
Ahmed, Saeed and Susanto, Hadi and Wattis, Jonathan 
(2017) Band-gaps in long Josephson junctions with 
periodic phase-shifts. Physics Letters A, 381 (13). pp. 
1181-1191. ISSN 0375-9601 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/43935/1/Bandgaps_v11.01.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No 
Derivatives licence and may be reused according to the conditions of the licence.  For more 
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Band-gaps in long Josephson junctions with periodic phase-shifts

Saeed Ahmada, Hadi Susantob,∗, Jonathan A. D. Wattisc

aDepartment of Mathematics, University of Malakand Chakdara, Dir(L), Pakhtunkhwa, Pakistan.
bDepartment of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK.

cSchool of Mathematical Sciences, University of Nottingham,University Park, Nottingham NG7 2RD, UK.

Abstract

We investigate analytically and numerically a long Josephson junction on an infinite domain, having arbitrary
periodic phase shift of κ, that is, the so-called 0-κ long Josephson junction. The system is described by a
one-dimensional sine-Gordon equation and has relatively recently been proposed as artificial atom lattices.
We discuss the existence of periodic solutions of the system and investigate their stability both in the absence
and presence of an applied bias current. We find critical values of the phase-discontinuity and the applied
bias current beyond which static periodic solutions cease to exist. Due to the periodic discontinuity in the
phase, the system admits regions of allowed and forbidden bands. We perturbatively investigate the Arnold
tongues that separate the region of allowed and forbidden bands, and discuss the effect of an applied bias
current on the band-gap structure. We present numerical simulations to support our analytical results.
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1. Introduction

In condensed matter, the tunnelling of Cooper
pairs across a barrier between the two superconduc-
tors of a long Josephson junction [1] is described
by the sine-Gordon equation. In the context of
long Josephson junctions, the fundamental topolog-
ical kink solution of the sine-Gordon model repre-
sents a Josephson vortex, or fluxon, that carries a
single magnetic flux quantum Φ0 ≈ 2.07 × 10−15

Wb. Due to their interesting nonlinear nature, (see,
for instance, [2, 3]) and potential applications [4, 5],
fluxons have been widely investigated in the last few
decades [6].

The vast literature on mathematical models of long
Josephson junctions is too far-reaching to cover here;
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however, Ustinov [7] provides a good review of the
wider subject area of solitonic models of Josephson
junction. This is firmly based in experimental rele-
vant modelling, and whilst extensive, it is now some-
what dated; it does not cover recent developments
such as fractional vortices in systems with phase
shifts. In the seminal work [8], McLaughlin and Scott
make use of the integrability of the sine-Gordon sys-
tem to derive formulae for the motion of fluxons in
perturbed sine-Gordon systems. Whilst they con-
sider the trajectories which separate pinning from
motion, they do not consider fractional fluxons. As
well as providing an extensive and relatively uptodate
bibliography, Valenti et al. [9] observe that the pres-
ence of Gaussian noise in forced and damped sine-
Gordon models of LJJs stabilises the superconducting
state; that is, switching times to the resistive state are
increased due to stochastic resonance. The effect of
thermal fluctuations on the lifetimes of the supercon-
ducting metastable states in a long Josephson junc-
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tion with no phaseshifts is considered by Augello et
al. [10]. The lifetimes have strong dependence on
the frequency of the applied noise and is also influ-
enced by any correlation. Fedorov and Pankratov [11]
consider a two-dimensional sine-Gordon system with
damping and forcing, which includes stochastic fluc-
tuations but has no phase shift. They find that the
mean escape time is significantly longer than the cor-
responding one-dimensional system. Hence they are
able to describe how the escape rate depends on the
topological charge of the vortex. The case of over-
damped sine-Gordon system with a forcing term is
considered by Büttiker and Landauer [12] – this con-
stitutes a considerable simplification to the dynamics.
They consider a generic pendulum model, with no
specific terms for long Josephson junctions. Federov
et al. [13] also consider the switching times of long
Josephson junctions with noise in the overdamped
limit. They find that in short junctions, noise delays
the decay, but that once the lengths exceeds several
times the penetration depth, there is no significant
effect. The case of a LJJ with dichotomous noise is
considered by Guarcello et al. [14], who again observe
that noise enhances stability.

In the late seventies, Bulaevskii et al. [15, 16] pre-
dicted, that it was possible to create half integer
Josephson vortices that carry half of the magnetic
flux (Φ0/2), often called semifluxons [17]. To do so,
one has to use a junction having one part with posi-
tive critical current (0-part) and the other with neg-
ative critical current (π-part), i.e., the so-called 0−π
long Josephson junction. This prediction was later
confirmed experimentally, see for example, Kirtley et
al.. [18] and Sugimoto et al. [19]. The dynamics of
such junctions is described by a model with a discon-
tinuous Josephson phase at the 0− π boundary.

The possibility of creating an arbitrary (i.e., not
only π) phase shift in the Josephson phase (φ) was
successfully fabricated experimentally by Goldobin et
al. [20]. If x is the coordinate along the Josephson
junction having a κ-phase discontinuity at x = 0,
then the current-phase relation in the region x > 0
reduces to Is = Ic sin (φ+ κ). Such junctions can
be created by a pair of closely situated current injec-
tors, where κ and the current through the injectors
are found to be proportional [21, 22]. It was demon-

strated by Goldobin et al. [23] that the phase shift
can be tuned to be of any value κ and consequently,
an arbitrary fractional magnetic flux quantum, re-
ferred to as a fractional vortex, may spontaneously
appear in order to compensate the phase jump.

The eigenfrequency of a fractional vortex corre-
sponds to the oscillation of the magnetic flux of
the vortex around the point of discontinuity and de-
pends upon the parameter κ. Goldobin et al. [24]
reported that the eigenfrequency of a fractional vor-
tex in a long 0-κ Josephson junction depends upon
the magnetic flux of the vortex and it lies within
the band-gap. A later numerical study [25] of a
one-dimensional chain of fractional vortices in a long
Josephson junctions having alternating ±κ discon-
tinuities focused on the small oscillations of crystal
of fractional vortices and the corresponding energy
bands in terms of the phase discontinuity κ. Vo-
gel et al [26] analyse the escape rate of fluxons in
a biased 0 − κ long Josephson junction due to ther-
mal and quantum fluctuations. Their analytical work
relies on finding the stationary solution, and then
determining the stability through a detailed eigen-
mode calculation. Buckenmaier et al. [27] demon-
strate good experimental agreement between the the-
ory of 0 − κ LJJs and spectroscopic measurements,
confirming the dependence of eigenfrequency on bias
current. However, analytic descriptions of the bi-
furcation points of the energy bands and the effect of
the applied bias current on additional openings of the
band-gaps are still lacking. In this paper, we consider
a long Josephson junction with a periodic phase jump
of arbitrary size κ and study the energy bands that
correspond to the lattice oscillations analytically as
well as numerically.

The study of propagation of a nonlinear wave in pe-
riodic structures (e.g., crystals) is a fascinating topic
of research in solid state physics, optics and applied
mathematics [28, 29, 30]. Periodic structures have
important features, including the existence of multi-
ple frequency gaps (also called Bloch bands or band-
gaps) in the wave transmission spectra. These band-
gaps play an important role in all physical properties
of solids. By controlling their periodicity, the basic
properties of a material can be altered and a mate-
rial with desirable properties can be created. This
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process is complicated because of the fixed structure
of crystals in nature and the requirement of, for ex-
ample, a strong electric [31], or magnetic field [32].
To allow the control of the electronic properties of
a material to a wider extent, it would be interesting
to construct and understand artificial periodic struc-
tures with a wide range of varying properties during
experiments. Long Josephson junctions with periodic
phase shifts have been proposed to be artificial peri-
odic structures with electronic properties that can be
controlled up to a greater degree during experiment,
through the variation of the current or by choosing
the inter-vortex distance at the design time [25]. In
the present paper we aim to provide a systematic
study of the allowed and forbidden bands of the frac-
tional vortices based periodic structures.

This paper is structured as follows. In Section
2, we present a mathematical model for the prob-
lem under consideration and its temporally station-
ary and spatially uniform solutions. Section 3 de-
scribes the results of a detailed study of the periodic
solutions about the uniform solutions including the
ground state solutions both in the absence and in the
presence of an applied bias current. This section also
deals with the dependence of the ground state on a
inter-vortex distance parameter a, and on the arbi-
trary periodic discontinuity κ. In Section 5, we study
the stability of the periodic solutions and derive the
expressions of the transitional curves which separate
regions of allowed and forbidden bands. We study
the points where the band-gaps bifurcate, and study
the opening of the additional band-gaps in the pres-
ence of the applied bias current. We also find analytic
expressions for the corresponding eigenfunctions. Fi-
nally, Section 6 concludes our work.

2. Mathematical Model

The dynamics of the phase difference between the
superconductors of a 0-κ long Josephson junction is
described by the one-dimensional sine-Gordon equa-
tion [17, 25]

φxx − φtt = sin [φ+ θ (x)]− γ, (−∞ < x <∞) .
(1)

This equation is obtained after rescaling where the
spatial and the temporal variables are respectively
normalized to the Josephson penetration depth (λJ),
and the inverse plasma frequency (ω−1p ). The quan-
tity γ represents the applied bias current density
which is normalized to critical current density (Jc)
of the junction. The function θ(x), defined by

θ(x) =

{
0, x ∈ (2na, (2n+ 1)a) ,
κ, x ∈ ((2n+ 1)a, 2(n+ 1)a) ,

(2)

represents the absence or presence of an additional
periodic phase-shift in the Josephson phase. Here,
n ∈ Z, 0 < κ < 2π, and a is the distance between
two consecutive phase-discontinuities.

Considering the structure of the additional peri-
odic phase shift, θ(x), it is convenient to simplify
the problem under consideration without losing gen-
erality. Thus, to analyse the ground states of an
infinitely 0-κ long Josephson junction with periodic
phase shifts, we consider

φxx − φtt = sin [φ+ θ(x)]− γ, (0 < x < 2a) , (3)

where

θ(x) =

{
0, (0 < x < a) ,
κ, (a < x < 2a) .

(4)

For natural purposes, we assume the continuity of the
Josephson phase and the magnetic field at x = a and
at x = 0, 2a under periodic boundary conditions

φ
(
a−
)

= φ
(
a+
)
, φx

(
a−
)

= φx
(
a+
)
,

φ
(
0+
)

= φ
(
2a−

)
, φx

(
0+
)

= φx
(
2a−

)
.

(5)

The stationary solutions of Eq. (3) are determined
by solving its time-independent form

φxx = sin [φ+ θ(x)]− γ, (6)

which admits uniform solutions that, for small γ, and
in the regions 0 < x < a, and a < x < 2a, can be
respectively approximated by φ0 ≈ γ, π − γ, and
φ0 ≈ γ − κ, π − κ − γ. It is straightforward to ver-
ify that for κ 6= 0, the uniform solutions satisfy the
continuity conditions (5) only when γ = 0 and κ ≡ π
(mod 2π). When the continuity conditions are not
satisfied, we instead obtain spatially periodic solu-
tions. In the following sections, we study the peri-
odic solutions analytically for small κ and γ. The
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analytical results will then be compared with numer-
ical results that are obtained from solving (6) and
(4). We discretise the equation and approximate the
second derivative using spectral methods [33]. The
resulting coupled nonlinear system is then solved us-
ing Newton’s method.

3. Periodic solutions about 0 and −κ

We first study the existence of periodic solutions
about 0 and −κ. For this purpose, we perform a
perturbation analysis and assume

φ(x) =

{
φ̃, (0 < x < a) ,

−κ+ φ̂, (a < x < 2a) ,
(7)

where |φ̃| � 1 and |φ̂| � 1 are functions of the spatial
variable x which are subject to the continuity and
boundary conditions

φ̃(a) = φ̂(a)− κ, φ̃(0) = φ̂(2a)− κ,
φ̃x(a) = φ̂x(a), φ̃x(0) = φ̂x(2a).

(8)
Our aim is to determine these small perturbations in
the respective regions.

Inserting the ansatz (7) into the static sine-Gordon
equation (6), a formal series expansion up to the lead-

ing order of φ̃ and φ̂ yields a set of two ordinary dif-
ferential equations whose general solutions have the
form

φ̃ = Ã cosh(x− x1) + γ, (0 < x < a) ,

φ̂ = Â cosh(x− x2) + γ, (a < x < 2a) ,
(9)

where |Ã| � 1, |Â| � 1 are constants of integration,
and x1, x2 are arbitrary points in the domain 0 < x <
2a which are chosen in order to satisfy the continuity
and bounday conditions. However, in the following,
we shall consider higher-order correction terms. To
do so, we consider two problems.

Firstly, a Taylor series expansion of (6) up to the

third correction terms in φ̃ and φ̂ gives
φ̃xx − φ̃+

φ̃3

6
+ γ = 0, (0 < x < a) ,

φ̂xx − φ̂+
φ̂3

6
+ γ = 0, (a < x < 2a) .

(10)

Motivated by the Poincare-Lindstedt method [34], to
solve system (10), we propose an ansatz of the form

φ̃ = Ã cosh [ω̃(x− x1)] + γ, (0 < x < a), (11)

φ̂ = Â cosh [ω̂(x− x2)] + γ, (a < x < 2a),(12)

where ω̃ = 1 + εω̃1 + O(ε2), ω̂ = 1 + εω̂1 + O(ε2)
with ω̃1 and ω̂1 being constants that are determined
later. One may choose x1 = a/2 and x2 = 3a/2, so as
to impose even symmetry about x = a/2 and about
x = 3a/2.

The idea of the Poincaré-Lindstedt method is to
stretch the x-axis, and approximate the solution over
one period. Since the Poincaré method is for oscilla-
tory problems, the stretch, ω1, is determined by sup-
pressing the secular terms, see [34] for details. Here,
we have a solution which is not in terms of oscillatory
(trigonometric) functions, but rather in terms of hy-
perbolic functions. Hence, there are no secular terms
in the present case. Therefore, to find ω1, we need
another method so that the leading order solution in
terms of elementary functions is a good approxima-
tion to the given solution. We introduce the scaling

Ã = A
√
ε, γ = γ̃

√
ε, a = O(1). (13)

Secondly, we want the approximate solutions to
be accurate approximations of the trajectories in the
phase spaces (φ̃, ψ̃) and (φ̂, ψ̂). In order to solve the
system (10) in the region 0 < x < a, we use the ideas
behind phase-plane analysis to formulate an equation
for φ̃x = ψ̃ in terms of φ̃. After some calculations,
one arrives at the differential equation for the phase
path

dψ̃

dφ̃
=
φ̃− φ̃3/6− γ

ψ̃
. (14)

This equation is separable and, on integration, leads
to

ψ̃2

2
=
φ̃2

2
− φ̃4

24
− γφ̃+ C. (15)

Here, C is a constant of integration, which deter-
mines the trajectory under consideration. For the
trajectory we are interested in, C is determined by
using φ̃(x1) = Ã+ γ and ψ̃(x1) = 0. Once the value
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of C is found, a simple manipulation leads from Eq.
(15) to

ψ̃2 − φ̃2 + Ã2 + γ2 + 2Ãγ cosh Ψ

=
Ã

12

{
Ã3
[
1− cosh4 Ψ

]
+ 4Ã2γ

[
1− cosh3 Ψ

]
+6Ãγ2

[
1− cosh2 Ψ

]
+ 4γ3 [1− cosh Ψ]

}
,

(16)

where Ψ = ω̃ (x− a/2).
Next, by discarding smaller terms in ε and using a

hyperbolic identity, from Eqs. (11) and φ̃x = ψ̃, we
obtain

ψ̃2 − φ̃2 + Ã2 + γ2 + 2Ãγ cosh Ψ = −2εω̃1Ã
2 sinh2 Ψ.

(17)
By comparing Eqs. (16) and (17), one would normally
need to require the right hand sides of the two equa-
tions to be the same. However, they are different and
the difference is dependent on the spatial variable x.
This matter arises because we require an approximate
solution to satisfy the governing equation. An opti-
mal way of making them equal is by averaging the
difference, i.e. integrate the resulting equation over
the interval 0 < x < a and divide the integrand by
the length of the interval, and requiring this spatial
average difference to be zero. This approach leads to
an implicit relation, which with the help of the scal-
ings (13) and a formal series expansion to the leading
order of ε gives

ω̃1 = − 1

24a

{
A2

2
(3a+ sinh(a)) + 8Aγ̃ sinh (a/2)

+6γ̃2a+ 8γ̃

(
A2 + γ̃2

A

)
tanh (a/4)

}
. (18)

Following the same steps, by taking as the general
solution of the second equation of the system (10) in
the region a < x < 2a, one may verify that ω̂1 is given
by the same equation as (18), but the parameter A is
now the corresponding amplitude of the phase in the
region a < x < 2a.

Next, we apply the conditions (5) to the general
solution of the system, and obtain a set of two equa-

tions for the two unknowns Ã and Â, namely
(
Ã− Â

)
cosh

(
(1 + εω̃1)

a

2

)
+ κ = 0, (0 < x < a) ,(

Ã+ Â
)

sinh

(
(1 + εω̂1)

a

2

)
= 0, (a < x < 2a) .

(19)

The second equation of the system (19) holds if Ã =

−Â. As a result, the first equation of the system (19)
reduces to

Ã cosh

(
(1 + εω̃1)a/2

)
= −κ/2. (20)

Let κ =
√
εκ̃. Introducing the scaling (13) into

(20), a Taylor series expansion about ε = 0 with
smaller terms being neglected leads to

A = − κ̃

2 cosh (a/2)
− A1

768 cosh4 (a/2)
,

A1 = κ̃3 (3a+ sinh(a)) sinh (a/2)

−16κ̃2γ̃ sinh(a) {3 tanh (a/4) + sinh (a/2)}
−768γ̃3sech2 (a/4) cosh3 (a/2) .

(21)

We are now in position to write the periodic solu-
tion of the system (10) in the driven case (γ 6= 0) in
the form

φ(x) =



Ã cosh

(
(1 + εω1) (x− a/2)

)
+ γ,

(0 < x < a) ,

−κ− Ã cosh

(
(1 + εω1) (x− 3a/2)

)
+ γ,

(a < x < 2a) .
(22)

Here, ω1 = ω̃1.
In Fig. 1, we have depicted the profile of the

Josephson phase φ of of the system (3)–(4) as a func-
tion of the spatial variable x. The solid lines repre-
sent the numerically obtained solution for a = 1 and
κ = 0.5, while the dashed lines represent the corre-
sponding analytical approximation (22).

First we study the behaviour of the wave function
φ(x) in the absence of an applied bias current γ (see
the top panel of Figure 1). One can observe that
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Figure 1: Comparison of the Josephson phase φ obtained from
solving (6) and (4) numerically (solid lines) and the corre-
sponding approximations (dotted lines) of the profile φ given
by the system (22) in terms of the spatial variable x for the
undriven (top) and the driven (bottom) cases. In the driven
case we have taken γ = 0.2. Here, the inter-vortex distance,
a, is taken to be unity and κ = 0.5 in both the driven and
undriven problems. The value of the discontinuity κ is 0.5.

0 0.2 0.4 0.6 0.8 1

−0.28

−0.27

−0.26

−0.25

−0.24

−0.23

−0.22

a

φ

φ  (a/2)

φ(3a/2)

0 0.2 0.4 0.6 0.8 1

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

a

φ

φ  (a/2)

φ(3a/2)

Figure 2: Plot of the approximations (dashed lines) to the
profile φ(a/2) and φ(3a/2), given by the system (22) at κ =
0.5, as a function of the facet length a for the case of γ = 0 (top)
and γ = 0.2 (bottom). Solid lines represent the numerically
obtained periodic solutions of (6) with (4).

φ(x) oscillates and attains its maximum and mini-
mum values respectively at the points x = a/2 and
x = 3a/2. We observe good agreement between the
approximation and the corresponding numerics. The
lower panel of the same figure, shows the periodic so-
lution φ(x) plotted against x in the driven situation,
where we take γ = 0.2. We also note that the ap-
proximation of the undriven case is closer to numerics
than the driven case. Differences in the driven case
are ∼ 0.01 which is O(ε3), given γ = 0.2.

The approximations of the Josephson phase φ(x)
given by the system (22) at x = a/2 (the upper
branch) and x = 3a/2 (the lower branch) as func-
tions of the parameter a are shown in Fig. 2. The
upper and lower panels represent the undriven and
driven cases respectively. Consider the top panel of
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Figure 3: Comparison of the approximations to the profile of
the wavefunctions φ(a/2) and φ(3a/2), (dotted lines) given by
the systems (22) and (24) and the corresponding numerical
solution (solid lines) as a function of the applied bias current
γ for a = 1 and κ = 0.5. γc denotes the critical current at
which a turning point in the existence curve occurs.

the figure; when a = 0, the two branches merge at
the point φ ≈ −0.25, which shows that the magnetic
field φx disappears. Observe that the strength of the
magnetic field intensity is related proportionally to
inter-vortex distance in Josephson junction. We ob-
serve a rather good agreement between the approxi-
mations and numerics in this case. In the lower panel
of the same figure, the profile of the superconducting
phase φ as a function of a is plotted in the presence
of the external force, where we have taken γ = 0.2.
Again, one can observe that the magnetic flux is zero
at φ ≈ −0.041, and increases with increasing a. A
comparison between our approximations and the cor-
responding numerics is displayed in the same figure
showing good qualitative agreement.

The effect of the applied bias current, γ, on the
profile of the Josephson phase φ given by the system
(22) is displayed by the lower dashed lines in Figure
3. The two lower branches correspond to x = a/2
and x = 3a/2. The Josephson phase φ increases with
the increase in the bias current γ. For γ close to zero,
the approximation to the periodic solution, given by
(22), approximates well its numerical counterpart.

When γ is increased further, a particular value of

the bias current is reached where the solution ceases
to exist due to a turning point. Here, we have a
saddle-node bifurcation between the periodic solu-
tions about 0 and −κ and those about π and π − κ
that we will discuss in the section below. This par-
ticular value of the bias current is denoted by γc. We
have found that the value of γc depends on the pa-
rameter κ and the facet length a. For a = 1 and
κ = 0.5, we have γc ≈ 0.96.

4. Periodic solutions about π and π − κ

Next, we consider periodic solutions about φ =
π, π − κ. In this case, our perturbation ansatz has
the form

φ =

{
π + φ̃, (0 < x < a) ,

π − κ+ φ̂, (a < x < 2a) ,
(23)

where |φ̃| � 1 and |φ̂| � 1 are functions of the spa-
tial variable. Following steps similar to the previous
section, we find that the periodic solutions of the sys-
tem about π and π − κ in the driven case have the
form

φ(x) = π+



B̃ cos

(
(1 + εω̃1) (x− a/2)

)
− γ,

(0 < x < a) ,

−κ+ B̂ cos

(
(1 + εω̂1) (x− 3a/2)

)
− γ,

(a < x < 2a) .
(24)

Using the scaling of the previous section along with
B̃ =

√
εB, ω̃1 can be calculated as

ω̃1 =
−1

48a

{
B2 (3a+ sin(a))− 16Bγ̃ sin (a/2)

+12γ̃2a− 16γ̃

(
γ̃2

B
+B

)
tan (a/4)

}
, (25)

while ω̂1 is the same as ω̃1 with the amplitude B
is now from the corresponding phase in the second
region a < x < 2a.

The amplitudes B̃ and B̂ are related by B̃ = −B̂,
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Figure 4: The same as Fig. 1, but for periodic solutions about
π and π − κ. The approximations are given by system (24).
The parameter values as the same as in Fig. 1.

and

B = − κ̃

2 cos (a/2)
+

B1 sin (a/2)

768 cos4 (a/2)

B1 = κ̃3(3a+ sin(a))

+32γ̃κ̃2 cos (a/2) {tan (a/4) + sin (a/2)}
+16γ2 (8γ̃ tan(a/4) cos(a/2) + 3aκ̃)

× cos2(a/2). (26)

First, the profiles of the wave function φ in terms
of the spatial variable x is depicted in Fig. 4. The pa-
rameter values are the same as those in Fig. 1. The
periodic in space φ attains its minimum and maxi-
mum values respectively at x = a/2 and x = 3a/2.
A very close agreement between the analytical cal-
culations (24) and the corresponding numerics is ob-

0 0.2 0.4 0.6 0.8 1

2.86

2.87

2.88

2.89

2.9

2.91

2.92

2.93

a

φ

0 0.2 0.4 0.6 0.8 1
2.64

2.65

2.66

2.67

2.68

2.69

2.7

2.71

2.72

a

φ

Figure 5: The same as Fig. 2, but for periodic solutions about
π and π − κ. The approximations (dashed lines) are given by
system (24).

served.

The behaviour of φ as a function of the facet length
a in the absence and presence of the applied bias
current are shown in upper and lower panels of Fig. 5.
The magnetic flux is zero when a is zero and increases
with increasing a.

Next, we study the periodic solutions of the system
about π and π − κ for varying applied bias current.
The portion above the line φ ≈ 1.31 in Fig. 3 de-
picts the profile of the Josesphson phase φ as function
of the applied bias current γ. The lower and upper
branches respectively correspond to the value of the
Josephson phase at x = a/2 and x = 3a/2. The gap
between the two branches decreases with the increase
in bias current γ. It is clear from the figure that the
periodic solutions about 0 and π are symmetric about
the horizontal line φ ≈ 1.31. For a small γ our an-
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Figure 6: Plots of the approximations to the profile φ, given
by the systems (22) and (24) as a function of the parameter
κ. The upper panel is when there is no bias current applied
to the system, i.e. γ = 0, and the lower panel shows the case
when γ = 0.2.

alytical results (22) and (24) well approximate their
corresponding numerical counterparts.

As mentioned above, there is a critical value of bias
current called γc above which the periodic solutions
cease to exist. Note that one of the two kinds of
periodic solutions discussed herein will be the ground
state of the time-dependent governing equation (3).
The presence of the critical bias current means that
the static ground state of the system can disappear
and one obtains a time-dependent state instead, as
reported previously in [35].

Figure 6 shows the profile of the wave function
φ given by (22) and (24) as a function of the pa-
rameter κ. In the undriven case where γ = 0,
there are two solutions emanating from φ = 0 and

φ = π on the axes where κ = 0, see the upper
panel. For the π−state (0−state), the upper(lower)
and lower(upper) branches correspond to x = a/2
and x = 3a/2.

The profile of the Josephson phase φ as function
of κ for both periodic solutions about 0 and κ in the
presence of bias current is shown in the lower panel of
Fig. 6, where we have taken γ = 0.2. As κ increases
further, a stage comes where the two solutions com-
bine via a saddle node bifurcation at a critical value
of κ denoted by κc. For different values of the ap-
plied bias current (γ) and the facet length parameter
a, there exists a different κc. For example κc = 2.675,
for a = 1 and γ = 0.2. There is no static solution in
the region κc < κ < 2π−κc, in a similar situation as
the case when one fixes κ and takes γ > γc mentioned
above (see [35]).

5. Stability analysis of the periodic solutions

Next, we study the stability of the periodic solu-
tions about the static solutions and perform pertur-
bation analysis.

To determine the stability of a periodic solution φs,
we assume

φ(x) = φs + εeλtV (x), (0 < x < 2a) , (27)

where |ε| � 1 is perturbation parameter and λ ∈
C. Introducing the assumption (27) into the sine
Gordon model (3), expanding the resulting equation
by Taylor’s series and neglecting smaller terms leads
to a general eigenvalue problem in the form of the
linear Schrödinger equation

Vxx − λ2V = cos(φs + θ)V. (28)

From the stability ansatz (27), we say that a solu-
tion is (linearly) stable whenever E = λ2 < 0 and is
unstable otherwise.

To solve the eigenvalue problem (28) numerically,
we use spectral methods (see [33], Chapter 9), where
φs has been computed previously as outlined in Sec-
tion 2 above.
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5.1. Stability analysis of the periodic solutions about
0 and −κ

To study the stability of the periodic solutions
about the static solutions 0 and −κ, φs are approxi-
mately given by the system (22). In order to simplify
our problem, we write the potential in the trigono-
metric series

cos (φs + θ) =
a0
2

+R1 sin
(πx
a

)
+R2 cos

(
2πx

a

)
+R3 sin

(
3πx

a

)
+R4 cos

(
4πx

a

)
.

(29)

Here the series is truncated at the fourth term and
the Euler constants are

a0 = 2− γ2 − Ã2

2

(
1 +

sinh(ωa)

ωa

)
,

R1 = − 4πÃγ cosh (ω/2)

π2 + ω2a2
,

R2 = − 2Ã2ωa sinh (ωa)

4π2 + 4ω2a2
,

R3 = − 12πÃγ cosh (ω/2)

9π2 + ω2a2
,

R4 = −2Ã2ωa sinh (ωa)

16π2 + 4w2a2
, (30)

where ω = 1 + εω1 and ω1 is given by Eq. (25).
Substituting Eq. (29) into (28), the eigenvalue

problem reduces to Mathieu’s equation

Vxx−
[
E +

a0
2

+R1 sin
(πx
a

)
+R2 cos

(
2πx

a

)
+

R3 sin

(
3πx

a

)
+R4 cos

(
4πx

a

)]
V = 0. (31)

By taking E + 1 = −δ and introducing the scaling
Ri = −εri, where i = 1, 2, . . . , Eq. (31) is converted
into the canonical form of the Mathieu Equation

Vxx+

[
δ + ε

{
E0 + r1 sin (πxa) + r2 cos

(
2πx

a

)
+

r3 sin

(
3πx

a

)
+ r4 cos

(
4πx

a

)}]
V = 0, (32)

where E0 = 1
2

[
γ̃2 + A2

2

(
1 + sinh(ωa)

ωa

)]
. The general

theory (Floquet Theory) of the differential equations
with periodic coefficients divides the (δ, κ) plane into
the regions of boundedness (stability) and unbound-
edness (instability) of V (x) as x → ∞ (see e.g.,
[36]). The curves separating the regions of stabil-
ity and instability are known as transition curves or
Arnold tongues. The Floquet theory also confirms
the existence of linearly increasing and periodic solu-
tions (having periods 2a and 4a) along the transition
curves. In the following we focus on obtaining ap-
proximate expressions of the Arnold tongues and the
corresponding eigenfunctions V . We note that when
ε = 0, the necessary condition for the potential V

to be 4a−periodic is δ =
(
nπ
2a

)2
, where n ∈ Z. In

other words the Arnold tongues intersect ε = 0 at
the critical points

δc =
(nπ

2a

)2
, n = 0, 1, 2, . . . (33)

We follow a perturbation technique, the so called
method of strained parameters [37], to investigate the
boundary of stability of the periodic solutions. The
approximations we find hold only on the transitional
curves and hence do not give solution that holds in a
small neighborhood of the Arnold tongues.

As discussed earlier, there exist periodic solutions
of Eq. (32) on the transition curves having period 2a
and 4a. These periodic solutions and the transitional
curves are determined in the form of the perturbation
series

V = V0 + εV1 + ε2V2 +O(ε3), (34)

δ =
(nπ

2a

)2
+ εδ1 + ε2δ2 +O(ε3). (35)

Putting Eqs. (34) and (35) into Eq. (32) and com-
paring the coefficients of ε on both sides we obtain

O(ε0) : V
′′

0 +
(nπ

2a

)2
V0 = 0, (36)

O(ε1) : V
′′

1 +
(nπ

2a

)2
V1 = −SV0, (37)

O(ε2) : V
′′

2 +
(nπ

2a

)2
V2 = −δ2 V0 − SV1,(38)
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where the primes denote derivatives with respect to
x and

S = δ1 + E0 + r1 sin
(πx
a

)
+ r2 cos

(
2πx

a

)
+(39)

r3 sin

(
3πx

a

)
+ r4 cos

(
4πx

a

)
. (40)

Below, we find the required expressions for the first
few values of n.

5.2. Transitional curves corresponding to n = 0

In this case, the periodic particular solution of Eq.
(36) is given by V0 = A0, where A0 is a constant of
integration. Hence, Eq. (37) becomes

V1
′′ = −A0

[
δ1 + E0 + r1 sin

(πx
a

)
+ r2 cos

(
2πx

a

)
+r3 sin

(
3πx

a

)
+ r4 cos

(
4πx

a

)]
. (41)

As V1 is expected to be periodic, we have to suppress
the secular terms in the last equation. To do so, we
must have to take A0 (δ1 + E0) = 0, giving us two
possibilities, viz A0 = 0, or δ1 + E0 = 0. We are not
interested in the first possibility as it will make V0
trivial. To avoid V0 being trivial, we consider only
the possibility δ1 + E0 = 0.

Integrating Eq. (41) twice with respect to x, and
taking δ1 = −E0, the periodic particular solution is
given by

V1 = A0

( a
π

)2[
r1 sin

(πx
a

)
+
r2
4

cos

(
2πx

a

)
+
r3
9

sin

(
3πx

a

)
+
r4
16

cos

(
4πx

a

)]
. (42)

Substituting V0 = A0 and (42) into Eq. (38) and
simplifying we may write

V
′′

2 = −δ2A0 +A0

( a
π

)2[
− S1 + S2 sin

(πx
a

)
+S3 cos

(
2πx

a

)
+ S4 sin

(
3πx

a

)
+ S5 cos

(
4πx

a

)]
. (43)

The Si terms are given in Appendix A. The period-
icity condition for V2 requires

−δ2A0 −A0

( a
π

)2
S1 = 0, (44)

giving δ2 = −(a/π)2S1, as A0 6= 0. Consequently Eq.
(35) becomes

δ = −εE0 − ε2
( a
π

)2
S1. (45)

After the secular terms have been removed, the peri-
odic solution of Eq. (43) becomes

V2 = A0

( a
π

)4[
S2 sin

(πx
a

)
+
S3

4
cos

(
2πx

a

)
+
S4

9
sin

(
3πx

a

)
+
S5

16
cos

(
4πx

a

)]
. (46)

By inserting V0 = A0 and (42) into Eq. (34), the
corresponding equation for V can be found.

5.3. Arnold tongues bifurcating from δ = (π/2a)
2

In this case the periodic solution of Eq. (36) is given
by

V0 = A0 cos
(πx

2a

)
+B0 sin

(πx
2a

)
. (47)

Substituting this into Eq. (37), one may write

V
′′

1 +
( π

2a

)2
V1

= −
[
A0 (δ1 + E0) +

r1
2
B0

]
cos
(πx

2a

)
−
[
B0 (δ1 + E0) +

r1
2
A0

]
sin
(πx

2a

)
+

1

2

[
(r1B0 − r2A0) cos

(
3πx

2a

)
−(r1A0 − r2B0) sin

(
3πx

2a

)
−(r2A0 + r3B0) cos

(
5πx

2a

)
−(r2B0 + r3A0) sin

(
5πx

2a

)
+(r3B0 − r4A0) cos

(
7πx

2a

)
−(r3A0 − r4B0) sin

(
7πx

2a

)]
. (48)

To ensure that V1 is periodic, the secular terms must
vanish, hence

A0 (δ1 + E0) +
r1
2
B0 = 0, (49a)
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B0 (δ1 + E0) +
r1
2
A0 = 0. (49b)

We solve Eq. (49a) for A0 which upon substitution

into Eq. (49b) gives
[
(δ1 + E0)

2 − (r1/2)
2
]
B0 = 0.

For a nontrivial V0, one requires B0 6= 0, so we are
left with δ1 = −E0 ± r1/2. Corresponding to each
value of δ1, there is a branch of the transition curve
emanating from δ = (π/2a)

2
.

5.3.1. The first transition curve bifurcating from δ =
(π/2a)

2

Let us first consider the case δ1 = −E0+r1/2. This
yields A0 = −B0 and hence Eq. (47) becomes

V0 = −B0

[
cos
(πx

2a

)
− sin

(πx
2a

)]
. (50)

Inserting V0 from Eq. (50) into Eq. (48) and integrat-
ing the resulting equation twice with respect to x, we
obtain the particular periodic solution of V1 in the
form

V1 = −23/2B0a
2

π2

[
r1 + r2

9
sin

(
3πx

2a
+
π

4

)
+
r2 − r3

25
cos

(
5πx

2a
+
π

4

)
+
r3 + r4

49
sin

(
7πx

2a
+
π

4

)]
. (51)

with the aid of Eqs. (50) and (51), from Eq. (38), we
obtain

V
′′

2 +
π2V2
4a2

=
√

2 a2B0

π2

{(
S6 −

π2δ2
a2

)
cos
(πx

2a
+
π

4

)
+S7 sin

(
3πx

2a
+
π

4

)
+ S8 cos

(
5πx

2a
+
π

4

)
+S9 sin

(
7πx

2a
+
π

4

)}
, (52)

where the Si terms are given in Appendix A.
To ensure that V2 is periodic, we take δ2 =

a2S6/π
2. By (35), we are now in a position to write

the expression for the first transition curve emanating
from the point (π/2a)

2
as

δ =
( π

2a

)2
+ ε
(
−E0 +

r1
2

)
+ ε2

( a
π

)2
S6. (53)

Putting the value of δ2 into Eq. (52), the particu-
lar solution is obtained by integrating the resulting
equation twice with respect to x as

V2 = −23/2a4B0

π4

{
S7

9
sin

(
3πx

2a
+
π

4

)
+
S8

25
cos

(
5πx

2a
+
π

4

)
+
S9

49
sin

(
7πx

2a
+
π

4

)}
.

(54)

By inserting Eqs. (47), (51) and (54) into Eq. (34),
the eigenfunction corresponding to the first transition
curve becomes

V = V0 + εV1 + ε2V2. (55)

5.3.2. The second transitional curve

Following steps similar to the above, when δ1 =
E0 − r1/2, we find that A0 = B0, and

V0 = B0 sin
(πx

2a
+
π

4

)
, (56)

V1 = −23/2a2B0

π2

{
(r1 − r2)

9
cos

(
3πx

2a
+
π

4

)
−r2 + r3

25
sin

(
5πx

2a
+
π

4

)
+
r3 − r4

49
cos

(
7πx

2a
+
π

4

)}
, (57)

δ =
( π

2a

)2
− ε
(
E0 +

r1
2

)
− ε2

( a
π

)2
S10, (58)

V2 = −23/2a4B0

π4

{
S11

9
cos

(
3πx

2a
+
π

4

)
+
S12

25
sin

(
5πx

2a
+
π

4

)
+
S13

49
cos

(
7πx

2a
+
π

4

)}
,

(59)

with Si terms being given in Appendix Appendix A.
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Figure 7: The band-gap structure of the periodic solution
about φ ≡ 0 in the undriven γ = 0 (upper panel) and driven
γ = 0.1 (lower panel) cases. Dashed lines are given by Eqs.
(45), (53), (58), (60), (61), and (62). The boundaries of the
grey regions are obtained numerically. Here, we consider a
moderate value of inter-vortex distance a = 3.

One can easily verify that the expressions for the
branch of transition curves corresponding to n = 2, 3
and 4 are respectively given by

δ =
(π
a

)2
− ε
(
E0 ∓

r2
2

)
+ ε2

( a
π

)2
S14, (60)

δ =

(
3π

2a

)2

− ε
(
E0 ∓

r3
2

)
+ ε2

( a
π

)2
S23,(61)

δ =

(
2π

a

)2

− ε
(
E0 ∓

r4
2

)
+ ε
(π
a

)2
S31, (62)

with the terms Si being listed in Appendix A.
In Fig. 8 we plot the transition curves given by

Eqs. (45), (53), (58), (60), (61), and (62), which di-
vide the (δ, κ) plane into the regions of stability and
instability for both vanishing and non-vanishing γ.
Note that in the undrived case γ = 0 we find that
R1 = R3 = 0. This implies that an application of
external current to the junction (γ 6= 0) causes the
opening of additional band-gaps in the band struc-
ture. They emanate from the points δ = (nπ/2a)2.
We observe that a good agreement between our ap-
proximations and the numerics is only attained near
κ = 0.

5.4. Stability of the periodic solutions about π and
π − κ

The stability of the periodic solutions about the
static solutions π and π−κ can be studied in a similar
fashion. After perturbing the static solutions given
by (24) in the form (27), using the analysis and scal-
ings of Section 5.1 with

a0 = −2 + γ2 +
B̃2

2

(
1 +

sin(ωa)

ωa

)
, (63)

R1 =
−2aωB̃2 sin(ωa)

4π2 − 4a2ω2
, (64)

R2 = −
4πγB̃ cos

(
ωa
2

)
π2 − ω2a2

, (65)

R3 =
−2aωB̃2 sin(ωa)

16π2 − 4a2ω2
, (66)

R4 = −
12πγB̃ cos

(
ωa
2

)
9π2 − ω2a2

, (67)

E0 =
1

2

[
γ̃2 +

B2

2

(
1 +

sin(ωa)

ωa

)]
, (68)
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Figure 8: As Fig. 7, but for the corresponding complementary
state about φ = π.

one can derive the same expressions for the Arnold
tongues and the corresponding eigenfunctions.

In Fig. 8 we show a comparison between the nu-
merics and our approximation, where we also obtain
good agreement between them near κ = 0 (mod 2π).
Note that even though the horizontal axes of Figs. 7
and 8 may look different, they are actually the same
with a transformation. The presentation in figure 8
follows that of Fig. 6, where for γ = 0 the periodic so-
lutions about φ = π are continuations of those about
φ = 0 at κ = 2π, while for γ 6= 0 periodic solutions
at κ = 0 cannot be continued all the way to κ = 2π
due to a turning-point bifurcation.

6. Conclusions

We have considered a long Josephson junction with
a periodic phase shift of arbitrary amplitude in the
superconducting Josephson phase. Using perturba-
tion techniques, the existence of stationary periodic
solutions are discussed both in the absence and pres-
ence of an external current. We have demonstrated
that the solutions with minimum energy depend upon
both the discontinuity κ and the facet length a. We
found that there is a critical value of the applied bias
current and the discontinuity, above which each solu-
tion will merge into its complementary counterpart.

The magnetic flux of the system is studied in terms
of increasing inter-vortex distance in the undriven
and driven cases. We have shown that the magnetic
flux depends upon the distance between consecutive
vortices. The greater the distance between consecu-
tive discontinuities, the larger the magnetic flux is,
and vice versa.

When there is no discontinuity in the Josephson
phase, the system has a semi-infinite plasma band
(or a continuous allowed band) in terms of the spec-
tral parameter E. We have shown that, as disconti-
nuities are introduced, one finds forbidden bands in
the plasma bands. The expressions for the Arnold
tongues which separate an allowed band from a for-
bidden band have been derived. In addition, it is
observed that when one applies an external current
to the system, additional band-gaps emanate from
the points E = (nπ/2a)

2
, where n is an even in-

teger. These openings expand with the increase in
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the discontinuity κ. Our results also show that the
band-gaps become wider as the distance between dis-
continuities (a) increases.

It is known that the sine-Gordon model also allows
a special type of solution of the form of a bound state
of two topological solitons known as a breather (also
called a bion), that oscillates periodically in time and
decays exponentially in space. A breather can play
an indeterminate role, i.e., it may cause a parasitic
excitations or may be a good generator of electromag-
netic waves propagating at frequencies in the tera-
hertz (THz) range. In the homogeneous sine-Gordon
system, breathers exist with frequency in the finite
plasma band. As our system admits high-frequency
band gaps, Josephson junctions with periodic phase-
shifts may support breathers with high oscillation-
frequency, i.e., gap breathers. It will be interesting
to study this type of solution in future investigations.

Another possible future study is also the fact that
as pointed out by one of the referees, uniform driv-
ing can be unrealistic for long Josephson junctions.
Inhomogeneous driving distribution, e.g., as in super-
conducting films, can radically affect critical currents
and lifetimes of the superconductive state [38, 39].
The effect of a nonuniform bias current to the band
structure is also addressed as a future study.
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Appendix A. Constants in the calculations of
the Arnold tongues

The terms Si’s are given by

S1 =
1

2

(
r21 +

r22
4

+
r23
9

+
r24
16

)
,

S2 =
1

8

(
5r1r2 −

13r2r3
9

+
25r3r4

16

)
,

S3 =
r21
2
− 5r1r3

9
− 5r2r4

32
,

S4 =
r1
8

(
5r2 −

17r4
4

)
,

S5 =
5r1r3

9
− r22

8
,

S6 =
2r3
25

[
r2 −

37r3
49

]
− r1

9
[r1 + 2r2]

− r4
49

[2r3 + r4]− 34r22
225

,

S7 =
2r2
9

[
29r3
49

+
8r1
25

]
+
r1
9

[
r1 +

34r3
25

]
+
r4
25

[
74r2
49
− r3

]
,

S8 =
r4

9

[
58r1
49

+ r2

]
− r1

9

[
r1 +

16r2
25

]
− 248r1r3

1225
,

S9 =
r1
49

[
r4 −

24r3
25

]
+
r2
9

[
r2 +

34r1
25

]
,

S10 = −2r3
25

[
r2 +

37r3
49

]
− r1

9
[r1 − 2r2]

+
r4
49

[2r3 − r4]− 34r22
225

,

S11 =
2r2
9

[
29r3
49

+
8r1
25

]
− r1

9

[
r1 +

34r3
25

]
− r4

25

[
74r2
49

+ r3

]
,

S12 =
r4

9

[
58r1
49
− r2

]
+
r1
9

[
r1 −

16r2
25

]
+

248r1r3
1225

,

S13 =
r1
49

[
r4 +

24r3
25

]
− r2

9

[
r2 −

34r1
25

]
,
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S14 = −1

4

(
r21
4
− r22

9

)
+
r2
18

(r2
2

+ r4

)
+
r3
8

(
r1 −

5r3
8

)
,

S15 =
r1

144
(5r2 + 13r4)− r3

16

(
r2
4

+ r4

)
,

S16 =
r1
16

(
r1 −

5r3
4

)
− r2

36
(r2 − r4) ,

S17 =
r1
36

(
13r2

4
− r4

)
− 3r2r3

64
,

S18 = −1

4

(
r21
4

+
r22
9

)
− r2

18

(r2
2

+ r4

)
−r3

8

(
r1 +

5r3
8

)
,

S19 =
13r1
144

(r2 + r4) +
r3
16

(
3r2 + r4

)
,

S20 =
r1
16

(
r1 +

3r3
4

)
+
r2
36

(r2 + r4) ,

S21 = − r1
36

(
13r2

4
+ r4

)
− 3r2r3

64
,

S22 = r1

(
26r2r2

25
− r1

)
+

2r2
49

(
24r3 +

37r4
25

)
− r3

25
(24r1 − r4) ,

S23 = −2r1
25

(±13r1 + r4)± 2r2

(
r1 ∓

25r2
49

)
− r24

25
,

S24 = r2 (r2 + r3)− r3
25

(24r1 − r4)− 50r1r2
49

,

S25 =
r1
25

(r1 − 26r4) + r3

(
r1 −

48r2
49

)
+ r2r4,

S26 = r1

(
26r2r2

25
+ r1

)
− 2r2

49

(
37r4 − 24r3

25

)
+
r3
25

(24r1 + r4) ,

S27 = −2r1
25

(r4 − 13r1)− 2r2

(
r1 +

25r2
49

)
− r24

25
,

S28 = −r2 (r2 − r3) +
r3
25

(24r1 + r4)− 50r1r2
49

,

S29 =
r1
25

(r1 − 26r4)− r3
(
r1 +

48r2
49

)
− r2r4,

S30 =
2r1
9

(r2 + r4) +
r3
4

(
17r2
16

+ r4

)
,

S31 =
1

4

(
r22
16

+ r23

)
+
r1
2

(
5r1
9
± r3

)
.
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