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Abstract: The condensation phenomenon of vapor plays an important role in various 

industries, such as the steam flow in turbines and refrigeration system. A 

mathematical model is developed to predict the spontaneous condensing phenomenon 

in the supersonic flows using the nucleation and droplet growth theories. The 

numerical approach is validated with the experimental data, which shows a good 

agreement between them. The condensation characteristics of water vapor in the 

Laval nozzle are described in detail. The results show that the condensation process is 

a rapid variation of the vapor-liquid phase change both in the space and in time. The 

spontaneous condensation of water vapor will not appear immediately when the steam 

reaches the saturation state. Instead, it occurs further downstream the nozzle throat, 



 

 

where the steam is in the state of supersaturation. 
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1. Introduction 

The condensation phenomenon of vapor plays an important role in various 

industries, such as the steam flow and water vapor in nozzles [1], turbines [2], ejectors 

[3], thermos-compressors [4] and supersonic separators [5-9]. Theoretical and 

experimental studies have been conducted for the condensation process in supersonic 

flows, focusing on the nucleation theory, droplet size, latent heat [10-12]. Numerical 

simulations have been performed to predict the condensing flow with the 

development of the computational fluid dynamics (CFD) for several decades.  

Hill [13], Noori Rahim Abadi et al. [14] studied the nucleation process of wet 

steam flows in nozzles at low and high pressure, respectively. White & Young 

predicted the condensing process using Eulerian-Lagrangian and time-marching 

methods [15]. Gerber [16] developed the Eulerian-Lagrangian and Eulerian-Eulerian 

two-phase models for predicting the condensation flow with the classical nucleation 

theory. The effects of friction factor on the condensation flows in the Laval nozzles 

were performed using the single fluid model by Mahpeykar & Teymourtash [17], and 

Jiang et al. [18]. Two-dimensional simulation of the condensing steam was calculated 

in converging-diverging nozzles using a Jameson-style finite volume method on an 

unstructured and adaptive triangular mesh [19]. Yang & Sheng [20] described a 

conservative two-dimensional compressible numerical model for the non-equilibrium 

condensing of the steam flow based on the classical nucleation theory and the Virial 



 

 

type equation of state. The effect of the expansion rate on the steam condensing flow 

through a converging-diverging nozzle was studied numerically by Nikkhahi et al. 

[21]. The steam condensing flow was modeled through the Laval nozzles at low and 

high inlet pressures by means of the single-fluid model [22]. The Eulerian-Eulerian 

approach was adopted for modeling the condensing steam flow, and the simulation 

was conducted on the commercial ANSYS FLUENT 12.1 platform [23]. 

The condensation phenomenon of water vapor in supersonic flows is still not 

understood very well as a result of the complex phase change process. Especially, the 

numerical simulation depends on various nucleation theories and droplet growth 

models. In this paper, the Euler-Euler two-phase flow model is developed to predict 

the spontaneous condensing phenomenon in the Laval nozzle. The modified internally 

consistent classic nucleation theory and Gyarmathy’s droplet growth model are 

employed to perform the simulation cases. The numerical approach is validated with 

experimental data. The condensation process of water vapor is numerically analyzed 

in detail, including the nucleation rate, droplet numbers, droplet radius and droplet 

fraction. 

2. Mathematical model 

2.1. Governing equations 

For the water vapor condensation in a Laval nozzle, the fluid flow is governed by 

partial differential equations describing the conservation of mass, momentum and 

energy, as shown in Eqs. (1-3).  
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where ρ, u, p and H are the density, velocity, pressure and total enthalpy, respectively. 

λeff and T are the effective heat conductivity and temperature. The source terms, Sm, 

iuS , 
ihS , are needed in these equations to consider the effect of the condensation 

process. 

Additionally, two transport equations are employed to describe the phase change 

process during the condensation of the water vapor. In this simulation, the 

conservation equations include the liquid fraction (Y) and droplet number (N), which 

can be given by: 
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where the source term SY describes the condensation rate of the water vapor, and J is 

the nucleation rate, respectively. 

The source term can be defined as follows: 
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where m  is the condensation mass per unit vapor volume per unit time. ρl is the 



 

 

droplet density, r is the droplet radius. dr/dt is the growth rate of droplets. The r
*
 is the 

Kelvin-Helmholtz critical droplet radius, which can be given by  
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where S is the super saturation ratio, defined as the ratio of vapor pressure to the 

equilibrium saturation pressure. 

The nucleation rate, J, can be calculated by the internally consistent classic 

nucleation theory (ICCT) [24], which predicts the nucleation process of the water 

vapor as follows: 
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where σ is the liquid surface tension, mv is the mass of a vapor molecule, kB is the 

Boltzmann's constant, Tv is the vapor temperature, ζ is a correction factor, Θ is a 

dimensionless surface tension. 
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where a0 is the molecular surface area. 

The growth rate of droplets due to evaporation and condensation, dr/dt, is 

calculated by Gyarmathy’s model by [25], 
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where λv is the heat conductivity coefficient of the vapor, h is the vapor specific 

enthalpy, Ts is the saturated steam temperature, γ is the vapor adiabatic exponent, Pr is 

the Prandtl number. 



 

 

2.2. Turbulence model 

Depending on the information required, different turbulence models can be 

applied for the numerical simulation of supersonic flows, from k-ε model [26-28], 

Shear Stress Turbulent (SST) k-ω [29], Large Eddy Simulation (LES) to Direct 

Numerical Simulation (DNS). In this paper, the k-ε turbulence model is used to 

predict the supersonic flows. The equations for the turbulence model are not 

documented here for brevity, but are however well documented elsewhere [30].
 

2.3. Numerical schemes 

The commercial package ANSYS FLUENT 17 is employed as the computational 

platform. The conservation equations (1)-(3) for vapor phase are directly solved in 

FLUENT, while the governing equations (4)-(13) for liquid phase and the source 

terms are performed with C code by the User-Defined-Scalar (UDS) and 

User-Defined-Function (UDF) interfaces. The SIMPLE algorithm [31] is used to 

couple the velocity field and pressure. The second-order upwind scheme is adopted 

for an accurate prediction. The transient state solution is used in the numerical studies 

with a time step of 10
-6

 s. The inlet conditions for the nozzle entrance are chosen from 

experimental tests including total pressure and total temperature. Since the flow is 

supersonic at the nozzle outlet, the pressure at the outlet does not influence the 

solution and is assigned an arbitrary low value. The convergence criterion for the 

relative residual of the continuity and all other dependent variables is set to 10
-3

 and 

10
-6

, respectively. The mass imbalance value is assigned as 10
-4

 to ensure iteration 

convergence. 



 

 

3. Results and discussion 

The validation, verification and implementation of the numerical studies are 

conducted using the geometry and experimental data from the available literature by 

Moses & Stein [12]. In their studies, the Laval nozzle was employed to 

experimentally study the condensation process of water vapor in supersonic flows. 

The nozzle throat is located at x=82.2 mm with the dimension of 10.0 mm (height) × 

10.0 mm (depth). A sketch of the geometry of the Laval nozzle used in the 

experiments is described in Fig. 1. The subsonic part is composed of an arc with a 

radius of 53.0 mm, while the transonic and supersonic parts consist of an arc with a 

radius of 686.0 mm. 

 

Fig. 1 Geometry and size of the Laval nozzle 

3.1. Grid independence tests 

The grid density is one of the key factors that determines the accuracy of the 

numerical simulation. Three different densities of the structural grids are used to test 

the grid independence, including the coarse (8640 cells), medium (23040 cells), fine 



 

 

(51840 cells) and very fine (246400) grids. The static pressure and temperature at the 

nozzle inlet for the simulations are 54702.17 Pa and 373.15 K, respectively. One of 

the condensation parameters, the nucleation rate, is selected to evaluate the effect of 

the grid density on the condensation simulation. The nucleation rate along the axis of 

the Laval nozzle is shown in Fig. 2. We can see that the nucleation rate calculated 

from the coarse grid significantly deviates from other cases, while the medium, fine 

and very fine grids represent similar results. Therefore, the grid system with 23040 

cells is used to conduct our simulations considering the computing accuracy and 

efficiency. 

 

Fig. 2 Effect of grid density on nucleation rate in supersonic flows 

3.2. Model validation 

The static pressure is firstly compared between the numerical and experimental 

data at the inlet pressure of 54702.17 Pa and inlet temperature of 373.15 K. The 



 

 

numerical result of the static pressure is shown in Fig. 3, and the value at the central 

line is employed for the data validation. Fig. 4 depicts the dimensionless pressure, 

defined as the ratio of local static pressure to the inlet one, along the central axis of 

the Laval nozzle. We can see that the predicted onset of the condensation process at 

x=104 mm, occurs earlier than the experimental test at x=107 mm. The increase of the 

static pressure due to the condensing flow in the simulation is smaller than the 

experiments.  

Then, the droplet fraction due to the condensation process is employed to 

validate the numerical model. The pressure and temperature at the nozzle inlet are 

40050.04 Pa and 374.30 K, respectively. Fig. 5 shows the numerical and experimental 

data of the droplet fraction along the axis in the Laval nozzle. The numerical model 

predicts the droplet fraction in supersonic flows, although almost all of the numerical 

results are less than the experimental data. 

Generally, the numerical model is validated in detail by comparing the static 

pressure and droplet fraction during the condensation process in the Laval nozzle. The 

comparison results demonstrate that the numerical model can accurately capture the 

condensation process of the water vapor in the Laval nozzle. 

 

Fig. 3 Numerical results of static pressure in the Laval nozzle 



 

 

 

Fig. 4 Numerical and experimental results of static pressure at the central line of 

the Laval nozzle 

 

Fig. 5 Numerical and experimental results of droplet fraction at the central line of 

the Laval nozzle 

3.3. Condensation process 



 

 

In this section, the condensation process of the water vapor is numerically 

calculated in the above mentioned Laval nozzle at the inlet pressure of 54702.17 Pa 

and temperature of 373.15 K, respectively. Fig. 6 shows the computational contours of 

the Mach number in the Laval nozzle, and the detailed information at the center line is 

described in Fig. 7. It can be observed that the vapor accelerates to a supersonic speed 

and correspondingly results in the increase of the Mach number. However, the Mach 

number starts to decrease, when the spontaneous condensation of water vapor occurs. 

This can be explained that the change of the latent heat between the phase transition 

process from the vapor to liquid will heat the water vapor. After that, the steam 

expands again, and the Mach number increases in the diverging part of the Laval 

nozzle. 

 

Fig. 6 Mach number contours in the Laval nozzle 



 

 

 

Fig. 7 Mach number at the central line of the Laval nozzle 

Figs. 8 and 9 show the degree of supercooling and nucleation rate during the 

water vapor condensation process. We can see that the supercooling degree increases 

constantly along with the vapor expansion, and it rapidly rises to the peak value of 

about 33 K in this case. In this condition, the steam is in an extremely 

non-equilibrium thermodynamic state, leading to the occurrence of the spontaneous 

condensation in a very short moment, which can be observed in Fig. 9. The degree of 

supercooling then suddenly decreases from 33 K to 2 K, which means that the 

condensation process has finished. 

Fig. 9 obviously reflects the nucleation process of water vapor in supersonic 

flows. The nucleation process starts to occur approximately at x = 100 mm, and 

sharply rises from 0 to 7.2×10
21

 m
-3

 s
-1

 in a very short time. It means that a massive 

number of condensation nuclei appear in the steam. In a short while, the nucleation 

rate drastically declines from peak to zero because of the decrease of the supercooling 



 

 

degree. It indicates that the water vapor will not spontaneously condense at once when 

the steam reaches the saturation state. On the contrary, the nucleation phenomenon 

occurs somewhere downstream the nozzle throat, and shows a rapid variation both in 

space and in time. 

 

Fig. 8 Degree of supercooling at the central line of the Laval nozzle 

 



 

 

 

Fig. 9 Nucleation rate at the central line of the Laval nozzle 

The distribution of the droplet numbers at the center line of the Laval nozzle is 

shown in Fig. 10. The vapor molecules constantly collide with each other and 

coalesce, and continuingly produce the critical nucleus, when the spontaneous 

condensation starts to occur. Under this thermodynamic condition, a large number of 

droplets will appear when the condensation nucleus reaches a certain quantity and 

goes into the droplet growth process. The droplet numbers also rapidly rise from 0 to 

1.12×10
17

 in a very short distance due to the sharp process of the vapor nucleation. 

Then, the steam is almost back to the equilibrium state because of the decrease of the 

supercooling degree. At that moment, no new condensation nucleui appear and the 

droplet number remains effectively unchanged.  



 

 

 

Fig. 10 Droplet numbers at the central line of the Laval nozzle 

Figs. 11 and 12, respectively, show the radius and mass fraction of the droplet at 

the center line of the Laval nozzle. The large numbers of vapor molecules are able to 

aggregate on the droplet surface, when the nucleation rate and droplet numbers reach 

the peak. The radius and mass fraction of the droplet also begin to rapidly increase as 

a result of the large number of the condensing nuclei and droplet numbers. It also can 

be seen that the increase of the droplet mass fraction lags behind the change of the 

droplet radius by comparing Figs. 11 and 12. It means that the droplet radius changes 

in the first place and then the droplet fraction grows dramatically. Combining Figs. 8 

and 9, we also find that the vapor molecules can still continue to aggregate on the 

droplet surface due to the supercooling degree at about 2 K, when the droplet number 

remains unchanged. Therefore, the radius and mass fraction of the droplet increase 

continuously till the nozzle outlet as a result of the state of supersaturation. 



 

 

 

Fig. 11 Droplet radius at the central line of the Laval nozzle 

 

Fig. 12 Droplet fraction of at the central line of the Laval nozzle 

4. Conclusions 

The condensation process of water vapor in the Laval nozzle is simulated 

numerically with the nucleation and droplet growth theories. The results show that the 



 

 

latent heat is released to heat into the vapor phase during the spontaneous 

condensation, leading to the jump of the condensing parameters. The degree of 

supercooling can reach a maximum value of about 33 K and correspondingly the 

spontaneous condensation occurs in a very short time. The droplet numbers also 

rapidly rise from 0 to 1.12×10
17

 in a very short moment. Then, the radius and mass 

fraction of the droplet also begin to increase continuously till the nozzle outlet as a 

result of the supercooling degree at about 2 K. 
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