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9 ABSTRACT: The β2-adrenergic receptor (β2AR) is a G protein-coupled
10 receptor (GPCR) and a well-explored target. Here, we report the discovery
11 of 13 ligands, ten of which are novel, of this particular GPCR. They have
12 been identified by similarity- and substructure-based searches using
13 multiple ligands, which were described in an earlier study, as starting
14 points. Of note, two of the molecules used as queries here distinguish
15 themselves from other β2AR antagonists by their unique scaffold. The
16 molecules described in this work allow us to explore the ligand space
17 around the previously reported molecules in greater detail, leading to
18 insights into their structure−activity relationship. We also report
19 experimental binding and selectivity data and putative binding modes for
20 the novel molecules.
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22 The membrane receptors of the G protein-coupled receptor
23 (GPCR) family are flexible heptahelical bundles trans-
24 ferring signals from the outside to the inside of a cell. This is
25 achieved by a conformational change of the receptor upon
26 binding of a signaling molecule to a cavity located at the
27 extracellular end between the seven helices. GPCRs are
28 expressed in almost all tissues,1 and it is thus not surprising
29 that approximately 1/3 of present-day drugs interact with a
30 GPCR.2 Among these receptors, the β2-adrenergic receptor
31 (β2AR) is considered a prototypical representative and has been
32 investigated for more than 60 years. It was also the first
33 pharmacologically relevant GPCR to succumb to crystallization
34 in 2007.3,4

35 In a previous work,5 we have identified six ligands (originally
36 labeled 1−6, and referred to as Q1−Q6 in this work to avoid
37 confusion, Chart S1) of the β2AR through in silico docking
38 studies, with affinities ranging from 9 nM to 3.2 μM. Notably,
39 these included two molecules (5 and 6 in ref 5, denoted as Q5
40 and Q6, respectively, in the following) that did not follow the
41 classical adrenaline-based scaffold.6 This was remarkable, as
42 nobody had discovered these scaffolds earlier, despite more
43 than six decades of medicinal chemistry in this area. Building
44 upon the discovery of the six ligands, we wanted to expand
45 chemical space around them. In particular, we wanted to
46 investigate the two ligands with unusual scaffolds by employing
47 in silico similarity and substructure searches in the ZINC7

48 database. Candidate molecules identified in either way were
49 then docked into the β2AR, in order to ascertain that their
50 binding modes were consistent. Here we report the results of

51this combined ligand- and structure-based screen, which also
52provides insights into the structure−activity relationship (SAR)
53of molecules Q5 and Q6 and their derivatives.
54The similarity screen among the 8.5 million molecules of the
55ZINC database resulted in 6363 molecules, which were
56distributed across the six query molecules as shown in Table
57S1. From the substructure-based screen, approximately 653 000
58hits emerged. Duplicates were removed from both sets. After
59docking, 5838 and 587 099 molecules remained, respectively,
60and the top-scoring 500 of each run were visually inspected.
61After weeding out molecules with artificially inflated scores due
62to the absence of corrective terms in present-day scoring
63functions, e.g., unfavorable desolvation contributions or
64unsatisfied hydrogen-bond donors, during this inspection, we
65were left with eight and nine molecules from the similarity and
66substructure searches, respectively. These were acquired from
67their respective vendors for further experimental testing (Table
68S5). Three compounds (1, 2, and 3) contained a biaryl moiety
69and a charged amine and thus resembled the classical motif of a
70β2 binder. Indeed, a thorough literature search revealed that
71 t1these compounds had been described before (Table 1; by the
72time of selection, these compounds had not been annotated in
73ChEMBL8). To analyze the selectivity of the compounds, we
74also evaluated them against the closely related β1AR. The
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Table 1. Affinity (KD Values) and β2-Selectivity for Compounds as Measured by [3H](−)CGP 12177 Whole Cell Binding to
CHO-β1 and CHO-β2 Cells; Values Are Mean ± SEM of n Separate Experiments
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75 efficacy of all compounds was further evaluated in a functional
76 assay.
77 Several of the compounds identified in this work inhibited
78 [3H](−)CGP 12177 whole cell binding (Table 1; see
79 Supporting Information for assay validation and Table S2 for
80 inactive compounds). This assay also demonstrated that
81 compound 3 had very high affinity (pKD 9.01 at β1AR and
82 pKD 10.45 at β2AR) and was therefore 28-fold β2-selective

f1 83 (Figure 1a,c, Table 1). While the remaining compounds had
84 relatively poor affinity in comparison to 3, many of them, e.g.,
85 1, 2, 10, 11 and 13, inhibited [3H](−)CGP 12177 binding to
86 yield measurable affinity values (Figure 1b,d, Table 1).
87 Next, characteristics of ligands were examined in a functional
88 assay, namely, CRE-gene transcription. The ability of ligands to
89 stimulate a response (intrinsic efficacy) was assessed, but also,
90 given that the affinity of many of the ligands to inhibit
91 [3H](−)CGP 12177 binding were at the very limit of the
92 binding assay, the ability of ligands to inhibit functional
93 responses was also evaluated, thus giving a totally independent
94 measure of affinity from that achieved in the binding assay.

95Except for compound 3, no other compound stimulated a
96measurable response (n = 4−5 for each compound) in this
97assay (see Supporting Information for more details and assay
98validation). However, several compounds antagonized the
99cimaterol response to give a parallel shift of the cimaterol
100concentration response curve and thus yield measurable KD

101values (Figure S1, Table S3). For some compounds, e.g., 1, 2,
102and 13, this gave selectivity values similar to those obtained in
103the binding assay. For other compounds, e.g., 16 and 17, no
104rightward shift of the cimaterol response was observed,
105suggesting no inhibition at the maximum concentration
106possible (100 μM in each case). For few of the ligands, the
107highest concentration possible caused a marked fall in CRE-
108SPAP production to below basal in a manner more consistent
109with toxicity, cell death, or assay interference, rather than
110receptor-mediated inverse agonism (see Supporting Informa-
111tion for full details). In these instances, compound concen-
112trations used to inhibit cimaterol responses were reduced until
113such a time as the reduction in basal was minimal. An example
114of this was compound 10, which reduced basal at the maximum
115concentration of 20 μM but not at 2 μM (see Supporting

Table 1. continued

aSelectivity: β2/β1 = KD(β2)/KD(β1)
bApparent KD values: here the maximum concentration of the compound was not sufficient to fully inhibit

specific binding; however, the majority of specific binding was inhibited allowing an apparent measure of affinity. For ligands with less than 50%
inhibition of specific binding, the IC50 value could not be determined and thus a KD value could not be calculated (n.c.). cUS 20090163545.
dAntiarrythmic pharmaceutical (Bipranol/Berlafenone), Arzneimittel-Forschung 1992, 42, 289−291.

Figure 1. Inhibition of [3H](−)CGP 12177 whole cell binding to (a,b) CHO-β1 cells and (c,d) CHO-β2 cells in response to (a,c) 3 and 1 and (b,d)
ICI 118551, 10, and 11. Bars represent total and nonspecific binding, and data points are mean ± SEM of triplicate determinations. The
concentration of [3H](−)CGP 12177 used in these experiments was (a,c) 0.58 nM and (b,d) 0.44 nM, and they are representative of (a) 4, (b) 5,
(c) 5, and (d) 5 separate experiments.
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116 Information). At 2 μM, 10 was still able to cause a rightward
117 shift of the cimaterol concentration response curve at the β2AR,
118 but not the β1AR, consistent with its β2-selectivity. The fall
119 from maximum of the concentration response to cimaterol
120 (most likely because the assay is at the limit of its capability)
121 means that an apparent KD is reported (calculated from the
122 shift of the lower part of the curve where the lines are parallel),
123 this apparent KD is however similar to the KD values obtained
124 from the binding assay, confirming that this is receptor-
125 mediated and β2-selective.
126 Compound 3 on its own stimulated a partial agonist
127 response at both the β1- and β2AR. This response was inhibited
128 by CGP 20712A in the CHO-β1-cells with high affinity and by
129 ICI 118551 in the CHO-β2-cells (Figure S1, Table S3).
130 Furthermore, 3 was able to inhibit the cimaterol responses in
131 both cell lines in a manner consistent with that of a partial
132 agonist (Figure S2, Table S3). Finally, 3 inhibited the response
133 to fixed concentrations of cimaterol in both cell lines in a
134 manner consistent with competition at a single receptor
135 conformation9 (Figure S1 and Supplementary Procedures for
136 full details).
137 Altogether, the high affinity of CGP 20712A and ICI 118551
138 for the CHO-β1 and CHO-β2 cells confirm the presence of the
139 β1- and β2AR in the respective cell lines. Several of the
140 compounds (e.g., 16 and 17) did not interact with the
141 receptors in either the binding assay or functional assay up to
142 the maximum concentration possible for the compounds (20−
143 100 μM). Of the molecules with novel scaffolds, 10 and 11
144 show the highest affinities at pKD values of 6.05 and 5.31,
145 respectively, for the β2AR and are thus in a range comparable to
146 those of the established compounds 1 and 2. These compounds
147 did not induce a functional response in the receptor and are
148 therefore neutral antagonists. However, we emphasize that the
149 outcome of a virtual screening campaign in the manner
150 conducted here is the prediction of binding, not efficacy. Of the
151 novel compounds, 13 exhibited affinity in the binding as well as
152 in the functional assay with low micromolar activity.
153 The more traditional biaryl compounds 1, 2, and 3 display
154 the highest affinities at the β2AR, as was to be expected. In
155 particular, compound 3 was confirmed as a very high affinity
156 partial agonist at both receptors, but with some β2AR
157 selectivity. At the β2AR, the affinity measured by binding
158 (pKD 10.45) and the affinity measured as antagonism of the
159 cimaterol response (pKD 10.74) are very similar, confirming the
160 very high affinity ligand−receptor interaction. The partial
161 agonist was itself antagonized by ICI 118551 (yielding a similar
162 pKD for ICI 118551 as that for antagonism of the cimaterol
163 response), confirming that signaling is indeed occurring via the
164 β2AR. Compound 3 is therefore a very high affinity, weak
165 partial agonist of the human β2AR. Moreover, 3 was found to
166 be a partial agonist of the β1AR, with the agonist response
167 occurring through the primary catecholamine conformation of
168 the receptor (see Supplementary Results).
169 These three molecules, 1, 2, and 3, were selected by
170 similarity to compounds Q2, Q3, and Q4, all of which contain a
171 biaryl moiety. Not unexpectedly, these hits not only show high
172 affinities but also highest similarities to known (again
173 exclusively biaryl-containing) compounds that are annotated
174 in the ChEMBL database (Table S6). This is encouraging with
175 respect to the performance of similarity screening methods and
176 the value of docking in identifying such compounds. However,
177 it also strongly emphasizes the need for methods that allow for
178 scaffold-hopping to fully explore the ligand space of a target.

179By reducing the biaryl scaffold to a 2-ethoxy-ethylamine (S6
180in Chart S2) for the substructure search, two more substances,
1814 and 14, were identified. Compound 4 showed two-digit
182micromolar affinity, whereas the inhibition by 14 was so weak
183that no reliable affinity value could be calculated. Interestingly,
184in 14 the nitrogen matched in the substructure search is the
185one in the benzoxazine portion, not the exocyclic amine.
186Turning to the hits derived from reference molecules Q5 and
187Q6, we note that they show a much lower Tanimoto similarity
188of approximately 0.3 and below (when compared to molecules
189from the ChEMBL database using ECFP4 fingerprints) than
190the other hits reported in ref 5 (Table S6). This is in line with
191the fact that these compounds are not based on the classical
192propanolamine scaffold and underlines the structural novelty of
193these two scaffolds.
194Starting from the benzothiazole-based compound Q5, six
195molecules were identified with benzothiazole (5, 10, 11, 15)
196and benzimidazole (16, 17) motifs. Of these, all benzothiazole-
197containing molecules except 15 show affinity toward the β2AR
198in the micromolar range. Docking poses indicate that the
199orientation of the benzothiazole ring is comparable to the one
200of Q5, with a polarized methyl group interacting with
201Asp1133.32 (Figures S5 and S6). The benzimidazole compounds
20216 and 17 show no activity in our assay. These compounds
203might be more sterically hindered in the vicinity of the
204positively charged nitrogen atom, in particular compound 16.
205Furthermore, the different polarity of the ring system, owing to
206the variation of the heteroatoms, might render the predicted
207interaction with Asp1133.32 less likely.
208Six additional compounds could be identified on the basis of
209the parent molecule Q6. All these molecules (6, 7, 8, 9, 12, and
21013) share a benzofuran-based moiety, independent of whether
211they originated from the substructure or the similarity search.
212This moiety, namely, a 3-oxo-4-methyl-6-hydroxy-benzofuran,
213is present in the parent molecule Q6, too, and can thus be
214considered a “stable scaffold” in terms of SAR. All molecules
215display affinity, with pKD values varying between 5.26 and 4.6.
216Interestingly, 8, which is the substance with the weakest affinity
217in this set, differs from 7 only by a methoxy group, which is
218absent in 8. This methoxy group could act as an acceptor,
219which is also present in all remaining molecules of this series as
220(benzo-)furan or methoxy group. The role of this group is not
221clearly evident from the docking predictions, but an interaction
222with Thr195ECL2 seems to be the most likely explanation
223(Figures S5 and S6). Furthermore, the docking poses indicate a
224binding mode of this scaffold, which resembles the key
225interactions seen in biaryl-based compounds. The benzofuran
226scaffold forms interactions with Phe19345.52, Phe2896.51,
227Phe2906.52, and Val1143.33. The hydroxy group at position 6
228forms an additional hydrogen bond to Asp1133.32, while the
229ketone serves as acceptor for a hydrogen bond from Ser2035.42.
230A second aromatic moiety is attached at position 2, interacting
231with Tyr1995.38, Tyr3087.35, and, presumably, Thr195ECL2. An
232increased size of the aromatic system appears to be detrimental
233for affinity (methoxyphenyl in 13 vs benzofuran in 9). The
234charged amine in the pyrrolidine moiety is expected to form a
235salt bridge with Asp1133.32.
236We have elaborated on six previously identified novel binders
237of the β2AR through SAR-by-catalog. Using similarity and
238substructure searches followed by a docking assessment of the
239interactions of each compound and the receptor, 13 ligands of
240the β2AR were verified experimentally. Ten of these molecules
241are indeed novel ligands for the receptor, while the remaining
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242 three turned out to have been described before. Based on this
243 data, several conclusions can be drawn.
244 First, the benzofuran scaffold of compound Q5 and the
245 benzothiazole scaffold of compound Q6 in ref 5 indeed
246 constitute novel chemotypes with derivatization potential for
247 this receptor. Especially the benzofuran series showed a
248 consistent SAR that is in agreement with the predicted binding
249 modes. This study can thus also provide retrospective evidence
250 that the predicted binding modes are indeed very likely correct.
251 The affinities of the novel compounds are not comparable with
252 those of highly optimized adrenaline- or biaryl-based scaffolds.
253 The latter are exemplified by Q1 with an affinity of 9 nM and 3
254 with its pKD of 10.74. However, the novel compounds can serve
255 as unprecedented starting points for further optimization.
256 Second, that the combination of similarity- and substructure-
257 based searches with protein-structure-based docking constitutes
258 a powerful combination. This is manifest in the quite high hit
259 rate (more than 75% of the molecules bind with an affinity
260 below 100 μM) and the fact that we (re)discovered a molecule
261 with an affinity of only 35 pM. This compound is also known as
262 bipranol or berlafenone, an antiarrythmia drug.
263 In terms of selectivity, most of the compounds displaying an
264 affinity are mildly selective toward the β2AR. Again, 3 takes the
265 lead here at 28-fold selectivity for the β2AR. While other
266 compounds such as 1 and 2 still have at least 10-fold preference
267 toward the β2AR, all values are far below 100-fold, which for
268 some receptors is considered a ratio that is significant enough
269 to call a compound “selective”. Moreover, highly optimized
270 compounds such ICI 118551 show affinity ratios that are closer
271 to 1000-fold. Interestingly, the top three compounds in terms
272 of selectivity all belong to the biaryl cluster of molecules.
273 Not unexpectedly, most of the compounds with measurable
274 affinity (with the exception of 3), turned out to be neutral
275 antagonists in the functional assay. This is consistent with what
276 we have seen in our previous study5 and the fact that we have
277 been docking to an inactive conformation of the receptor.3,4

278 Future studies will show to which affinities the novel
279 scaffolds can be optimized. It is also encouraging to have
280 confirmed that unbiased computational methods can present us
281 with novel molecules, even for target proteins as well-
282 investigated as the β2AR.

283 ■ EXPERIMENTAL PROCEDURES

284 Substructure queries (Chart S2) were manually derived from the
285 original hits. Substructure and similarity searches were run on the
286 ZINC database7 and docked to the β2AR (PDB 2RH1), as previously
287 described.5 [3H](−)CGP 12177 whole cell binding and CRE-SPAP
288 production assays were run using CHO-K1 cells expressing either the
289 human β1AR or the human β2AR as previously described.10,11 See
290 Supporting Information for detailed descriptions of experimental
291 procedures.
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