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a b s t r a c t 

The rise of Taylor bubbles through expansions in vertical pipes is modelled using Computational Fluid 

Dynamics. The predictions from the models are compared against existing experimental work and show 

good agreement, both quantitatively and qualitatively. Many workers, including the present work, find 

that, as the bubble passes through the expansion, it will either remain intact or split into one or more 

daughter bubbles. We find that the critical length of bubble, defined as the maximum length that will 

pass through intact, is proportional to the cosecant of the angle of the expansion. Further, we show that 

for an abrupt expansion, the critical bubble length became unaffected by the walls of the upper pipe as 

the diameter was increased. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The rise of Taylor bubbles is a well–documented and well–

studied phenomenon in many fields, from chemical reactions in

micro-scale systems to the eruption of volcanoes. Taylor bubbles

are elongated, bullet-shaped gas bubbles that move through stag-

nant or co-flowing liquid in horizontal, inclined or, in the present

context, vertical pipes ( Fig. 1 ). Research in this field has focussed in

a variety of topics, in particular the characterisation of the rise rate

of the bubbles [9,27] , the determination of the flow fields ahead of

Nogueira et al. [20] , in the liquid film around [4] and in the wake

region behind the bubble [21] . Despite these and numerous other

studies, there is a paucity of published experimental or numerical

work on Taylor bubbles that encounter a change in pipe diameter

as they rise. 

James et al. [12] reported the results of an experimental investi-

gation into the rise single Taylor bubbles through a variety of pipe

expansions and contractions (using 0.038, 0.05 and 0.08 m diam-

eter pipe sections). Sugar syrup solutions of different concentra-

tions, with viscosities of 0.001, 0.1 and 30 Pa s, were used to com-

pare the rise behaviour across a range of Froude numbers. These

experiments were monitored quantitatively by means of pressure

sensors and force meters and also qualitatively by video recording.

They observed that when a Taylor bubble encountered an expan-

sion in pipe diameter, it rapidly expanded both vertically and later-
∗ Corresponding author. 

E-mail address: david.hargreaves@nottingham.ac.uk (D.M. Hargreaves). 
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lly from the nose. It was hypothesised that this resulted in an in-

rease in the flow in the liquid film surrounding the bubble which

aused the observed necking or pinching of the bubble. For bub-

les above a certain length, this necking process splits the bubble

nto two or more daughter bubbles as shown in Fig. 2 , which is a

chematic of the process taken from James et al. [12] . The splitting

ill also generate oscillations in the pressure, which they mea-

ured both above and below the expansion. The objective of their

ork was to compare the experimental pressure signals measured

gainst the acoustic seismic data recorded at active volcanic sites;

heir hypothesis being that the source of pressure oscillations ob-

erved in seismic data are caused by a large bubble of gas rising

hrough a sudden expansion in the cross-sectional area of the con-

uit. They were able to show that the pressure changes measured

uring in their experiments exhibited similar behaviour to those

ecorded in the field, hence adding weight to their hypothesis. 

Kondo et al. [16] , whose primary focus was on co-current bub-

ly liquid gas flow, conducted a number of experiments using sin-

le Taylor bubbles in a quiescent liquid. In these, a Taylor bubble

ises through a pipe of diameter 0.02 m which undergoes a sudden

xpansion to one with a diameter of 0.05 m. Fig. 3 shows a still

ideo image taken from Kondo et al. [16] showing the bubble dur-

ng the necking process–the poor quality is due to the standard of

hotocopy available. After the neck of the bubble closes, the rear of

he leading bubble bursts through the nose of that part of the bub-

le. This process can be observed in the still video images shown

n Fig. 4 . These images have been taken after the sudden expansion

ut are cropped to the central 0.02 m of the pipe. 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Examples of an air Taylor bubble rising through (a) water and (b) silicone 

oil [7] . 
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Fig. 3. A still video image extracted and cleaned-up from Kondo et al. [16] which 

shows a Taylor bubble during the necking process while passing through a sudden 

expansion from a pipe of diameter 0.02 m to 0.05 m in water. 

Fig. 4. A series of still video images extracted from Kondo et al. [16] which show a 

Taylor bubble which has passed through a sudden expansion from a pipe of diam- 

eter 0.02 m to 0.05 m in water. 
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Danabalan [8] investigated the rise of Taylor bubbles as they

ove from a straight, vertical pipe into either a rounded glass bowl

r else a cubic box–the rationale being that this is an analogue of

 conduit in a volcano expanding into a lava lake. One novel as-

ect of the work was that she looked for the maximum volume

f bubble that could pass through the expansion without breaking

nto two or more daughter bubbles. It was found that the critical

olume at which this splitting occurred was dependent on the vis-

osity of the liquid and the geometry of the expansion, with the

ounded glass bowl being able to support a larger bubble pass-

ng through intact. Notice that in Fig. 5 there is no evidence of

he bursting of the bubble from behind as was reported by Kondo

t al. [16] . This is due to the much higher viscosity of the liquid in

anabalan’s work. 

Another experimental study recently conducted by Soldati

24] employed a Hele-Shaw cell to investigate the effect of the an-

le of expansion, fluid viscosity and volume of bubble may have

n the rise characteristics. A Hele-Shaw cell is made up of two

arallel plates some distance apart which are sealed at the sides.

y varying the volume of air injected into the base of the appara-
Fig. 2. Sketches of the breakup of a long parent 
us, different lengths of Taylor bubbles were generated in the cell

nd it was possible to find the critical volume of bubble which can

ass through the expansion without splitting by the necking of the

ubble. Similar to approach of Danabalan [8] , an exact value for

he critical length could not be found, but only upper and lower

ounds for it. Thus the critical bubble volume was deemed to lie

etween a lower volume, which could pass through the expansion

nbroken, and an upper volume, when the bubble did break up. 
bubble into several daughter bubbles [12] . 
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Fig. 5. A photographic sequence of a 60 cm 

3 Taylor bubble injected into a liquid with viscosity of 68 Pa s moving into a rounded bowl [8] . The upper bowl is filled with 

clear glucose syrup and the lower pipe is filled with glucose syrup mixed with red dye. Images (a) to (f) show the passage of the first daughter bubble while (g) to (l) shows 

a second daughter bubble rising after a brief hiatus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Soldati [24] concludes that the critical length of a bubble de-

creases as the angle of expansion, θ , (for a definition of θ , see

Fig. 7 ) increases from 30 ° to 90 °, as shown in Fig. 6 . This is consis-

tent with the findings of Danabalan [8] , in which a 90 ° expansion

gave a smaller critical length than a more gradual increase in pipe

diameter. In Fig. 6 the filled circles indicate the bubbles which did

not break up as they rose through the expansion, whilst the un-

filled circles indicate those that did. 

Fig. 7 , taken from Soldati [24] , shows a series of diagrams based

on still photographs that clearly illustrate the different stages of

the breakup mechanism. As the nose of the bubble enters the ex-

pansion section of the pipe, the nose of the bubble expands to fill

the widening diameter as it is no longer constrained by the chan-

nel walls of the lower pipe section. As the nose of the bubble ex-

pands, the middle of the bubble thins out. If the bubble is longer

than the critical length, it will break into two parts, as shown in

Fig. 7 (d) and (e). 

Recently, Carter et al. [5] studied the acoustic signals produced

by the breakup of a Taylor bubble as it rises through an expan-

sion in the pipe diameter. The experimental apparatus used in this

study consisted of a 0.01 m diameter pipe concentrically mounted
nside a longer 0.025 m diameter pipe - not strictly an expansion

n the terms we have defined previously, but a change in cross-

ectional area nonetheless. Both were filled with water and a spec-

fied volume of air was injected into the inner pipe while a high

peed camera was used to record the behaviour of the bubbles. A

igh sensitivity microphone was located above the surface of the

ater to record the acoustic signals generated. Although no signif-

cant conclusions could be drawn from an analysis of the acoustic

ignals, an analysis of the high speed camera images gave further

ualitative insight into the process of the breakup mechanism of a

aylor bubble passing through an expansion ( Fig. 8 ). 

In the figure, the negatives of still images extracted from a high

peed video recording of a Taylor bubble rising in water through

n expansion are shown. The time between successive images is

0 ms. Images (a) to (d) show the bubble starting to neck as water

s entrained from the outer pipe. As the bubble continues to neck

 fine central tube of air is maintained, shown in image (e). From

here, image (f), this film breaks and water is catapulted through

he centre of the upper bubble, forming a “spike”, similar to that

een in Fig. 4 . This then penetrates the nose of the bubble and wa-

er jets through this opening, which is shown in images (g). Carter
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Fig. 6. A diagram showing Taylor bubble breakup or otherwise for different angles 

of expansion (adapted from Soldati [24] ). Solid markers indicate bubbles that did 

not break up, hollow markers those that did. 
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t al. [5] also reported extensively on the size of the daughter bub-

le released from the tube. If the parent bubble were large enough,

hey found that a series of daughter bubbles may be released. 

In this paper we use commercial Computational Fluid Dynam-

cs (CFD) software to model and gain a better understanding of the

ehaviour of Taylor bubbles rising through changes in pipe geom-

try. To our knowledge, there have been no published computa-

ional studies of Taylor bubbles rising through expansions in pipe

iameter. 

There do exist, however, several CFD studies investigating the

ise of Taylor bubbles, either in stagnant fluid or co-current condi-

ions, but these have focussed on straight vertical or inclined pipes.

ome have used a bubble-centred reference frame, whereby the

alls of the domain are moving at the same speed as the liquid

ow ahead of the bubble, essentially fixing the bubble and allow-

ng the liquid to flow around it [2,14,15,26] . While this approach

esults in a far smaller domain and, hence mesh, it has drawbacks.

or example, the change in hydrostatic pressure around the bub-

le as it rises cannot be easily included nor can changes in the

ipe geometry, which is key to the present application. So, in the

resent study the full pipe geometry is included in the flow do-

ain, following the work of James et al. [11] . 

In recent years, CFD studies using the multiphase, Volume of

luid (VOF) model have replicated observations from experimental

tudies, such as bubble rise rate and wake behaviour [2,11,19,26] .

ther interface reconstruction schemes have been used to model

he gas-liquid interface. For example, Suckale et al. [25] developed
ig. 7. Diagrams based upon still images taken from a video recording of a Taylor bubble 

rocess to breakup (e) (adapted fromSoldati [24] ). 
 numerical model using a level set method and results suggested

hat a stable bubble could not be sustained with a Reynolds num-

er of more than 100. This corresponds to a maximum pipe di-

meter of under 0.01 m for a water-air system which is contra-

icted by many experimental studies. James et al. [13] questioned

hether this discrepancy is the result of a physical instability or

 numerical instability and pointed out that the simulations were

endered invalid by numerical divergence. Kang et al. [14] used a

ront tracking method to successfully simulate the rise of Taylor

ubbles in 2D axi-symmetrical pipes but no studies have used this

ethod for 3D Taylor bubbles. Lu and Prosperetti [18] also simu-

ated axi-symmetric Taylor bubbles rising through liquids in a ver-

ical tube. Their model neglected the flow in the gas, and tracked

he interface using a set of marker points which were linked by

ubic splines. 

.1. Objectives 

The objectives of this paper are first to accurately describe the

rocess of a single Taylor bubble passing through a change in pipe

iameter using a CFD model, validated against the experimental

tudy of James et al. [12] . Second, the lessons learnt from the vali-

ation study will be used to create a model to study the effects of

 variation in the angle of expansion, θ . Lastly, a parametric study

ill also be undertaken to examine at which ratio of the diameter

f the lower pipe to that in the expansion that the walls of the

pper pipe no longer affect the behaviour of the bubble passing

hrough an angle of expansion of 90 °. The rationale behind this fi-

al part is that there must be asymptotic behaviour as we go from

 very small expansion to an infinitely large one. 

. Numerical model 

.1. Governing equations 

In this study, a commercial CFD solver, ANSYS FLUENT 14.0, is

sed. The software uses the finite volume method to solve the mo-

entum and continuity equations. The continuity equation is de-

ived by applying conservation of mass to a finite volume. The mo-

entum equations (Navier–Stokes Equations) are derived from an

pplication of Newton’s Second Law. In the air-water system con-

ider in the present research, the film Reynolds number, Refilm, is

rmly in the turbulent regime, which means that the wake will

e turbulent. As a result of this, the Unsteady Reynolds-Averaged

avier–Stokes equations (URANS) were used, 

∂ρ

∂t 
+ ∇ . (ρ u ) = 0 , (1) 

∂ 

∂t 
(ρ u ) + (u . ∇) ρ u = −∇ p + ∇ 

2 [ (μ + μt ) u ] + F S , (2) 

here u is the velocity, p is the pressure, ρ is the density and

and μt are the dynamic and turbulent eddy viscosities respec-
rising through a θ = 45 ◦ expansion, from undisturbed rise (a), through the necking 



14 S. Ambrose et al. / Computers and Fluids 148 (2017) 10–25 

Fig. 8. Negative images taken from high speed video of a Taylor bubble moving from a narrow inner tube into a wider concentric tube (adapted from Carter et al. [5] ). 
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tively and F S is the surface tension force. Here, u , p and ρ repre-

sent time-averaged quantities. 

In the RANS approach whether for single-phase or two-phase

systems as we have here, the flow variables, such as pressure, ve-

locity and density, are split into mean and fluctuating components,

which are then time averaged. The result of this is that there is an

additional term to represent the effects of turbulence in the flow,

hence a model is needed to close the equations. Preliminary stud-

ies on the air-water system studied here, showed that the Realis-

able k − ε (RKE) model [23] is the most suitable turbulence model

to use for this application, given the constraints of computational

power available. 

The rationale for using URANS, an approach that is often crit-

icised by pracitioners who use, for example, Large Eddy Simula-

tions (LES) is as follows. First, the computational resources were

not available to perform acceptable LES and second, this study was

largely concerned with accurately capturing breakup of the bub-

bles and not, in particular, the wake behind the bubble. While it is

clear from the results that we will go on to show that the breakup

at the tail of the bubble is not resolved as accurately as it might be

using LES and a finer grid, the flow at the nose of the bubble and

in the necking region is accurately modelled using our choice of

URANS model. However, inaccuracies in the modelling of the wake

may result in an error in the rate at which a volume of gas is lost

from the bubble at its rear, which will result in a reduction in its

length. The loss of gas is due to the formation of small bubbles in

the wake. This will be discussed in Section 3 . 

The RKE model has two transport equations, one for the turbu-

lent kinetic energy, k , and one for the dissipation rate, ε, 

∂ 

∂t 
(ρ k ) + ∇ . (ρ k u ) = ∇ . 

[ (
μ + 

μt 

σk 

)
∇k 

] 
+ μt S 

2 − ρ ε, (3)

∂ 

∂t 
(ρ ε) + ∇ . (ρ εu ) = ∇ . 

[ (
μ + 

μt 

σε 

)
∇ε 

] 
+ C 1 εS − ρC 2 

ε 2 

k + 

√ 

νε 

(4
here S is the modulus of the mean rate of strain tensor, ν is the

inematic viscosity and σ k and σε are the turbulent Schmidt num-

ers. In this model, C 1 is given by 

 1 = max 

[ 
0 . 43 , 

η

η + 5 

] 
, (5)

ere η = Sk/ε. The remaining model constants, C 2 , σ k and σε have

een determined empirically and have values of 1.9, 1.0 and 1.2

espectively. The turbulent eddy viscosity 

t = 

ρ C μk 2 

ε 
, (6)

s in the standard k − ε model. Here, ρ is the local density as de-

ned in Eq. (13) . In the Realisable model C μ is not a constant but

s calculated using the mean strain rate and the rates of rotation,

s described in Shih et al. [23] . 

A multiphase model, capable of producing a distinct interface

etween the gas and liquid phases, is also required. We use the

olume Of Fluid (VOF) method, which is one of the most com-

on methods to represent the Taylor bubble regime using CFD.

his method models the interface by solving a continuity equation

or the gas volume fraction, αG in each cell, 

∂αG 

∂t 
+ u . ∇αG = 0 , (7)

here αG is the volume fraction of gas [10] . Here it is assumed

hat there is no mass transfer between the phases. The liquid vol-

me fraction is then calculated by observing the constraint 

G + αL = 1 , (8)

here αL is the volume fraction of liquid, which must be satisfied

o conserve mass. An explicit formulation of the VOF allows the

se of a “geometric reconstruction” scheme to reconstruct the in-

erface, based on the “piecewise linear interface calculation” (PLIC)

ethod [28] . This approach does not produce the smearing at the

nterface seen in other, implicit methods – it does, however, mean

hat an upper bound is placed on the size of time step that can be

sed. 
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Surface tension is approximated by the use of the Continuum

urface Force (CSF) model [3] where a force, F S acts at the interface

f the two fluids. This is calculated using 

 S = σκ n , (9) 

here σ is the surface tension coefficient, κ is the radius of cur-

ature and n is the surface normal of the interface, which in terms

f the volume fraction, α is 

 = ∇αG , (10) 

nd κ is given by 

= ∇ . 
∇ αG 

|∇ αG | . (11) 

To include compressible effects, the air is assumed to be an

deal gas, 

G = (p atm 

+ p) 
M w 

R 0 T 
(12) 

here the operating pressure was taken as atmospheric pressure,

 is the static pressure, M w 

is the molecular weight of the air, R 0 
s the Universal Gas Constant and T is the temperature. The liquid

hase is assumed to be incompressible and the flow is assumed to

e isothermal. 

The density, ρ , and viscosity, μ, that appear in Eqs. (1) –(4) and

6) , are constructed from volume fraction-weighted sums of the

hase density and viscosity. For example, for the density, 

= αG ρG + αL ρL , (13) 

here the notation of Eq. (8) is used. 

The PISO algorithm was used throughout to couple the veloc-

ty and pressure. While this was originally developed for transient,

ompressible flows, it can be used for incompressible flows. In-

eed, in this two phase application, there are cells in the domain

here the local density is the volume fraction-weighted sum of a

onstant density (the water phase) and a variable density phase

the air). So, we can view the incompressible case as a special case

f the compressible case for this multiphase application. 

.2. Domain and mesh 

Two domains were required: one for the validation against the

ork of James et al. [12] ( Section 3.1 ) and one for the study look-

ng at the variation of the angle of expansion ( Section 3.2 ). In all

ases, the grid was created in the meshing software ANSYS ICEM-

FD. 

For the James study, the domain has a total vertical height of

.3 m and is based on the experimental apparatus of James et al.

12] . A quarter segment of the domain was used to reduce the

omputational effort. With reference to Fig. 2 (i)–(v), it can be seen

hat the breakup process exhibits axial symmetry, thus justifying

he choice of a quarter segment. The domain is composed of three

onnected blocks, which are each meshed using a structured, hex-

hedral mesh. The three blocks are a lower pipe, an expanding

ection and an upper pipe, shown in Fig. 9 (a). The lower pipe is

 cylinder of height 0.5 m and internal diameter 0.038 m, and

he upper pipe a cylinder of height 0.7 m and internal diameter

.08 m. Between the upper and lower pipe there is a section of

radually expanding diameter. James, via private correspondence,

indly provided additional photographs of the expanding section

sed in their experiments which were not presented in James

t al. [12] . In the xy -plane a standard O-Grid topology as shown

n Fig. 9 (b) was used. 

For the angle of expansion study, a similar approach was used,

xcept for the 90 ° case, where three blocks were again used but

n a different topological arrangement - see Fig. 9 (c). Plot (d) in
he same figure gives an idea of the aspect ratio of the domain. A

ong lower section is required for the bubble to stabilize and reach

ts terminal rise velocity prior to it encountering the expansion.

qually important is a long section above the expansion so as to

eep the upper water-air interface sufficiently distance from the

xpansion zone. 

.3. Initial and boundary conditions 

A base case model was created, against which all further simu-

ations except the validation of Section 3.1 were compared. In this

ase case, the model pipe was initially filled with water to a depth

f 5 m with 4.5 m of air above this. A bubble of air was then in-

roduced close to the base of the pipe by specifying the volume

raction of air to be unity in an appropriate region. It is not essen-

ial to match the depth of water in the experiments (6 m) to the

imulations, because it is the distance of the bubble from the top

f the liquid column which is important for bubble dynamics ( ie a

imulated bubble 2 m from the top of a 5 m column behaved the

ame as a bubble 2 m from the top of a 6 m column of water). 

The initial size and shape of the bubble was varied to repre-

ent the range of different laboratory experiments performed. The

ubble’s initial shape for the base case is that of a hemisphere at-

ached to a cylinder with a radius of 0.14 m and length 0.5 m, giv-

ng a total length of 0.64 m. This is similar to the bubbles observed

n the experiments of Taha and Cui [26] . The initial pressure in the

ubble was set at a constant value matching the hydrostatic pres-

ure at the nose of the bubble. The initial velocity field is set to

ero everywhere, with very small values, O(10 −5 ) , of k and ε also

et throughout the domain. 

The reference pressure was set as atmospheric (101325 Pa) and

as specified at a location which was always within the gas phase

bove the upper liquid surface. The water surface level was tracked

y a User Defined Function (UDF) which determines the maximum

evel of the water surface at each time-step. 

. Results 

.1. Validation 

The vertical position of the nose of the rising bubble was

ecorded during the simulations. Pressure values were also

ecorded during the simulations at two measurement points in the

omain. These correspond to the locations of the sensors PZ4 and

Z6 from the work of James et al. [12] , which were located at the

all at approximately 0.65 m and 0.36 m below the top surface of

he liquid as can be seen in Fig. 10 . These datasets were then anal-

sed using a Fast Fourier Transform (FFT) to create a power spec-

ral density, from which the dominant frequencies could be deter-

ined. 

A set of simulations were conducted on grids of 3 different

izes in order to test mesh independence. In these simulations the

erminal velocity of the bubble in the lower pipe and frequencies

enerated as it passed through the expansion were recorded. The

CI method of Celik et al. [6] was used to determine an estimate

f the error introduced by spatial discretisation. Meshes of approx-

mately 950,0 0 0, 485,0 0 0 and 250,0 0 0 cells were used, which gave

 GCI error of 0.37% for the finest mesh and 0.57% for the interme-

iate mesh based on the rise velocity in the lower pipe. There was

lso little qualitative difference in the behaviour of the bubbles as

hey passed through the expansion section between the cases us-

ng the fine and intermediate meshes. It was concluded that the

ntermediate mesh provided a satisfactory level of accuracy. 

A bubble of length 4.4 D was initialised in the domain, where

 is the diameter of the pipe below the expansion (0.038 m). The

ose of this bubble was initially 0.843 m below the top surface of
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Fig. 9. The surface mesh on (a) a part of the symmetry plane and (b) the outlet on the James et al. [12] domain and (c) on a part of the symmetry plane of the 90 °
expansion. The full domain for the 90 ° expansion is shown in (d). 
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the liquid, and hence 0.243 m below the start of the expanding

section. The length of the expanding section was an order of mag-

nitude smaller than the height of water above it. As the bubble as-

cended the lower tube, a steady rise velocity was quickly reached

and maintained. This was followed by a rapid acceleration at the

nose as the bubble enters the expanding section, with the bubble

typically being split in two. The rise velocity in the lower pipe is

within 1.5% of the experimental measurements of James et al. [12] ,

with a corresponding Froude number of 0.355, compared to the

experimental value of approximately 0.35. 

The frequency analysis revealed dominant frequencies at ap-

proximately 13 Hz and 56 Hz, which again are comparable to

the frequencies determined in the experiments of James et al.

[12] (13 Hz and approximately 56 Hz respectively). The natural fre-

quency of the apparatus that James et al. [12] used was 13 Hz and

it was surmised that this was peak was due to an excitation, by

fluid processes, of this mechanical mode. That this peak appears

at all in our simulations is problematic, since our CFD is static and

this fluid-structure interaction cannot possibly take place. However,

James et al. [12] do report a second peak at 6 Hz, which they sug-

gest is due to fluid processes and not the excitation of the appa-

ratus. It may, therefore, be that the numerical model here is pick-

e  
ng up these low-frequency fluid processes, but not predicting their

requency with accuracy. 

The source of these oscillations must be due to the compress-

bility of the gas phase. It has been reported [1,22] that oscillations

re seen in Taylor bubbles in air-water systems, if those bubbles

re initially at a pressure not equal to the local hydrostatic pres-

ure at the nose. These lone bubbles are characterised by oscil-

ations in their length as they rise. The natural frequency, w n of

hese oscillations is 

 n = 

√ 

1 

L 

[ 
g + 

p atm 

ρH 

] 
(14)

here H is the height of the liquid column above the bubble, L is

he length of the bubble, ρ is the density of the liquid phase and

 is the acceleration due to gravity. If, at the time of the bubble

ntering the expansion, it is assumed that the bubble is perturbed,

hen these oscillations could be initiated. With the initial length of

he bubble used here ( 4 . 4 D = 0 . 167 m) and a height of water above

he bubble of approximately 0.6 m, then the frequency of oscilla-

ion, f = ω n / 2 π, is 5.2 Hz. While this is close to the 6 Hz reported

y James et al. [12] , it should be noted that the models of Pringle

t al. [22] and [1] assumed a plug of liquid above the bubble in
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Fig. 10. Experimental apparatus used by James et al. [12] . 
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Fig. 11. Plots of the Power Spectral Density of the signals generated by bubbles of 

identical initial length as they pass through a 90 ° expansion section for viscosities 

of 1, 0.1 and 0.001 Pa s respectively. 
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 pipe of constant diameter. Also, here we have a system, typi-

ally, of two bubbles which will form a complex oscillatory system.

owever, this simple calculation does reveal some insights into the

ossible source of these low frequency oscillations. 

The higher frequency, ∼ 56 Hz, was attributed to a short-lived

coustic resonance within the liquid column [12] . While the water

as modelled as incompressible, the air phase was not and so it

s possible that the bubbly wake behind the Taylor bubble could

upport these acoustic waves. 

Simulations were then conducted with bubble lengths of 2.2 D

nd 3.3 D , and these results replicated the behaviour observed in

he experiments conducted by James et al. [12] . Inasmuch as the

ubble of length 2.2 D successfully passed through the expansion

efore the neck closed, whereas a bubble of length 3.3 D was split

y the pinching at the neck, which results in a smaller bubble be-

ng left behind in the lower pipe. 

It should be noted that a full, rather than quarter, model of ap-

roximately 2 million cells was created. The simulation produced

ery similar results to the quarter pipe simulations with a Froude

umber of 0.352 in the lower pipe and dominant frequencies of 12

nd 54 Hz. However, the computing time required was too great to

onsider this a viable option for all simulations and so the quarter

ipe model was used for all subsequent simulations. 

A set of simulations were conducted in which the viscosity of

he liquid phase was varied. The experiments of Danabalan [8] ,

ames et al. [12] , Soldati [24] suggest that the necking process is

overned mainly by the geometry of the expanding section, rather

han the viscosity of the fluid. In the present work, the viscos-

ty of the liquid phase was varied from that of water, 0.001 Pa s,

o 0.1 Pa s and then 1 Pa s. Both the buoyancy and liquid film

eynolds numbers indicated that the higher viscosity cases are

aminar [17,20] . 
As the viscosity is increased, there is very little perceptible

hange in the lower frequency peak shown in Fig. 11 . The fact that

he low frequency peak did not vary with viscosity lends some cre-

ence to our use of Eq. (14) to estimate the oscillatory frequency of

he bubble as it enters the expansion. The higher frequency peak

s seen to shift to lower frequencies as the viscosity of the liquid

ncreases. This reduction in frequency is analogous to the shifting

f the natural frequency of a spring-mass-damper system as the

ritical damping coefficient is increased. 

One qualitative change that can be noticed given an increased

iquid viscosity is the decrease in bubbles shed from the tail of

he Taylor bubble. Bubbles which are shed in the 0.1 Pa s case are

een to coalesce more readily than the 0.001 Pa s case. This is due

o the closed wake structure observed behind the Taylor bubble at

hese reduced Reynolds numbers [20] . Fig. 12 shows a comparison

f streamline plots of the wake regions behind rising Taylor bub-

les in liquids of 0.001, 0.1 and 1 Pa s. One consequence of this

s that any parts of the bubble shed in the 0.001 Pa s case will

educe the length of the bubble, and hence bubbles may have a

ifferent length when reaching the expanding section given a dif-

erent viscosity. In addition, the thickness of the liquid film around

he bubble increases, as indicated by Llewellin et al. [17] . 

The results of these simulations are in agreement with the con-

lusions of the experimental studies of Danabalan [8] , James et al.

12] , Soldati [24] . These suggest that while some damping effects

ay be observed, viscosity does not play a critical role in the

reaking mechanism. 

.2. Variation of angle of expansion 

An analysis of the results of the studies of Danabalan [8] and

oldati [24] shows that a more gradual expansion between two

ipes of differing diameter will change the behaviour of the ris-

ng bubble. A parametric study was conducted to assess the effect

f varying the angle of expansion, θ , from 15 ° to 90 ° in increments

f 15 °. This angle is defined as shown in Fig. 13 and is consistent

ith Fig. 7 . An initial set of simulations were conducted to investi-

ate the effect of varying the angle of expansion whilst keeping all

ther parameters constant. Bubbles with an initial length of 4.4 D

0.167 m) were introduced, such that the nose is initially at a depth

f 0.843 m below the water surface. The diameter of the lower

ipe was 0.038 m, expanding into a 0.08 m pipe. 
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Fig. 12. Plots of the streamlines in the wake of a Taylor bubble rising in fluids of viscosity (a) 0.001 Pa s, (b) 0.1 Pa s, (c) 1 Pa s. Image (a) demonstrates the open wake 

structure associated with turbulent flow regime given Re B > 1500 [20] and images (b) and (c) demonstrate the closed wake structure associated with the laminar flow 

regime with Re B < 500. 
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With this particular length of bubble, as θ is decreased, larger

volumes of air are able to pass through the expansion before the

bubble splits in two, consequently leaving behind a smaller volume

of air in the lower pipe. This effect can be seen in Figs. 14 in which

bubbles, all initially the same length, are shown at the same time

after release. For higher values of θ the bubbles have already split

in two, while at the smaller values they are still intact. 

Indeed, we find that for certain lengths of bubble and certain

values of θ , the bubble will pass through the expansion largely in-

tact. For a particular value of θ , there will thus be a critical bubble

length, defined as the maximum length of bubble that will sur-

vive the passage intact. Fig. 15 highlights the differences in bubble

behaviour for the 90 ° and 15 ° cases, once the necking process is

complete. For the 90 ° case, the necking clearly splits the bubble

into two distinct daughter bubbles. However, for the 15 ° case the

bubble remains largely intact, leaving only a trail of smaller bub-

bles in its wake. These two extremes demonstrate clearly a split

bubble and an intact bubble. 

The “necking” process just referred to is the narrowing of the

bubble as it passes through the expansion. Fig. 16 shows that a

bubble passing through the 90 ° expansion expands more quickly in

both the lateral and vertical directions because it is not constrained

by the walls of the upper pipe. As the liquid passes around the

nose of the bubble, its vertical descent is interrupted by the hori-

zontal wall of the expansion and it is directed into the body of the

bubble. This flow causes a narrowing or necking of the bubble and
ltimately leads to the rupture of the bubble. In the 15 ° case, the

alling liquid film remains largely intact and is merely redirected a

ittle by the wall of the expansion section, resulting in a less dra-

atic necking. 

In order to home in on the critical length for each expansion

ngle, a further series of simulations were conducted for various

engths of bubble. In each case, the length of the bubble was grad-

ally decreased until it was seen to pass through the expansion

ntact. This process is not exact and some discretion was required

o determine which cases were intact and which were ruptured

r split. For example, Fig. 17 shows an example of the simulated

pper and lower bounds of the critical length for the 90 ° expan-

ion case. Thus, it was not possible to identify an exact value for

he critical length of the bubble, rather an upper and lower bound.

his was partly due to the uncertainty of what constituted an in-

act bubble and the amount of effort required for each simulation.

he shape of the daughter bubble bears a similarity to that seen in

ig. 6 of James et al. [12] . 

Fig. 18 shows the upper and lower bounds of the critical length

gainst angle of expansion. In the figure, the non-dimensional

ength, L ′ = L b /D 1 , is used and follows the lead of James et al. [12] .

 1 (= 2 r 1 ) is the lower pipe diameter. It is clear that longer bub-

les are able to successfully pass through the smaller angles of

xpansion. The relationship is not linear and, in fact, a plot of L ′ 
gainst cosec θ reveals a linear relationship ( Fig. 19 ) with R 

2 val-

es of 0.998 for the lower bound and 0.997 for the upper bound. 
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Fig. 13. A schematic of the Taylor bubble approaching an expansion of angle θ . 

Also, r 1 and r 2 are the radii of the lower and upper pipes respectively, L b is the 

length of the bubble and L exp is the length of the expansion. 
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To quantify this behaviour, the angle, φ, of the velocity relative

o the vertical axis, was averaged over the radius of the film at the

owest point of the expansion. The angle is 

= tan 

−1 u r 

u z 
(15) 

here u r and u z are the radial and axial components of the veloc-

ty, as indicated in Fig. 20 . Fig. 21 demonstrates a linear relation-

hip between φ and θ . Clearly, the relationship will change as the

ubble passes and the extent of the necking increases, but this is

 interesting insight nonetheless. 

Some insight into the splitting process can be garnered from

rguments based purely on continuity either side of the expansion.

onsider, firstly, the time taken for the bubble to rise through the

xpansion. Assuming a bubble of length, L b is rising at a speed,

 b , then the time, t 1 , taken for the bubble to pass through the

xpansion is 

 1 = L b /w b . (16)

he rise speed can be recovered from the Froude number, 

r = 

w b √ 

gD 

, (17) 

hich for Taylor bubbles for an air-water system takes a value of

.351 [9] . For a bubble in a uniform cylindrical tube, continuity

uggests that the vertical velocity component of the falling water

lm, w 

l 
f 
, well below the nose region, is 

 

l 
f = w b 

(
r 2 

b 

r 2 
1 

− r 2 
b 

)
, (18) 

here r 1 is the radius of the lower pipe ( Fig. 13 ) and the super-

cript l refers to the lower pipe. Let us assume that as the bubble

oves into the upper pipe it does not immediately expand appre-

iably laterally and so, by continuity, the vertical component of the
ow around the bubble is, 

 

u 
f = w b 

(
r 2 

b 

r 2 
2 

− r 2 
b 

)
, (19) 

here r 2 is the radius of the upper pipe and 

u refers to the upper

ipe. This assumes local continuity as the flow around the nose of

he bubble is redirected down the side of the bubble that remains

n the lower pipe. If we assume that this flow is guided by the

all of the expansion into the body of the bubble, then the radial

omponent of flow is 

 r = w 

u 
f sin θ . (20) 

While it passes through the expansion, the bubble is being

queezed by this radial component of liquid flow in the proxim-

ty of the base of the expansion. Assuming this component of the

ow works its way into the bubble at a constant rate, this will take

 time, t 2 , to pinch off the bubble 

 2 = 

r b 
w f sin θ

, (21) 

here r b is the radius of the bubble. Equating t 1 and t 2 for the

ubble of critical length, L c and rearranging gives 

 c = 

(
r 2 2 − r 2 1 

r 1 

)
cosec θ, (22) 

here we have assumed r 1 ≈ r b . This result is clearly very sim-

lified and includes no reference to the fluid properties. However,

f we take the 45 ° case in Fig. 18 , which suggests a critical bubble

ength of approximately 3 D or 0.114 m. Eq. (22) predicts a value

f 0.092 m, which is surprisingly good agreement for such a sim-

lified model. The agreement, however, becomes worse for the 90 °
xpansion critical lengths of 0.076 and 0.13 m for the simulations

nd simple model respectively. This clearly casts doubt on the sim-

lified model and suggests more work is required. 

The experimental results of [24] were also analysed in the same

anner, and are shown in Fig. 22 . From this it can be observed

hat a linear relationship may exist between cosec θ and the criti-

al bobble volume (remember Soldati [24] used a Hele-Shaw cell).

owever, the fit is not as good as that for the CFD models of the

resent study. In this case, a linear regression analysis leads to a

oefficient of determination, R 

2 of 0.97. This reduced level of agree-

ent may be due to the large increments between the different

olumes of gas injected during the experiments and the conse-

uent lack of accuracy. 

.3. Variation of upper pipe diameter 

A set of simulations was conducted in which the diameter of

he upper pipe was varied. The angle of expansion was main-

ained at 90 ° and the diameter of the lower pipe was maintained

t 0.038 m during these simulations. The purpose of these simula-

ions was to determine the effect of varying the ratio between the

iameters of the upper and lower pipes on the critical length of

he bubble. It was hypothesised that there would be a critical ratio

t which the effect of the walls of the upper pipe played no role

n the splitting of the bubble. 

In these simulations, the diameter, D 2 (= 2 r 2 ) of the upper pipe

as varied from 0.06 m to 0.14 m in increments of 0.02 m, which

orresponds to a variation in upper to lower pipe diameter ratios,

 2 / D 1 , of approximately 1.58 to 3.68. 

For the narrowest upper pipe, with D 2 /D 1 = 1 . 58 , Fig. 23 clearly

hows that the critical length of the bubble has increased when

ompared with the 90 ° expansion used in Section 3.2 and shown

n Fig. 18 where D 2 /D 1 = 2 . 1 . This suggests that the narrowing

f the upper pipe has an effect, allowing longer bubbles through
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Fig. 14. Iso-surface images indicating the location of initially identical bubbles passing through expansions with angle of expansion, θ = 90 ◦, 75 ◦, 60 ◦, 45 ◦, 30 ◦and 15 ° at 

t = 1.3 s. 
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Fig. 15. A comparison between the (a) 90 ° and (b) 15 ° cases. Each isosurface indicates the location of the surface of the bubble after the neck has closed. 

Fig. 16. A comparison between the (a) 90 ° and (b) 15 ° cases. For each, the isosurface indicates the location of the surface of the bubble and the vectors represent the 

velocity. 
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Fig. 17. 3D isosurfaces showing an example of the bubble at or above the upper bound of the critical length(left), and at or below the lower bound of the critical length 

(right) as they pass through a 90 ° expansion. 
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without breakup. It is thought that this is due to a reduced expan-

sion in the head of the bubble. Also, in this case there is a smaller

volume of liquid to cause the split in the bubble. As the head of

the bubble expands (e.g. Fig. 16 (a)), the flow is guided both around

the bulging head but also by the wall of the expansion. Both are

ultimately key to determining the strength of the radial compo-

nent that pinches the bubble. It should be clarified that the bubble

bulges because the liquid flow governs this process since the air is

a relatively passive tracer in the process. 

As the ratio D 2 / D 1 increases, it can be seen that it is not un-

til the ratio gets above approximately 2.6 that the proximity of

the walls of the upper pipe cease to have an effect on the critical

length of the bubble. Further, the experiments of Section 3.2 were

conducted at ratio below this asymptotic value. It is also noted that

at a ratio of 2.6, Eq. (22) performs even more poorly, suggesting

that the model works only for smaller D 2 / D 1 ratios and lower val-

ues of the angle of expansion θ . 

4. Conclusions and further work 

Firstly, a comprehensive review of the existing literature on Tay-

lor bubble passing through an expansion was presented. It be-

came apparent that there are a number of interesting features of

this process. Some bubbles break into smaller parts, others remain
argely intact as they pass through the expansion. The bubbles ex-

ibit oscillatory behaviour as they traverse the expansion, resulting

n pressure variations in the liquid phase both above and below the

xpansion. 

The qualitative and quantitative behaviour of Taylor bubbles ris-

ng through expansions in pipe diameter observed during the lab-

ratory experiments reported by James et al. [12] was modelled

sing CFD. A frequency analysis of the results of the CFD simula-

ions showed comparable dominant frequencies to the experimen-

al results. The use of a CFD model also confirmed the qualitative

echanism proposed by James et al. [12] for the breaking of a Tay-

or bubble as it passes through an expansion section. 

A variation in the angle of the expansion revealed that much

onger bubbles could pass intact through a more gradually ex-

anding section than could through a sudden expansion. All bub-

les were seen to “neck” or narrow as they passed through the

xpansion. The extent of this necking determined whether the

ubble would split into two daughter bubbles. A linear variation

as found between the critical length of bubble which could pass

hrough the expansion section before the neck closed and the

osecant of the angle of expansion. When analysed in the same

ashion, the results of Soldati [24] also exhibited this trend. 

A simple model of the necking process, based purely on conti-

uity arguments, was shown to work over a very limited range of
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Fig. 18. A plot of the upper and lower bounds of the non-dimensional critical 

length, L ′ , of bubble against the angle of the expansion. 
Fig. 19. A plot of the upper and lower bounds of the non-dimensional critical 

length, L ′ , of bubble against cosec θ . 

Fig. 20. Schematic illustrating the definition of the angle φ. 
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Fig. 21. Plot showing the linear relationship between φ and θ . 

Fig. 22. The upper and lower bounds of the critical volume of bubbles which can 

fully pass through the expansion before the neck closes against cosec θ for the 

experiments performed by Soldati [24] . 

Fig. 23. A plot of the upper and lower bounds of the critical length of bubble 

against the ratio of the diameter of the upper pipe to the diameter of the lower 

pipe, D 2 / D 1 . 
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[  

[  
ngle of expansion, but did at least explain the dependency on the

osecant of the angle of expansion. 

For the 90 ° expansion, the simulations showed that varying the

atio of diameter of the upper pipe to that of the lower pipe did

esult in a variation in the critical length of bubble that could

ass through the expansion intact. At lower ratios, longer bubbles

ould remain intact. However, as the ratio of upper to lower pipe

iameters was increased beyond approximately 2.6, the effect of

he walls of the upper pipe ceased. 

The majority of the simulations were conducted using an air-

ater system and there is considerable scope for analysing liq-

ids of different viscosities to examine the range of applicability

f these findings. 
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