoHE may still have effects at the level of the joint by
activating ALX receptors on synovial cells and possibly
reducing release of synovium-derived nerve sensitization
factors such as NGF (43).

Direct spinal administration of RvD1 inhibited
evoked pain behavior in models of acute and chronic
pain (18,21,22); similarly, spinal administration of
17(R)-HDoHE  attenuated  inflammation-induced
mechanical hypersensitivity (22). Although the spinal
mechanisms underlying the effects of RvD1 are not fully
established, common pathways implicated include
reductions in TNF release (22) and inhibition of ERK
signaling (21). In the current study, immunohistochemical
analysis revealed that both ChemR23 and ALX expression
in the ipsilateral dorsal horn of the spinal cord is either
increased or unaltered in rats with MIA-induced OA pain
compared with that in saline-treated controls at the 2 time
points studied, providing a putative spinal site of action for
the resolvins in this model of OA. It is possible that 17(R)-
HDoHE may still have effects at the level of the joint by
activating ALX receptors on synovial cells and possibly
reducing release of synovium-derived nerve sensitization
factors such as NGF (43).

We previously demonstrated a significant increase
in GFAP immunofluorescence, indicative of astrogliosis
and a marker of central sensitization, in the ipsilateral dor-
sal horn of the spinal cord at later time points in the model
of MIA-induced OA pain (25). In the current study,
repeated treatment with 17(R)-HDoHE from day 14
onward resulted in significant blockade of spinal astroglio-
sis in the model of MIA-induced OA pain at the later time
point (day 28 after induction of the model), and spinal
GFAP expression at this time was correlated with pain
behavior. We previously showed that post mortem knee
chondropathy scores are significantly and positively corre-
lated with human spinal GFAP mRNA expression (26),
confirming the clinical relevance of these spinal markers of
central sensitization.
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Astrogliosis is associated with numerous models of
chronic pain (for review, see ref. 44) and is a proposed
switch in the transition from acute to chronic pain mecha-
nisms (45). The ability of 17(R)-HDoHE to inhibit spinal
astrogliosis in preclinical models of OA, along with the clin-
ical associations between joint damage and spinal GFAP
expression, supports the need for further investigation of
the therapeutic potential of the D series resolvin pathway.
The mechanisms by which 17(R)-HDoHE inhibits astrogli-
osis may arise as a result of direct effects (although there is
little evidence to date) or indirect effects on the spinal sig-
naling pathways that lead to astrogliosis. In particular, acti-
vated microglia in the spinal cord play a fundamental role
in the development of chronic pain mechanisms and are
known to be activated 14-28 days following induction of
the MIA model of OA (25), coinciding with the increase in
expression of ALX in the ipsilateral spinal cord reported
herein.

Microglia are known to express ALX (46,47), and
activation of microglia in models of chronic pain states,
including OA, is associated with increased levels of pPERK
(48), a known spinal target of 17(R)-HDoHE (21). In
addition, the antiinflammatory and pro-resolution mole-
cule lipoxin A, also signals through ALX (49), and
increases in ALX expression seen in the spinal cord in the
MIA model may indicate an enhanced antiinflammatory
role of lipoxin Ay.

The results of this series of experiments demonstrate
that receptors for both D series and E series resolvins are
expressed at multiple sites within the human OA joint, and
that the precursor for the D series resolvins reduced OA
pain behavior and a key marker of central sensitization
(astrocyte activation) associated with chronic pain. These
effects, which were not subject to tolerance, at least over a
2-week period of treatment, likely arise from modulation of
both nociceptive input arising from the arthritic joint and
modulation of central nociceptive processing. Our findings
support the need for further investigation of the therapeutic
potential of this new class of analgesics for the treatment of
OA pain. Future work could address whether combination
treatments that use both 17(R)-HDoHE and an E series
resolvin precursor such as hydroxy-eicosapentaenoic acid
would produce superior analgesic efficacy and potential
disease-modifying properties via the modulation of both
resolvin signaling systems.
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