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Abstract.
We consider the statistical problem of ‘compressive’ estimation of low rank states (r �

d) with random basis measurements, where r, d are the rank and dimension of the state
respectively. We investigate whether for a fixed sample sizeN , the estimation error associated
with a ‘compressive’ measurement setup is ‘close’ to that of the setting where a large number
of bases are measured. We generalise and extend previous results, and show that the mean
square error (MSE) associated with the Frobenius norm attains the optimal rate rd/N with
only O(r log d) random basis measurements for all states. An important tool in the analysis
is the concentration of the Fisher Information Matrix (FIM). We demonstrate that although a
concentration of the MSE follows from a concentration of the FIM for most states, the FIM
fails to concentrate for states with eigenvalues close to zero.

We analyse this phenomenon in the case of a single qubit and demonstrate a concentration
of the MSE about its optimal despite a lack of concentration of the FIM for states close to the
boundary of the Bloch sphere. We also consider the estimation error in terms of a different
metric–the quantum infidelity. We show that a concentration in the mean infidelity (MINF)
does not exist uniformly over all states, highlighting the importance of loss function choice.
Specifically, we show that for states that are nearly pure, the MINF scales as 1/

√
N but the

constant converges to zero as the number of settings is increased. This demonstrates a lack of
‘compressive’ recovery for nearly pure states in this metric.

1. Introduction

Quantum information tasks require the experimental preparation, control and transformation
of individual quantum systems [1, 2]. An important element in such tasks in often the
use of quantum state tomography (QST) to validate the results [3, 4]. The aim of QST
it to statistically reconstruct the density matrix associated with the unknown state from
outcomes of repeated measurements performed on identical copies of the state. There are
several estimation methods used for state reconstruction, and here we only mention a few
relevant examples such as maximum likelihood [5, 6, 7, 8, 9], estimation with incomplete
measurements [13, 14, 15], linear inversion and Bayesian inference [10, 11, 12].
However full state tomography often becomes challenging due to the exponential increase in
the dimension of the model. There is significant interest in addressing this challenge and as
a result, extensive work has been done in developing tomography methods for certain lower
dimensional families of physically relevant states. Pertinent examples include the estimation
of low rank states in the context of compressed sensing (CS) [18, 19, 20, 21, 22], model
selection [23], and spectral thresholding [24, 25]. Similarly, the estimation of matrix product
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states [26] is particularly relevant for many-body systems, but also for estimating dynamical
parameters of open systems [27, 28].
Based on the compressed sensing idea, several recent papers [29, 30, 31] consider the problem
of estimating low rank states from random measurements. Inspired by the PhaseLift problem,
the papers [29, 32, 33] consider the case of estimating low rank states from expectations of
rank-one projections sampled randomly from a Gaussian distribution, or a projective t-design,
and demonstrate stable compressive recovery with estimation errors of the order of the number
of unknown parameters. Compressive quantum process tomography has been considered in
this context for unitary 2-designs [34]. In [35] the analysis is extended to the physically
relevant case of random orthonormal basis measurements, and it is shown that a rank-r state
can be identified with a large probability for only O(r log3 d) such random measurements.
Related to this question of low-rank state estimation, work in [36] conjectures that only a few
random bases correspond to strictly complete POVMs for low rank states, implying that states
of a given low rank can be compressively recovered by measuring a small number of random
bases, independent of dimension.
In this paper we build on the work in [31], and consider the statistical problem of estimating
low-rank states in the set up of random bases measurements. Instead of choosing a particular
estimator, the idea is to investigate the statistical efficiency of an arbitrary optimal estimator,
and find whether rank-r states can be estimated from only a few random bases measurements.
For this, we consider the behaviour of the Mean Square Error (MSE) with respect to the
Frobenius distance between the true state and the estimator ‖ρ̂ − ρ‖22 in the limit of large
number of measurement samples. According to asymptotic theory [37], in the regime of large
number of repetitions the MSE of efficient estimators (e.g. maximum likelihood) ρ̂ takes the
following expression

E‖ρ̂− ρ‖22 =
1

N
Tr(I(ρ|S)−1GF ) + o(N−1). (1)

Above, I(ρ|S) is the classical Fisher information associated with the chosen measurement
design S and a local parametrisation of rank-r states, N is the total number of measured
systems, and GF is the positive weight matrix associated with the quadratic approximation of
the Frobenius distance in the local parameters.
The asymptotic MSE (1) has been shown to remain robust even with only a few random
basis measurements making up the design S [31]. This robustness is explained using an
argument based on a concentration inequality [38] for the Fisher information matrix. It is
shown in [31] that certain ‘least sparse’ states of rank-r can be estimated by using only
O(r log d) settings with only a small increase in the MSE, relative to the setup in which a large
number of settings is probed. In this paper the argument using the concentration of the Fisher
information is extended to hold for all rank-r states (Theorem 1), incorporating the results in
[31]. However, we discuss drawbacks of using a concentration in the Fisher information to
derive a corresponding concentration in the MSE. Specifically, for rank-r states that are close
to pure with small eigenvalues, we show that such a concentration of the Fisher information
does not hold. This difficulty is overcome by proving an upper bound on the MSE that holds
for all states independently of their spectrum. We show that Tr(I(ρ|S)−1GF ) is bounded
from above by roughly the number of unknown parameters given that O(r log d) random
bases constitute the measurement design S. As an illustrative example, we consider a single
qubit state and analyse the failure of the Fisher concentration for states that are close to pure.
We argue that despite a lack of concentration in the Fisher information for such states, the
MSE demonstrates the necessary concentration.
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The lack of concentration of the Fisher information occurs as the elements of the matrix
corresponding to the small eigenvalues of the state diverge. However for states that are known
to be pure and have d − 1 eigenvalues exactly zero, the Fisher information matrix contains
entries that correspond only to the ‘rotation’ parameters. Therefore it concentrates following
Theorem 1, and [31] (Theorem 4.1) given that O(log d) random basis are measured. Related
work in a different context [45] shows that (local) informationally complete measurements for
pure states require the number of outcomes to scale linearly with the dimension d, specifically
2d−1. In our measurement design, the total number of outcomes isO(d log d) for pure states.
For the single qubit case, we also investigate the problem of ‘compressive’ state estimation
using the quantum infidelity 1− F (ρ̂, ρ) = 1−Tr

(√√
ρρ̂
√
ρ
)2

as the error metric. For this
we consider the asymptotic mean infidelity (MINF),

E[1− F (ρ̂, ρ)] =
1

N
Tr(I(ρ|S)−1GINF ) (2)

with the Fisher information as defined in (1), and GINF being the weight matrix
corresponding to the quadratic approximation of the infidelity. Unlike the Frobenius distance,
the quantum infidelity is very sensitive to the misestimation of small eigenvalues. In particular,
for states that are close to pure with small eigenvalues, the local expansion of the infidelity in
the asymptotic regime is linear in the estimation error of these eigenvalues [39]. This means
that the MINF is no longer given by quadratic expression (2) for such states. We show that
for states with eigenvalues well away from zero, a concentration in the MINF given by (2)
can be demonstrated using a concentration of the Fisher information matrix. While for nearly
pure states and random measurements both the Fisher information and the MINF demonstrate
a lack of concentration. For such states the MINF scales as O(1/

√
N), and additionally there

is no finite number of settings such that the state can be estimated ‘compressively’.

2. Quantum tomography with random basis measurements

In this paper we consider the problem of estimating an unknown quantum state represented
by a d × d density matrix ρ (complex, positive trace-one matrix), where d is the dimension
of the associated Hilbert spaceHd. The unknown state is reconstructed from the outcomes of
projective measurements on identical copies of the state. The measurement settings are chosen
by randomly drawing an orthonormal basis (ONB) from the uniform measure, or equivalently
by rotating a fixed (standard) ONB with a random unitary U drawn from the Haar measure
over the unitaries onHd. We denote measurement settings by s and the corresponding ONBs
by {|eos 〉} where o ∈ {1, . . . , d} is the label of a measurement outcome. Its probability is
pρ(o|s) := Tr(ρP s

o), where P s
o = |eos 〉〈eos | is the one-dimensional projection corresponding

to the outcome o, in the measurement setting s. Because of the cyclicity of the trace, this
measurement design is mathematically equivalent to fixing a particular measurement basis and
rotating the state ρ with a known random unitary corresponding to the measurement design.
This design is motivated by the multiple ion tomography (MIT) set up of ion-trap experiments
[3] considered in our previous work [31]. The aim of MIT is to determine the unknown density
matrix ρ ∈ Hd of the joint state of a system of n ions, where d = 2n is the dimension of the
associated Hilbert space. A random measurement setting s in the MIT setup can be thought
of as a rotation of the fixed σ⊗nz basis by a random unitary drawn from the Haar measure over
the whole Hilbert spaceH2n .
The measurement procedure and statistical model are summarised below, following the
notation of our previous work [31]. For each given setting, the measurement is repeated
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on m copies of the state. This is repeated for all k settings, and the total number of copies of
the state utilised as a resource is N = m × k. This procedure results in information about
the number of times a particular outcome was observed for a given setting N(o|s). This
information can be thought of as a d × k dataset of counts whose columns are independent.
In this paper we investigate the statistical efficiency of estimating low rank states from such
measurement outcomes. We work in the asymptotic regime in which the number of repetitions
m in each setting is large, and characterise the estimation errors in terms of the classical Fisher
information matrix as explained below.
We first introduce a parametrisation of the state ρ, and assume that the state has rank r ≤ d,
and therefore belongs to the space of rank r states Sr ⊂ M(Cd). In the asymptotic scenario
the estimation error is characterised by a local statistical model. Therefore, we consider a
local parametrisation θ → ρθ of the state ρ in the space Sr. In this space, any rank-r state
ρ′ in the local neighbourhood of ρ can be obtained by a perturbation of the eigenvalues of ρ,
along with a small rotation of the eigenbasis. In the first order this transformation leaves the
(d − r) × (d − r) lower-right corner unchanged, so that in the eigenbasis of the state ρ we
have

ρ′ =

 Diag(λ1, . . . , λr) 0

0 0

+

 ∆diag ∆off

∆†off O(‖∆‖2)

 . (3)

We therefore choose to parametrise such a state ρ′ = ρ′θ with

θ :=
(
θ(d);θ(r);θ(i)

)
(4)

= (ρ′2,2, . . . , ρ
′
r,r ; Reρ′1,2, . . . ,Reρ′r,d; Imρ′1,2, . . . , Imρ

′
r,d) ∈ R2rd−r2−1

where, the first diagonal matrix element does not appear in the parametrisation as it is fixed by
the trace normalisation of density matrices. We can now describe the statistical model in this
parametrisation, and define the classical Fisher information matrix associated with a given
setting s as

I(ρ|s)a,b :=
∑

o:p(o|s)>0

1

pρ(o|s)
∂pρ(o|s)
∂θa

· ∂pρ(o|s)
∂θb

. (5)

Where θa,b are labelled elements of the parameter vector θ. Following the measurement
procedure described above, we define the set of k measurement settings as S. The Fisher
information matrix associated with a single measurement from each setting s ∈ S is given
by the sum of the individual Fisher matrices above. The average Fisher information for the
measurement design S is denoted as I(ρ|S) = 1

k

∑
s∈S I(ρ|s). The individual matrices are

computed using definition (5) together with parametrisation (4).
The measurement in each setting is repeated m times on identical copies of the state, and the
outcomes are i.i.d. When this number m is sufficiently large, efficient estimators of θ (and
hence of ρ) from these outcomes have an asymptotically Gaussian distribution [37]

√
m(θ̂ − θ) ≈ N (0, I(ρ|S)−1) (6)

where the covariance matrix I(ρ|S)−1 is the Fisher information associated with a single
measurement sample of the set S. In the following section, this asymptotic behaviour of the
estimate θ̂ is combined with local expansions of the Frobenius distance in order to characterise
the MSE in terms of the classical Fisher information matrix. In section 4.1 the asymptotic
mean infidelity (MINF) is investigated using similar techniques.
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3. Bounds for the MSE

We now consider the Frobenius distance, and characterise the efficiency of any efficient
estimator (such as maximum likelihood) in its terms. This distance has a locally quadratic
expansion around the state ρ, given by

‖ρθ − ρθ+δθ‖22 = (δθ)TGF (δθ) + o(‖δθ‖2) (7)

where GF is a constant weight matrix that reproduces the Frobenius norm. The explicit form
of this weight matrix can be found in the appendix. From this and the asymptotic behaviour
of efficient estimators, we see that for (reasonably) large m, the mean square error scales as

MSE := E(‖ρ̂− ρ‖22) ≈ 1

N
Tr(I(ρ|S)−1GF ). (8)

The expression of the right side of the above equation is a measure of the sensitivity of the
chosen set of settings S at ρ [31]. We therefore consider the behaviour of the MSE in terms
of this trace expression, and study the effect of the measurement design S and the number of
settings k on the error. We first present a preliminary concentration bound for this quantity
Tr(I(ρ|S)−1GF ), which extends the results in [31].
The bound determines the number of settings k required for the MSE Tr(I(ρ|S)−1GF ) to
be concentrated close its optimal value. This result is derived from a concentration of the
Fisher information matrix around the mean Fisher information, where the main ingredient
is a matrix Chernoff bound for sums of bounded random Hermitian matrices. Since the
settings in S are independent, the Fisher information matrices I(ρ|s) are independent and this
bound is applicable. The Chernoff bound determines how quickly the average information
per setting 1

k

∑
k∈S I(ρ|s) approaches the mean information I over all random settings. In

terms of the MSE, this translates to determining the number of settings k required for the
MSE Tr(I(ρ|S)−1GF ) to be concentrated close the optimal value of Tr(Ī(ρ)−1GF ). We
consider states with arbitrary spectrums ρ := Diag(λ1, . . . , λr, . . . , 0), diagonal with respect
to its eigenbasis. Due to the unitary symmetry of the random settings design, the eigenbasis
can be chosen to be the standard basis.
Theorem 1. Let S = {s1, . . . , sk} be a design with randomly, uniformly distributed
measurement bases. Let IS := I(ρ|S) be the associated Fisher information, and let I be
the mean Fisher information over all possible bases, both calculated at the true state ρ. For a
sufficiently small ε ≥ 0, the following inequality holds

(1− ε)Tr
[
I
−1
GF

]
≤ Tr

[
I−1
S GF

]
≤ (1 + ε)Tr

[
I
−1
GF

]
with probability 1 − δ, provided that the number of measurements performed is k =
C1

λmin(ρ)
(r+1)
r log( 2D

δ ), with D = 2rd − r2 − 1 the dimension of the space of rank-r states,
and C1 = 4(log 2/ε2).

The proof of this theorem and further details can be found in the appendix. As mentioned
earlier, the main ingredient is a matrix Chernoff bound [38], which is used to bound the
deviation of G−/2F I(ρ|S)G

−1/2
F from the mean G−/2F Ī(ρ)G

−1/2
F . The number of uniformly

random settings k required in the theorem above depends on the following ratio

µmax

µmin
:=

maxs λmax

(
G
−1/2
F I(ρ|s)G−1/2

F

)
λmin

(
G
−1/2
F Ī(ρ)G

−1/2
F

) (9)
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between the largest maximum eigenvalue of G
−1/2
F I(ρ|s)G−1/2

F over all possible
measurements and the minimum eigenvalue of G−1/2

F Ī(ρ)G
−1/2
F . Details of the explicit

values of this ratio is left to the appendix. The numerator µmax is upper bounded by using the
inequality between the quantum and classical Fisher informations [40], as µmax ≤ 2/λmin(ρ)

for r > 1 and µmax ≤ 2 for r = 1. While the minimum eigenvalue of G−1/2
F Ī(ρ)G

−1/2
F is

lower bounded using the following lemma.

Lemma 1. For any rank-r state ρ with an arbitrary spectrum, and the rank-r state ρ0 which
has equal non-zero eigenvalues 1/r and the same eigenvectors as ρ, the following inequality
holds between their average Fisher information matrices, evaluated over all possible random
measurement settings.

Ī(ρ0) ≤ Ī(ρ) (10)

The proof is left to the appendix. The matrix Ī(ρ0) for the equal eigenvalue state has been
computed explicitly by using analytic expressions for moments of random unitaries [41],
which gives µmin ≥ r

r+1 for r > 1, and µmin ≥ 1 for pure states. Together these give
µmax

µmin
≤ 2 (r+1)

r
1

λmin(ρ) which determines the number of measurement settings in the theorem
above. When the state ρ is the equal eigenvalue state ρ0, we get λmin(ρ0) = 1/r and we
recover the rate presented in [31].
It was noted in [31] that deriving a concentration in the MSE via a concentration of Fisher
average I(ρ|S) provides a pessimistic estimate of the number of settings needed. Simulations
in [31] demonstrated that the MSE concentrates for a much smaller number of settings k than
predicted. In the theorem presented above, we note that the dependence of the number of
settings on the minimum eigenvalue of ρ suggests a lack of concentration as λmin(ρ) is made
arbitrarily small. The number of required settings k → ∞ in the limit that λmin(ρ) → 0.
This is because the maximum eigenvalue of the Fisher information I(ρ|s) over all settings s
becomes arbitrarily large when the rank-r state ρ is arbitrarily close to being pure. However, as
we shall demonstrate, this does not reflect the behaviour of the MSE concentration. Instead of
deriving a concentration about Ī(ρ) as in the above theorem, we derive a useful upper bound
for the MSE that is independent of the spectrum of the state.

Theorem 2. Let S = {s1, . . . , sk} be a design with randomly, uniformly distributed
measurement bases. Let IS := I(ρ|S) be the associated Fisher information evaluated at
ρ. For a sufficiently small ε ≥ 0, the following inequality holds

Tr[I(ρ|S)−1GF ] ≤ 2(1 + ε)
r + 1

r
D

with probability 1 − δ, provided that the number of measurements performed is k =
C1(r + 1) log(2D/δ), with D = 2rd − r2 − 1 the dimension of the space of rank-r states,
and C1 = 4(log 2/ε2).

The upper bound is roughly twice the number of unknown parameters, and although not
optimal, it demonstrates that the MSE concentrates below a meaningful threshold given a
fixed O(r logD) scaling in the number of settings. The proof of this theorem follows now.
A key element in the proof is to overcome the potential unboundedness of the maximum
eigenvalue of I(ρ|s). This is done by bounding I(ρ|s) from below over all possible settings s
by matrices whose spectrums are well behaved. This in turn gives us an upper bound for the
inverse of the sum I(ρ|S)−1.
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To this end, we define a new state ρ̃ such that over all possible settings s, we have the following
inequality in the Fisher matrices

I(ρ|s) ≥ 1

2
I(ρ̃|s). (11)

The state ρ̃ is defined to be ρ̃ := (ρ + ρ0)/2, where ρ0 is the rank-r state with equal 1/r
eigenvalues, and the same eigenvectors as ρ. It is easy to see that ρ̃ has eigenvalues bounded
between (1 + 1/r)/2 and 1/2r, and has the same eigenvectors as ρ by construction. The
above inequality then follows from the fact that ρ ≤ 2ρ̃, and from the definition of the Fisher
information matrix (5). For any given measurement design S = {s1, . . . sk}, this inequality in
the Fisher matrices implies that I(ρ|S) ≥ I(ρ̃|S)/2. Since the matrix I(ρ̃|s) has eigenvalues
that are well behaved over all possible settings s, we can use Theorem 1 to meaningfully
bound the deviation G−1/2

F I(ρ̃|S)G
−1/2
F from its mean. In fact, we get that for a sufficiently

small ε ≥ 0, the following inequality holds

(1− ε)Tr
[
Ī(ρ̃)−1GF

]
≤ Tr

[
I(ρ̃|S)−1GF

]
≤ (1 + ε)Tr

[
Ī(ρ̃)−1GF

]
(12)

with probability 1− δ, provided that the number of settings k = C1(r + 1) log (2D/δ). The
upper bound in the equation above, combined with the inequality I(ρ|S) ≥ I(ρ̃|S)/2 gives
the stated upper bound

Tr[I(ρ|S)−1GF ] ≤ 2(1 + ε)Tr[Ī(ρ̃)−1GF ] ≤ 2(1 + ε)
r + 1

r
D. (13)

Theorem 2 derives a uniform upper bound for all rank−r states irrespective of the eigenvalue
spectrum. This demonstrates that sensible bounds exist in the limit of λmin(ρ) → 0 for a
finite number of measurement settings k. It is clear that the divergence of the maximum
eigenvalue maxs λmax (I(ρ|s)) as λmin(ρ) → 0 does not cause a similar divergence in
the MSE. Therefore Theorem 1 does not sensibly define a rate for the required number of
measured settings k in the limit λmin(ρ)→ 0.
Although Theorem 2 derives a uniform upper bound for the MSE, it does not demonstrate a
concentration in the MSE. However, for the simplified model for a rank − 2 qubit state, we
show that a concentration in the MSE does in fact hold in the limit λmin(ρ)→ 0.

4. The Single Qubit Model

In this section we work with the simple model of a rank − 2 qubit state to show that a
concentration in the MSE about its optimal holds in the limit λmin(ρ)→ 0 without requiring
the sum I(ρ|S) to concentrate about I .

Lemma 2. Let ρ be a single qubit rank − 2 state, and let S = {s1, . . . , sk} be a uniformly
random measurement design. Let IS := I(ρ|S) be the associated Fisher information, and let
Ī(ρ) be the mean Fisher information over all possible measurement bases. For any ε > 0,
there exists a finite k such that the following inequality holds for all ρ with high probability

Tr[I(ρ|S)−1GF ] ≤ (1 + ε)Tr[Ī(ρ)−1GF ]. (14)

In order to investigate the behaviour of the MSE concentration as the spectrum is varied, we
consider the generic state ρ := λ1|0〉〈0|+λ2|1〉〈1| diagonal in its eigenbasis. We consider the
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Figure 1. Plots of the eigenvalues ofG−1/2
F I(ρ|S)G

−1/2
F for various k random settings. We

chose 40 random single qubit states for each of the four values of λ2. The red line indicates
the eigenvalues of I(ρ)/2, with the green marking the (1 ± ε)I/2 deviations (ε = 0.1).
We observe that as the state becomes purer, the number of settings needed for concentration
increases, and in the limit λ2 → 0 there is a lack of concentration of the largest eigenvalue.

same local parametrisation as in the previous sections and denote θ := (λ2,Reρ1,2, Imρ1,2).
The measurement design consists of random, uniformly distributed measurement bases, and
without loss of generality we set the projection vector corresponding to the +1 outcome for a
given setting s as:

|e+1
s 〉 := cos

φ

2
|0〉+ eiω sin

φ

2
|1〉 0 ≤ φ ≤ π , 0 ≤ ω ≤ 2π (15)

The orthogonal vector corresponds to the −1 outcome. Therefore, the probabilities p(o|s)
corresponding to the two outcomes are p(+1|s) = (1−λ2) cos2 φ

2 +λ2 sin2 φ
2 and p(−1|s) =

(1 − λ2) sin2 φ
2 + λ2 cos2 φ

2 . From equation (5), we evaluate the elements of the Fisher
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Figure 2. Plots of the MSE Tr[I(ρ|S)−1GF ] for various k random settings. We chose
40 random single qubit states for each of the four values of λ2. The red line indicates
the theoretical optimal MSE Tr[Ī−1GF ], with the green marking the (1 ± ε)Tr[Ī−1GF ]
deviations (ε = 0.1). It is easier to observe concentration in the MSE, despite a lack
of concentration of I(ρ|S) (see Figure 1). Although the number of settings needed for
concentration within a prescribed relative error increases with a decrease in λ2, there is a
limiting value of k as λ2 → 0 (see text).

information matrix for a given random measurement setting s.

I(ρ|s) =

Idd(ρ|s) Ird(ρ|s) Iid(ρ|s)
Ird(ρ|s) Irr(ρ|s) Iri(ρ|s)
Iid(ρ|s) Iri(ρ|s) Iii(ρ|s)

 (16)

=
2

1− cos2(φ)(1− 2λ2)2

 2 cos2(φ) − cos(ω) sin(2φ) sin(ω) sin(2φ)
− cos(ω) sin(2φ) 2 cos2(ω) sin2(φ) − sin(2ω) sin2(φ)
sin(ω) sin(2φ) − sin(2ω) sin2(φ) 2 sin2(ω) sin2(φ)


As before S is the set of k randomly chosen settings s, and as the settings in S are independent,
the Fisher information matrices I(ρ|s) are independent.
The concentration of the quantity I(ρ|S) := 1

k

∑
s∈S I(ρ|s) around the mean Fisher matrix

I(ρ) is given by Theorem 1. We recall that the number of settings k required to bound the
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Fisher Element Mean Range

Idd
2 ln [2(1− λ2)]− 2 ln [2λ2]

(1− 2λ2)3
− 4

(1− 2λ2)2

[
0,

1

λ2(1− λ2)

]
Ird, Iid 0

[
−2√

λ2(1− λ2)
,

2√
λ2(1− λ2)

]
Iri 0 [−2, 2]

Irr, Iii
ln [2(1− λ2)]− ln [2λ2]

(1− 2λ2)
− I

dd

2
[0, 4]

Table 1. The mean and range of the elements of the Fisher matrix I(ρ|s) as functions of λ2.
Note that the expressions for the means in the table above are valid for all λ2 < 0.5. When
λ2 = 0.5, then all diagonal elements Īrr/dd/ii have the same value of 4/3.

deviation from its mean Ī(ρ) depends on the ratio of the eigenvalues

µmax

µmin
:=

maxs λmax

(
G
−1/2
F I(ρ|s)G−1/2

F

)
λmin

(
G
−1/2
F I(ρ)G

−1/2
F

) . (17)

For the simple qubit model these can be explicitly evaluated. For settings with φ = 0, the
maximum eigenvalue is 1

2λ2(1−λ2) . This implies that µmax ≥ 1
4λ2(1−λ2) . This value is a

contribution from the Idd element of the Fisher matrix, and tends to infinity as λ2 → 0.
The minimum eigenvalue µmin is a contribution from the Īrr and the Īii term, and tends
to a limiting value of 1 when λ2 → 0. The explicit expressions can be found in Table 1.
Taken together this implies that the ratio becomes unbounded as λ2 → 0. This is precisely
the difficultly characterised in the previous section, and is illustrated in Figure 1, where we
plot the eigenvalues of the sum G

−1/2
F I(ρ|S)G

−1/2
F for various values of λ2 and choices of

measurement designs S.
However we are not interested in the concentration of the Fisher matrix itself, but rather the
quantity Tr[I(ρ|S)−1GF ], and in Figure 2 it is seen that the MSE exhibits clear concentration
about the optimal. Although the number of settings needed for the MSE to be within (1± ε)
of the optimal is seen to increase for smaller values of λ2, we shall show that there exists
a limiting value of k as λ2 → 0. To demonstrate this, we consider the concentration of
the individual Fisher elements, and directly bound the deviation of Tr[I(ρ|S)−1GF ] from its
optimal.
It is clear from Table 1 that the Fisher matrix elements Irr, Iii, Iri have bounded means
and spread even in the limit λ2 → 0. Their sums can therefore be shown to concentrate
around their means using one of several concentration inequalities. For example, we apply
Hoeffding’s inequality below.

Fact 1. Let X1, . . . , Xk be independent random variables such that each Xi is bounded as
a ≤ Xi ≤ b, and let µ := E[X]. Let Sk := 1

k

∑k
i Xi, and C := b− a, then for any t ≥ 0 and

τ > 0 the following inequalities hold,

(i) Hoeffding’s inequality : P(|Sk − µ|) ≥ t) ≤ 2e−2kt2/C2

(ii) Markov’s Inequality : P(|Sk| ≥ τ) ≤ E|X|
τ

(iii) Chebyshev’s Inequality : P(|Sk − µ| ≥ τ) ≤ Var(X)
τ2



11

From Table 1 we see that C = 4 for the Irr, Iii, Iri matrix elements. Thus we derive that
for any t ≥ 0, their empirical means are within ±t of the true value with probability (1− δ),
provided that the number of settings k ≥ (8/t2) ln (2/δ). Therefore the concentration for
these elements is well behaved in the limit λ2 → 0. While the same inequality can be applied
to Ird, Iid matrix elements when λ2 is away from zero, it fails in the limit λ2 → 0 because
their ranges become infinite. However, we make a ‘weak law of large numbers’ argument to
show that even in this limit, there exists a finite but ‘sufficiently large’ k, such that Ird(ρ|S)
and Iid(ρ|S) concentrate around their mean.
The key point is that the random variables Ird, Iid remain absolutely integrable in limit
λ2 → 0. This is combined with a truncation trick, to show that although the range of these
variables in unbounded in the limit, for ‘sufficiently large’ k their empirical means converge in
probability to their expected value. We follow the argument presented in [42] to demonstrate
this. The idea of the truncation method is to split the random variable Ird as

Ird := Ird≤T + Ird>T (18)

= Ird1(|Ird|≤ T ) + Ird1(|Ird|> T ),

with T being a ‘truncation parameter’ that is chosen appropriately. We shall not be interested
in the actual value of T , but endeavour only to show that such a method demonstrates the
existence of a finite k for which Ird converges in probability to zero. We similarly split the
sum

Ird(ρ|S) =
1

k

k∑
i=1

[
Ird≤T (ρ|si) + Ird>T (ρ|si)

]
=: Ird≤T (ρ|S) + Ird>T (ρ|S) (19)

We now bound these two sums using different inequalities. Since the random variable is
absolutely integrable even in the limit λ2 → 0, we can always choose the truncation parameter
T such that E|Ird>T | is made small, say some δ2 > 0, so that from Markov’s inequality (Fact
1) we get

P
(∣∣Ird>T (ρ|S)

∣∣ ≥ τ) ≤ δ2
τ
. (20)

The variable Ird≤T has bounded spread by construction, and therefore has bounded variance.
This allows us to use Chebyshev’s inequality (Fact 1), from which we see that

P
(∣∣Ird≤T (ρ|S)

∣∣ ≥ τ) ≤ Var(Ird≤T )

kτ2
, (21)

where we use the fact that E(Ird≤T ) = 0, since the distribution is symmetric about zero. Clearly
Var(Ird≤T ) is bounded, and there exists a finite k such that (20) and (21) together imply

P
(
|Ird(ρ|S)| ≥ τ

)
≤ δ2

τ
+

1

τ2
. (22)

The term δ2 can be made arbitrarily small by choosing T appropriately, which demonstrates
that the sum converges in probability to zero for some finite, but ‘sufficiently large’ k.
Although the above argument was demonstrated with Ird(ρ|S), the same holds for Iid(ρ|S).
This leaves the term Idd(ρ|S), which due to the non-integrability, infinite mean and range of
Idd in the limit λ2 → 0, does not concentrate around any finite value. The term Idd contributes
the maximum eigenvalue of the Fisher matrix over all settings s, and as mentioned earlier its
divergence in the limit λ2 → 0 is why a concentration inequality of the form of Theorem 1
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does not hold. Collecting the individual bounds for the other matrix elements, we have that
for any value of λ2 there exists a finite k for which with large probability, the matrix sum
I(ρ|S) has elements ∑k

i=1 I
dd
i /k [−τ,+τ ] [−τ,+τ ]

[−τ,+τ ] [µ− t, µ+ t] [−t,+t]
[−τ,+τ ] [−t,+t] [µ− t, µ+ t]

 (23)

where µ := E(Irr/ii). We can now explicitly evaluate Tr[I(ρ|S)−1GF ], making the
simplifying assumption that k is large enough to ignore terms quadratic in the off-diagonal
elements, i.e, in τ and t. Going through the calculation, we get that provided

∑k
i=1 I

dd
i /k >

1,

Tr[I(ρ|S)−1GF ] ≤ 2k∑k
i=1 I

dd
i

+
4

µ− t
. (24)

In order to show that the MSE is close to optimal as in Lemma 2, we require that the term on
the right in the above equation is smaller than (1 + ε)Tr[Ī(ρ)−1GF ]. That is, for some ε > 0,

k∑k
i=1 I

dd
i

+
2

µ− t
≤ (1 + ε)

[
1

I
dd

+
2

µ

]
. (25)

When λ2 is sufficiently large, the random variable Idd is bounded and therefore the sum∑k
i=1 I

dd
i /k concentrates about its mean. In the limit λ2 → 0 however, 1/I

dd → 0, which
implies that the sum

∑k
i=1 I

dd
i /k does not need to concentrate about its (infinite) mean,

but only needs to be larger than a value dependent on ε and t. In the limit λ2 → 0, the
Fisher element Idd has a limiting distribution which can be explicitly evaluated. Setting
λ2 = 0 in (16) we have that Idd = 4 cot2 φ. Inverting this we get φ = cot−1(

√
Idd(φ)/2),

and as the projection vectors are drawn uniformly over the unit sphere, φ is distributed as
fΦ(φ) dφ = sinφ dφ. Performing a change of variables then gives the limiting distribution
fI(I

dd) dIdd = 2√
Idd(Idd+4)3/2

dIdd. From this distribution and the truncation method it
is easy to show that for any value C, there exists a finite number of settings k such that∑
Idd/k > C. This implies that for a given ε > 0, and for all values of λ2 ∈ (0, 0.5] there

always exists a finite number of settings k such that the required concentration holds.

4.1. Estimation Error in Terms of Quantum Infidelity

In this section we consider the problem of ’compressive’ state estimation in terms of a
different metric, the quantum infidelity

1− F (ρ̂, ρ) = 1− Tr

(√√
ρρ̂
√
ρ

)2

. (26)

As briefly hinted at in the introduction, a local expansion of this metric is not quadratic
uniformly over all states. In particular for states that are well in the interior of the state space
the expansion is locally quadratic, while for states with eigenvalues that are close to zero, the
infidelity becomes linear [39]. This linear expansion highlights the sensitivity of the infidelity
to misestimation of small eigenvalues, and we show that in our setup with uniformly random
basis measurements, ‘compressive’ estimation for all states in the sense of Lemma 2 does
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not hold for this metric. To demonstrate this we continue considering the single qubit model
from the previous section. We derive a theorem for the concentration of the mean infidelity
(MINF) for states well within the Bloch sphere, and then demonstrate a lack of concentration
for nearly pure states. As before, we consider the state ρ = Diag(1 − λ2, λ2) diagonal in its
eigenbasis. For qubits, the infidelity can be expressed as [43]

1− F (ρ̂, ρ) = 1− Tr(ρ̂ρ)− 2
√

detρ̂ · detρ. (27)

A Taylor expansion of the infidelity about ρ demonstrates that for states within the Bloch
sphere (i.e. λ2 is well away from zero), the infidelity is locally quadratic in the (local)
parameters

1− F (ρθ, ρθ+δθ) = (δθ)TGINF (δθ) +O(‖δθ‖3), (28)

where GINF = Diag(1/2λ2(1 − λ2), 2, 2) is the weight matrix reproducing the infidelity.
In general for states of arbitrary dimension that have eigenvalues away from zero, the local
expansion remains quadratic [39], and a concentration of the MINF is readily established
using the techniques in the previous sections. Here we formulate this concentration for the
single qubit state considered. Combining the above local expansion with the asymptotic
normality of efficient estimators (6), the MINF is given by an expression similar to (8)

MINF := E(1− F (ρ̂, ρ)) ≈ 1

N
Tr(I(ρ|S)−1GINF ). (29)

A concentration of this error term can be demonstrated using the same tools used to establish
Theorem 1. Concretely, we derive the following theorem.

Lemma 3. Let S = {s1, . . . , sk} be a design with randomly, uniformly distributed
measurement bases. Let IS := I(ρ|S) be the associated Fisher information, and let I be
the mean Fisher information over all possible bases, both calculated at the single qubit state
ρ. For a sufficiently small ε ≥ 0, the following inequality holds

(1− ε)Tr
[
I
−1
GINF

]
≤ Tr

[
I−1
S GINF

]
≤ (1 + ε)Tr

[
I
−1
GINF

]
with probability 1 − δ, provided that the number of measurements performed is k =

C2

λ2(1−λ2) log( 2D
δ ), with D = 3 the dimension of the space of rank-2 qubit states.

Where C2 is a constant depending on ε that can be arbitrarily set. Due to the dependence
of the number of settings k on the minimum eigenvalue of the true state, the above lemma
sensibly demonstrates concentration only when λ2 is away from zero. This is similar to the
dependence of the number of settings on λmin(ρ) in Theorem 1.
In the case of the MSE we demonstrated that for qubits, concentration does occur as λ2 → 0,
even if Theorem 1 does not hold in this limit. However, a similar concentration of the MINF
for qubits in this limit does not occur. To show this, we first notice that in the limit λ2 → 0
the local expansion of the infidelity becomes linear in the leading order

1− F (ρθ, ρθ+δθ) = |δθd|+O(‖δθ‖2). (30)

Clearly, for estimates ρ̂ in the local neighbourhood of the pure state ρ = |0〉〈0|, the
MINF is no longer given by the quadratic expression as in (29), but is E(1 − F (ρ̂, ρ)) =

E(θ̂d) = E(〈1|ρ̂|1〉). Since the dominant error term is linear in the diagonal element of the
estimate (in the eigenbasis of the true state), we note that the infidelity is highly sensitive
to the misestimation of small eigenvalues [39]. The errors in the estimation of the ‘rotation
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Figure 3. Plots of the MINF and MSE of the maximum likelihood estimate of a randomly
chosen single qubit pure state and random basis measurements. The total number of samples
of the state is N = k ×m, where k is the number of settings measured and m = 1000 is the
number of repetitions per setting. The number of random basis measured k is varied between
10 and 300. The expected error is approximated over 300 different choices of k randomly
chosen settings. The MSE demonstrates a O(1/N) scaling, while for the same estimates the
MINF scales as O(1/

√
N).

parameters’ θr, θi however remain quadratic, and therefore exhibit aO(1/N) scaling as in the
previous sections. As the interesting contribution to the infidelity is from the estimation errors
of the eigenvalue, we consider a simplified single parameter model and assume that only θd

is unknown. When the number of repetitions m in a setting s is sufficiently large, efficient
estimators of θd from the outcomes of these measurements have an asymptotically Gaussian
distribution

√
m(θ̂d − θd) ≈ N(0,Var(θ̂d)). Therefore, in this asymptotic limit the MINF

E(1− F (ρ̂, ρ)) is given by

E(θ̂d) =
1√

2σ2π

∫ ∞
0

θ̂d · exp

(
− (θ̂d)2

2σ2

)
dθ̂d =

√
2

π
σ, (31)

where negative estimates of the parameter are set to zero to ensure that ρ̂ is a density matrix,
and the standard deviation σ = Var(θ̂d)1/2. From this asymptotic behaviour of efficient
estimators we see that for a large number of repetitions m, the MINF scales as

E(1− F (ρ̂, ρ)) ≈
√

2

πN

√
Idd(ρ|S)−1, (32)

where the Fisher information Idd corresponding to the diagonal parameter is found in the
previous section. From Table 1 and the discussion in the previous section, we know that in the
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limit λ2 → 0 the mean Fisher information Īdd diverges. The Fisher information I(ρ|S) for
any finite sample of random measurements will therefore not concentrate within 1 ± ε of the
optimal, implying a lack of concentration in the MINF. In the case of the Frobenius norm, in
the limit λ2 → 0 the dominant error terms contributing to the MSE correspond to the rotation
parameters, and this fact ensures a concentration of the MSE even in the pure state limit.
While for the infidelity we see that the dominant error terms comes from the estimation of
the small eigenvalues, and a concentration of the MINF does not exist in the sense of Lemma
2. In general, the local expansion of the infidelity around any rank-r state that is close to
pure is linear in the diagonal terms of the estimate [39]. The MINF for such states therefore
demonstrates a similar lack of concentration in the corresponding diagonal elements of the
Fisher information matrix.
Furthermore, from (32) it is clear that with uniform random measurements the MINF scales
as O(1/

√
N) for states that are close to pure. While for states well within the Bloch sphere,

Lemma 3 demonstrates a scaling ofO(1/N). This poor scaling is observed in Figure 3, which
plots the expected error in terms of the MINF and the MSE for pure states. As discussed in
the previous sections, it is seen that the MSE scales as O(1/N) for all states, while it is
clear from Figure 3 that the MINF demonstrates a O(1/

√
N) scaling for pure states. This

scaling has also been demonstrated for the closely related Bures distance error metric. In
[44, 46], the minimax Bures error for estimators based on Pauli expectations is shown to scale
as O(1/

√
N). This poor scaling along with a lack of concentration is important as many

quantum information tasks utilise states that are pure [39]. Several adaptive measurement
protocols have been suggested and implemented [39, 47, 48, 49] to improve this scaling. The
aim of such adaptive strategies is to make measurements that are close to the eigenbasis of
the true state. In our qubit model, for measurements with angle φ smaller than O(1/

√
N)

the Fisher information Idd(ρ) scales as O(N). From (32), this gives a O(1/N) scaling of the
infidelity even in the limit λ2 → 0.

5. Conclusions

In this paper we investigated the asymptotic behaviour of the error for an arbitrary optimal
estimator in the random measurement setup. Specifically we looked at how the accuracy
of efficient estimators depends on the measurement design and the state. We considered two
distance measures, the Frobenius norm and the quantum infidelity. In the case of the Frobenius
norm, we extended the concentration results in [31], and demonstrated that the MSE attains
the optimal rate (up to a constant) with only O(r logD) random basis measurements for all
states of rank r. Furthermore, to investigate the behaviour of the MSE concentration for states
that are close to pure, we considered the model of a single qubit. We presented an argument to
show that concentration in the MSE occurs for all qubit states, despite a lack of concentration
in the Fisher information matrix for states close to the surface of the Bloch sphere.
It remains an open problem if a similar scaling of the MSE exists in the Pauli measurement
setup used in standard multiple ions tomography. The application of the tools in the paper to
the Pauli setup requires control of the eigenvalues in equation (9), specifically a lower bound
on the minimum eigenvalue λmin(Ī). Strong numerical evidence in [31] suggests that for
random measurements the Fisher information may satisfy the required spectral properties.
Concentration results for distances other than the Frobenius norm can be in principle derived
using similar arguments as long as their local expansions are quadratic in the parameters (see
(7)). However, for the infidelity (an important measure of error for quantum tomography),
it is known that while the scaling is quadratic for states deep in the Bloch sphere, for states
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close to pure this scaling is linear in the parameters [39]. We demonstrated with a single qubit
model that for such nearly pure states and random measurements, the mean infidelity (MINF)
does not concentrate around the optimal for any finite number of settings. This implies a lack
of ‘compressive’ recovery of such low rank states, and therefore by increasing the number
of measurement settings one can always significantly decrease the corresponding estimation
error.
The FIM has been an important tool in our investigation of both the MINF and the MSE. We
noticed that the FIM fails to concentrate when one of the eigenvalues of the state approaches
zero. Related work in establishing and using continuity relations of the Quantum Fisher
information (QFI) [50, 51] also shows a dependence on the smallest eigenvalues of the state,
and therefore interesting behaviour occurs when eigenvalues approach zero. It is a possible
direction for future research to see if our results about the concentration failure of the FIM are
more deeply connected to the work in [50, 51].

Appendix

Appendix A. Proof of Lemma 1

Lemma. For any rank-r state ρ with an arbitrary spectrum, and the rank-r state ρ0 which
has equal non-zero eigenvalues 1/r and the same eigenvectors as ρ, the following inequality
holds between their average Fisher information matrices, evaluated over all possible random
measurement settings.

Ī(ρ0) ≤ Ī(ρ)

Proof. For a given random measurement setting s, the probabilities of occurrence of an
outcome o for the two states ρ0 and ρ are given by

p0(o|s) =

r∑
i=1

1

r
|〈eos |λi〉|2 ; pρ(o|s) =

r∑
i=1

λi|〈eos |λi〉|2 (A.1)

where λi and |λi〉 are the eigenvalues and the eigenvectors of the state ρ respectively. We
now consider states ρ′, that are constructed by permuting the r non-zero eigenvalues λi of
the state ρ, while keeping the eigenvectors fixed. Let P denote the set of r! such permuted
states. Averaging the probabilities pρ′(o|s) over all the permuted states ρ′ ∈ P recovers the
probability p0(o|s) corresponding to the state with the uniform spectrum. That is,

1

|P|
∑
ρ′∈P

pρ′(o|s) = p0(o|s). (A.2)

From the convexity of the function f(x) = 1/x in the interval (0,+∞), the above equation
together with Jensen’s inequality implies,

1

p0(o|s)
≤ 1

|P|
∑
ρ′∈P

1

pρ′(o|s)
(A.3)
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where we assumed that pρ′(o|s) > 0 for all o. From 5, we see that for a setting s, the Fisher
matrix in our parametrisation can be written as a sum of d matrices

I(ρ′|s) =
∑

o:pρ′ (o|s)>0

1

pρ′(o|s)
|V o

s 〉〈V o
s | (A.4)

where |V o
s 〉 ∈ RD, with D = 2rd− r2 − 1, are vectors that depend only on the measurement

vectors |eos 〉, and the eigenvectors |λi〉 of the state. Since by construction the eigenvectors for
all the states considered above are the same, together with A.3, we get for all settings s

I(ρ0|s) =
∑

o:p0(o|s)>0

1

p0(o|s)
|V o

s 〉〈V o
s | ≤

1

|P|
∑
o

∑
ρ′∈P

1

pρ′(o|s)
|V o

s 〉〈V o
s |

=
1

|P|
∑
ρ′∈P

I(ρ′|s). (A.5)

The inequality holds for settings s such that pρ′(o|s) > 0 for all “permuted” states ρ′ and all
outcomes o, which holds with probability one under the Haar measure over settings. Since
each ρ′ is an unitary rotation of the state ρ, we arrive at the required inequality of the average
Fisher matricies by integrating both sides of the above equation over all possible random
measurement settings s.

Appendix B. Proof of Theorem 1

The proof of this theorem is similar to the one presented in [31]. Here we present the
important elements of the proof, and refer to [31] for details. As briefly mentioned in the
main text of the paper, the proof of the theorem utilises the following matrix Chernoff bound
[38], where the random matrices Xi are given by G−1/2

F I(ρ|si)G−1/2
F , with si random bases.

Theorem 3. (Matrix Chernoff Bound) Consider a finite sequence X1, . . . , Xk of
independent, random, positive matrices with dimension D, such that λmax(X) ≤ R. For
EX = M ≥ µ1 and 0 ≤ ε ≤ 1

2 ,

P

{
1

k

k∑
i=1

Xi 6∈
[
(1− ε)M, (1 + ε)M

]}
≤ 2D · exp

(
−k · ε2µ

2R · log 2

)
(B.1)

We note thatG−1/2
F ISG

−1/2
F is a sum of k independent, random, positive matrices. In order to

apply the above bound, we need to upper bound the largest eigenvalue of G−1/2
F I(ρ|s)G−1/2

F

over all measurements, denoted µmax. We also need to lower bound the smallest eigenvalue
of the expected Fisher informationG−1/2

F I(ρ)G
−1/2
F , denoted µmin. We will first derive these

bounds and then obtain the result by applying the Chernoff bound. As in the text, we work
with the local parametrisation

θ =
(
θ(d),θ(r),θ(i)

)
= (ρ2,2, . . . , ρr,r;Reρ1,2, . . . , Reρr,d; Imρ1,2, . . . , Imρr,d) (B.2)

where ρ1,1 is constrained to enforce the trace-one normalisation. The Fisher information



18

therefore, has the following block structure

I(ρ) =


Idd(ρ) Idr(ρ) Idi(ρ)

Ird(ρ) Irr(ρ) Iri(ρ)

Iid(ρ) Iir(ρ) Iii(ρ)

 (B.3)

with the superscripts identifying the parameters considered; diagonal, real and imaginary. The
weight matrix GF also has the same block structure with elements

GFa,b = Tr

[
∂ρθ
∂θa
· ∂ρθ
∂θb

]
(B.4)

In the parametrisation described above, the weight matrix GF has the following block
diagonal form:

(i) The diagonal-diagonal block:
(a) GddFa,b = 1 + δa,b

(ii) The real-real and imaginary-imaginary block:

(a) Grr/iiFa,b
= 2 · δa,b

with the other blocks being zero. We note that both the Fisher, and the weight matrix are of
dimension D := 2rd− r2 − 1.
Lower bound on the smallest eigenvalue—As mentioned in the main text, we use Lemma 1
to bound the the smallest eigenvalue from below as

G
−1/2
F Ī(ρ0)G

−1/2
F ≤ G−1/2

F Ī(ρ)G
−1/2
F . (B.5)

Where ρ0 is the state with r equal eigenvalues and the same eigenvectors as the state ρ. The
explicit form of Ī(ρ0) is known, and has been evaluated in [31], and from it, we see that the
minimum eigenvalue is lower bounded as µmin ≥ r/r + 1 for r > 1 and µmin ≥ 1 for pure
states.
Upper bound on the largest eigenvalue—We use the inequality I(ρ|s) ≤ F (ρ)
between the classical and quantum Fisher informations to bound the largest eigenvalue of
G
−1/2
F I(ρ|s)G−1/2

F over all measurements by the largest eigenvalue of G−1/2
F F (ρ)G

−1/2
F .

The quantum Fisher information is calculated in the local parameterisation described above
and evaluated at the state ρ = Diag(λ1, . . . , λr, . . . , 0), diagonal in its eigenbasis. The details
of this calculation can be found in [31], and we therefore avoid the repetition and merely state
the elements of the matrix. Denoting ra, ca to be the row and column positions of the element
a of the parameter vector θ, we have

(i) For the Diagonal-Diagonal block with r > 1,
(a) F dda,a

∣∣
θ

= 1
λra

+ 1
λ1

when ra ≤ r

(b) F dda,b

∣∣∣
θ=θ0

= 1
λ1

when ra, rb ≤ r, and a 6= b

(ii) For the Real-Real and Imaginary-Imaginary blocks:

(a) F
rr/ii
a,a

∣∣∣
θ=θ0

= 4
λra+λca

when ra < ca ≤ r
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(b) F
rr/ii
a,a

∣∣∣
θ=θ0

= 4
λra

when ra ≤ r, ca > r

The off-diagonal blocks are zero. It is easy to see that the quantum Fisher matrix is upper
bounded by the matrix 1

λmin(ρ)G
dd
F

⊕
2

λmin(ρ)G
rr
F

⊕
2

λmin(ρ)G
ii
F . So we can write

G
−1/2
F FG

−1/2
F ≤ 1

λmin(ρ)
1(r−1)

⊕ 2

λmin(ρ)
1(2rd−r2+r)

⊕ 2

λmin(ρ)
1(2rd−r2+r) (B.6)

The maximum eigenvalue µmax is therefore upper bounded by 2/λmin(ρ) for r > 1, and 2
for r = 1.
Combining the bounds to prove concentration– We can now substitute these values into the
matrix Chernoff bound. While the value of the minimum/maximum eigenvalues differ for
r > 1 and r = 1, we calculate the bound for the case when r > 1, as this will provide a
general bound for the number of settings required that holds even in the case of pure states.
Writing PS = G

−1/2
F ISG

−1/2
F and P = G

−1/2
F IG

−1/2
F for notational simplicity, we have for

r > 1

P
{
PS 6∈

[
(1− ε)P , (1 + ε)P

]}
≤ 2D · exp

(
−k rε2λmin(ρ)

4(r + 1) · log 2

)
:= δ (B.7)

Therefore, with probability 1− δ we have that

(1− ε)P ≤ PS ≤ (1 + ε)P (B.8)

This can be re-written in the form of inequalities of the MSE with ε > 0 sufficiently small

(1− ε)Tr
(
P
−1
)
≤ Tr

[
P−1
S
]
≤ (1 + ε)Tr

(
P
−1
)

(B.9)

For a fixed value of ε and δ, we see that the minimum number of settings k required for the
above abound to hold with probability greater than 1− δ is

k =
C1

λmin(ρ)
· (r + 1)

r
log

(
2D

δ

)
(B.10)

where C1 := 4(log 2/ε2) and D := 2rd− r2 − 1.
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