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Abstract  

A recent article (Y. Shi and John E. Sader, Phys. Rev. E 81, 036706 (2010)) developed a 

linear lattice Boltzmann (LB) model in the frequency domain to characterize the performance 

of micro- and nanoelectromechanical systems (M/NEMS). Nonetheless, its numerical 

algorithm is formulated in the conventional time-marching form with addition of a virtual 

time scale. In this article, we propose a different algorithm to solve such a linear frequency-

dependent LB model using the block iteration scheme consisting of the tri-diagonal matrix 

method and Jacobi line iteration. This change in the LB algorithm leads to straightforward 

modelling of linear oscillatory flow in the frequency domain without mimicking a numerical 

time evolution. Through simulating the one-dimensional oscillatory Couette flow and two-

dimensional flow around an oscillating circular cylinder, we examined numerical accuracy of 

the block iterative LB algorithm proposed in this article. Importantly, we also explored 

modifications under this block-iterative LB algorithmic framework through use of other 

prevailing computational fluid dynamics (CFD) techniques. Computational efficiency of 

these original and modified block iterative LB algorithms was compared with that of the 

conventional time-marching LB algorithm. The numerical results in this article demonstrate 

the block iterative LB algorithm is a useful alternative numerical solver exhibiting nearly 2nd 

order accuracy for simulating frequency-dependent linear oscillatory flow in MEMS and 

NEMS. Our simulations also reveal rich extensions of this block iterative LB algorithm 

through combining the LB theory with advanced CFD numerical techniques.  
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1.  Introduction 

 

Over the last twenty-five years, there has been a tremendous surge of interests in the 

lattice Boltzmann (LB) method, which spurred its rapid and productive development for 

modelling a wide variety of physical processes [1-3]. In particular, the LB method achieved 

great successes in simulating complex fluid transport phenomena, including, but not limited 

to, multicomponent/multiphase flow [4, 5], suspension flow [6], flow in porous media [7, 8],  

[9], flow coupled with heat and mass transfer [10, 11] and even turbulence [12]. From the 

numerical point of view, the LB method possesses many distinguished advantages over 

conventional computational fluid dynamics (CFD) approaches, such as its simple formulas, 

parallel algorithmic structure and intrinsic particle-dynamics related framework [13]. 

Especially, the last feature enables the method employs some simple heuristic particle 

dynamic like treatments to tackle tough numerical issues. One known representative is the 

bounce-back for no-slip boundary conditions on solid walls [14]. Significantly, the LB 

method has a direct link to the Boltzmann equation with Bhatnagar-Gross-Krook assumption 

(Boltzmann BGK equation) [15, 16]. Many LB models for continuum flow in the literature 

are derived from the Boltzmann-BGK equation in the limit of low Mach number by 

appropriate discretization in the time, physical space and particle-velocity space [15]. This 

theoretical foundation in the Boltzmann theory triggers recent intensive efforts in 

investigating the LB capability for simulating flow beyond the Navier-Stokes order. Among 

various developments are the effective mean free path models [17, 18], high-order LB 

models [19, 20], half-space LB models [21-22], etc.  

During almost the same period, we also witnessed great strides in micro-fabrication 

technologies and nanoscience [23, 24]. Plenty of micro-and nanosize electromechanical 

systems (M/NEMS) with different functions were designed and manufactured in elaborate 

structures [24-26]. The broad applications of these M/NEMS provide direct practical 

relevance of the LB models for flow beyond the Navier-Stokes order as the characteristic 

length scales of some M/NEMS are comparable to the mean free path of working fluids, 

leading to pronounced non-continuum effects in flow [24, 27].  

On the other hand, not all flows in M/NEMS are non-continuum nonetheless. Many 

liquid flows over wetting surfaces and even some gas flows in these miniature devices still 

satisfy the Navier-Stokes equations subject to no-slip boundary conditions [28, 29]. In 



comparison to macroscale flow, however, the continuum flow in M/NEMS manifest itself 

some distinct transport characteristics, e.g., the dominant viscous-force effects [28]. 

Especially, flow in some cases undergoes periodical oscillation driven by the resonating 

components imbedded in M/NEMS [30, 31]. In the literature, Y. Shi et al. proposed a LB 

model different from the classical version to describe this type of continuum flows in 

M/NEMS [32]. They derived a LB model from the linearized Boltzmann BGK equation, and 

formulated it depending on the frequency of oscillation, instead of the conventional time 

scale. In so doing, this linearized LB model eliminates the intrinsic nonlinearity of the LB 

method corresponding to advection, and is able to treat the oscillating structures in the flow 

as fixed boundaries in its simulation [32]. Importantly, the model outputs frequency-

dependent numerical results. All these features make such a linearized LB model as a 

favourable numerical tool for modelling oscillatory flow in M/NEMS, where nonlinear 

advection is rather weak due to the very small Reynolds number and measurements in terms 

of frequency are preferable for characterizing system performance.                 

However, we note this linearized LB model developed in the frequency domain was 

ultimately solved numerically through use of the time-marching method [32], though it is 

irrelevant to any time scale. In the literature, a massive majority, if not all, of LB models are 

formulated depending on time, regardless of whether they originate from the lattice-gas 

cellular automata [33, 34] or the Boltzmann BGK equation [15, 16]. It is thus not surprising 

that the time-marching algorithm gain a prevailing position in the LB numerical 

implementation. The linearized frequency-based LB model in Ref. [32] followed this 

convention, which introduced a virtual time in its framework and modified its equation with 

addition of a derivative of this time scale. As such, the model was again solved using the 

time-marching method as an evolution process in the frequency domain. In this case, only 

“steady-state” results are meaningful and used as true numerical outputs of the simulation.     

Numerically, there do not exist any prerequisites to enforce a LB algorithm to be devised 

by the time-marching method. This point is of particular importance for the above LB model 

in the frequency domain [32] as its inherent linearity and time independence allow flexible 

choices of numerical methods to constitute its algorithm. Actually, such a model turns into a 

sparse banded linear system of algebraic equations after discretizing the physical space and 

particle-velocity space. These resulting linear equations can be well solved either by direct or 

iterative numerical methods with the unnecessary introduction of a virtual time scale in the 

frequency domain at all [35, 36]. Two direct numerical methods, i.e., Cramer’s rule [37] and 

Gaussian elimination [35], are usually referred to in CFD studies. However, both methods 



necessitate formidable computational costs when solving a large linear system of  

N algebraic equations for N  unknowns, where 1N . In a Gaussian elimination, the 

number of arithmetic operations is approximately proportional to 3N , and the operations in a 

Cramer’s rule-based computation will dramatically increase up to the order of  1 !N   [36]. 

This computational inefficiency has significantly hindered applications of the direct methods, 

especially for multi-dimensional problems. Iterative methods is another category to attack a 

large linear system of equations using a different computational strategy. These methods 

make use of the matrix splitting technique to derive from the linear equations a sequence 

amenable to iteration [35, 36]. Through this sequence, iterative methods compute the 

unknowns at the thn  step using the results from the previous levels, and repeat such a 

recurrence until convergence is reached. The key for a good iterative method is to ensure that 

the designed sequence is convergent or conditionally convergent, and its iteration proceeds 

toward convergence at a fast rate [35, 36]. 

  Interestingly, nowadays few CFD studies construct a numerical algorithm based on only 

one type of methods. Instead, integration of a direct method with an iterative method is a 

widespread treatment in the CFD simulation for two- and three-dimensional (2 and 3D) 

problems. An example is the so-called block iteration, in which a direct method is used to 

solve the unknowns simultaneously in one dimension while those in the other dimensions are 

updated in an iterative manner [36]. In this article, we apply the thought of block iteration to 

solve the linearized LB model in the frequency domain. To be specific, we construct a purely 

frequency-dependent LB numerical algorithm based on a block iteration scheme consisting 

of the tri-diagonal matrix algorithm (TDMA) [38] and Jacobi line iteration (JLI) [36].  

The TDMA is a simplified Gaussian elimination, which is known for its high efficiency 

for solving the large tridiagonal system of algebraic equations. In comparison to other 

Gaussian elimination techniques, the operations in a TDMA-based computation are just in 

the order of N . Another advantage of the TDMA is it has a large variety of variants for 

different problems. In this article, we will use one of its variants, i.e., the cyclic tri-diagonal 

matrix algorithm (CTDMA), to simulate flow subject to periodic boundary conditions [36, 

39]. Crucially, on top of the JLI just mentioned, this article also explores a stretch of the 

block iterative LB algorithm (BLB) through use of other more efficient iterative methods. We 

develop a set of modified BLB algorithms based on the Gaussian-Seidel line iteration (SLI) 

[36], alternative direction iteration (ADI) [36, 40] and over relaxing (OR) [36]. An attempt of 

non-uniform grids is also made in our simulation. Computational efficiency of these LB 



algorithms are carefully examined in comparison to that of the original BLB (JLI) version 

and the conventional time-marching LB (TLB) algorithm constructed based on a virtual time 

scale [32], respectively.       

The article is organized as follows: we first briefly introduce the linearized Boltzmann 

BGK equation and the corresponding LB model in the frequency domain in Section 2. In 

Section 3, the BLB algorithm based on the TDMA and JLI is developed. This algorithm is 

then applied to simulate the oscillatory Couette flow and flow around an oscillating circular 

cylinder in Section 4. Its numerical accuracy is validated by the available analytical solutions. 

Section 4 also uses the oscillatory Couette flow as a test to analyze computational efficiency 

of the BLB algorithms modified by the SLI, ADI, OR and non-uniform. A comparison of 

these results with those obtained by the original BLB (JLI) and TLB algorithms is elaborated. 

Finally, we draw our conclusions in Section 5, and relegate the mathematical details pertinent 

to the modified BLB algorithms to Appendix A – D.  

 

2.  Linearized lattice Boltzmann model in the frequency domain 

 

In this section, we use the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation 

as a kinetic model for linear oscillatory flows, and present its LB version in the frequency 

domain.  

  

2.1. Linearized Boltzmann-BGK equation 

 

In the kinetic theory of gases, the well-known linearized Boltzmann BGK equation is [41]  
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where t ,r and c  represent the time, particle position and particle velocity, respectively.   is 

the relaxation time and h  is a perturbation to the distribution function f  from the global 

equilibrium 
eq

f . It is defined as   
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In the right hand side of Eq. (1), eqh represents a perturbation to the local equilibrium from 

eq

f . This function can be formulated as a polynomial in terms of the fluid density 

perturbation    and velocity perturbation u, i.e.,   

 

0 0 0

eqh
R T






 

c u
,                                                              (3) 

 

where 
0  and 0T  are the fluid density and temperature at the global equilibrium, respectively. 

0R  is the gas constant.  

As pointed out in Ref. [32], use of the linear Boltzmann-BGK equation, Eq. (1), in the 

frequency domain is much more convenient for simulating oscillatory flow in M/NEMS. We 

thus apply the time-frequency transformation of    ˆ , , i t, t e    r c r c , where the radial 

frequency   and the imaginary unit i . In the frequency domain, the linear Boltzmann-BGK 

equation becomes   
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where ĥ  and ˆeqh  are the frequency-based version of ĥ  and ˆeqh  obtained through use of the 

aforementioned time-frequency transformation. The complex relaxation time 

 * 1 i    . Importantly, after the transformation, Eq. (4) does not involve any time 

scale in the frequency domain.  

 

2.2. Linearized lattice Boltzmann model in the frequency domain 

 

A linearized LB model can be derived from Eq. (4) by discretizing its physical space and 

particle velocity space. For simplicity while without loss of generality, we only consider 2-D 

flow in this article. Furthermore, we point out that the following derivation does not involve 

temporal discretization. This contrasts to the conventional discretization procedure used to 

derive a TLB algorithm [32].  



Discretization starts from the particle velocity space in Eq. (4). In this article, the popular 

D2Q9 discrete particle velocity space [42] is used, in which the corresponding discrete 

particle velocities are   
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where c  is the particle speed and je  is the unit vector in the direction of the thj  discrete 

particle velocity. With this D2Q9-based discretization, Eq. (4) is reduced to  
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where ˆ
jh and

 

ˆeq

jh  are the discrete particle-velocity versions of ĥ  and ˆeqh . ˆeq

jh  is further 

expressed as 
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In Eq. (7), ˆ  and û  denote the fluid property perturbations in the form depending on the 

frequency. They are computed by [32] 
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The moment weights, jw , in the D2Q9 space are specified [42]  
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Next, we extend discretization to the physical space in Eq. (6) using the finite difference 

schemes. In this section, two finite difference schemes are assigned to approximate the 

spatial gradient on the left hand of Eq. (6). For better demonstration, we take a spatial 

gradient with respect to x  in Cartesian coordinates as an example. We approximate this 

gradient on a bulk node,  ,m nx y , using the second-order upwind finite difference scheme 

(SUS) [36], i.e.,  
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whilst the hybrid scheme (HS) [36] is applied to that on a node next to the solid boundary, 

i.e.,  ,m nx y    
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where x  is the grid spacing and jxe is the component of je  in the x  direction. The prefactor 

in Eq. (10b) 0.05   to ensure the resulting LB simulations are stable while nearly second-

order accurate. It is worth mentioning that Eqs. (10a) and (10b) are only applicable to 0jxe  .  

For 0jxe  , our modelling specifies directly 
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In summary, Eqs. (5) – (11) compose a linearized LB model in the frequency domain [32]. 

In contrast to the previous LB studies, this model does not include any time scale, and thus 

the common-used time-marching algorithm being inapplicable. To be alternative, we will 

develop a different LB algorithm based on the block iteration in the next section, which 

consists of the TDMA and JLI to solve the frequency-based linearized LB model.  

 



3.  Block iterative lattice Boltzmann algorithm  

 

In this section, we construct a BLB algorithm for the LB model in Section 2. To be 

specific, we formulate two difference algebraic equations for bulk nodes and nodes next to 

solid boundaries, respectively. The iterative procedure of the proposed BLB algorithm is 

outlined at the end of this section. Before discussing the details, we point out all equations in 

this section are derived in Cartesian coordinates  ,  x y  and the symbol “^” above the 

frequency-dependent variables is dropped for convenience.  

As discussed in Section 2, we used the SUS to approximate the spatial gradients jh x   

and jh y   in Eq. (6) on bulk nods, i.e.,  ,m nx y . This finite difference discretization leads 

to a linear system of algebraic equations. In our block iteration for these algebraic equations, 

we use the TDMA to solve the unknown perturbation functions in the y  direction whereas 

the JLI rule sweeps along the x  coordinates. With these numerical arrangements, Eq. (6) is 

reduced to  
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In Eqs. (12) – (13f), a
 
denotes the absolute value of a  and the subscript k  represents the 

thk  iteration step. Equation (12) indicates the calculation of  k

j m nh x , y  depends on its 

neighbours in both the x  and y  directions. In this equation, because of the JLI rule applied, 

the neighbouring perturbation functions in the x  direction, together with the source term 

 1 ,k

j m nx y , have been specified using their results from the previous  1
th

k   step.  

On the other hand,  k

j m nh x , y and its neighbours in the y  direction on the left hand side 

of Eq. (12) are unknown yet at the current thk  level.  These functions will be directly solved 

through the TDMA [36, 38]. In the TDMA framework, Eq. (12) can be rewritten for all nodes 

in the column at 
mx x  as   
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 max ,  a b

 

represents the maximum between a  and b . The coordinates  1,mx y denote the 

first bulk node in the column at
mx x , and the node  1mx , y  is its neighbour next to a solid 

boundary. In the TDMA computation, we first use Eqs. (15a) – (15c) to compute k

jP  and k

jQ  

at all nodes in one column, and then specify the corresponding perturbation functions, k

jh s, in 

a reverse order by the recurrence formula, Eq. (14). This TDMA computation will be 

repeated column by column with the JLI sweeping along the x  coordinates. Interested 

readers can refer to Ref. [36] for more details about the TDMA implementation. 

The above discussion reveals one prerequisite for the calculation on bulk nodes is the 

neighbouring perturbation functions on nodes next to solid boundaries should be known 

beforehand. For these functions, Section 2 has pointed out that the HS Eq. (10b), rather than 

the SUS Eq. (10a), was applied to perform their finite-difference discretization. Here for a 

clear demonstration, we take a node close to a solid boundary parallel to the x  direction as an 

example, i.e.,  ,m nx y . In this case, the HS and SUS are used to approximate jh y   and 

jh x  , respectively,  which results in a difference algebraic equation as 
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In contrasts to Eq. (12), Eq. (16) uses the JLI to specify all neighbouring functions in both the 

x  and y  directions. The reason we adopt this adjustment is just for simplifying the 

corresponding numerical implementation. In so doing, the discrete perturbation function 

 k

j m nh x , y  is fully determined by its neighbours specified at the previous  1
th

k   step. In 

summary, Eqs. (5), (7) – (9), together with Eqs. (12) – (13f) and (16) – (17f), consist of our 

BLB algorithm based on the TDMA and JLI. The numerical procedure of this BLB algorithm 

is illustrated by  

  



 

 

 

                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

 

 

Guess the initial values of  0

j n mh x , y  and 

 0

j n mh x , y . 

Apply the JLI (Eq. (16)) to update   ,  1k

j n mh x , y k 
 

in a sweeping along the x  coordinate. 

Through use of the combined JLI and TDMA, 

compute   ,  1k

j n mh x , y k   column by column based 

on Eq. (12). 

Calculate k  and k
u  in the whole computational 

domain using Eq. (8). 

Evaluate the numerical error kE  at the thk  step and 

compare it to a predefined threshold 
0E . 

Specify  0

j b bh x , y  on boundaries subject to the 

given boundary conditions. 

Yes 

Output the convergent numerical results 

No 
0

kE E  



For simplicity, we will use BLB (JLI, SUS+HS) to represent the LB algorithm developed 

in this section, and evaluate its numerical accuracy and efficiency through simulating two 

linear oscillatory flow problems in the following discussion.    

 

4. Numerical simulation and discussion  

 

We apply the BLB (JLI, SUS+HS) algorithm proposed in Section 3 to simulate linear 

oscillatory flow in this section. We first validate its numerical accuracy by simulating the 1-D 

oscillatory Couette flow (flat solid boundaries) and 2-D flow around an oscillating circular 

cylinder (curved solid boundaries).  This section also includes a comparison of computational 

efficiency among this BLB algorithm, its modified versions and the TLB algorithm [32].     

 

4.1. One dimensional oscillatory Couette flow 

 

We first validate the BLB (JLI, SUS+HS) algorithm by simulating the 1-D oscillatory 

Couette flow in the frequency domain. This flow is driven by two parallel plates separated by 

a distance L . The top plate is stationary while the bottom plate oscillates in its own plane 

with a velocity 0

i t

wallu u e  , where 0u  is a constant velocity and   is the radial frequency, 

see Fig. 1. To characterize the corresponding flow dynamics, we introduce the Stokes number 

0 /S L   , with 
0  and   being the reference density and viscosity of the fluid confined 

between the plates.   

 

 

 

Fig. 1. Schematic of geometry of the oscillatory Couette flow. Origin of the coordinates 

system is on the bottom plate. 

 



In our simulation, we applied periodic boundary conditions to the two ends in the x  

direction, and used the non-equilibrium extrapolation method [43] to prescribe the 

perturbation functions on the solid plates subject to no-slip boundary conditions. Moreover, 

we specified the sound speed 100s wallc u  , and the relaxation time   2

01 sc S  . To 

obtain dimensionless numerical results, we chose 1L  , 0 1   and 
0 1u  .  

 

 

 

Fig. 2.  Dimensionless streamwise velocities for the oscillatory Couette flows. Open circles: 

BLB (JLI, SUS+HS) results; Solid lines: analytical solution [32]. (a). 5S  ; (b).  25S  ; (c). 

50S  ; (d). Errors of the LB simulations in different grids when 25S  . 

  

We performed the BLB (JLI, SUS+HS) simulations on 100 100N N    grids. Fig. 2 

shows the dimensionless streamwise velocities (i.e., component in the x direction) for the 

flows with 5S  , 25  and 50 , respectively. In Fig. 2, all velocities include both the real and 

imaginary parts as these variables are complex-valued in the frequency domain. Interestingly, 

we see that in the cases with a small Stokes number, the fluid velocities across the channel 



have been significantly influenced by oscillatory movement of the bottom plate, see Figs. 2(a) 

and 2(b). However, the impact of such a movement becomes rather weak on flow far away 

from the plate when the Stokes number grows. This has been clearly exhibited in Fig. 2(c), 

where the fluid beyond 0.6Y   is almost unperturbed by the bottom plate’s oscillation. The 

numerical results in Figs. 2(a) – 2(c) are well agreed with the analytical solutions and the 

results given by the TLB simulation [32].  

In this numerical case, we also conducted grid-convergence tests of the BLB (JLI, 

SUS+HS) algorithm. The oscillatory Couette flow with S =25 was chosen as a test case and 

we simulated it using the algorithm on four different grids, i.e., 25 25 , 50 50 , 100 100  

and 200 200 . In each grid, we computed the root-mean-square error to quantify the global 

accuracy of the LB simulation, i.e.,   
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02
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m n

m n
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N

  ,                                        (18) 

 

where  ,m nU x y  and 0U  represent the velocity obtained by the LB simulation at the node 

 ,m nx y  and the corresponding analytical solution, respectively. The symbol “” means a 

sum over all nodes in both the x  and y  directions.  Figure 2(d) shows the obtained errors E  

in different grids. We see a linear decrease of this error with the increasing grid number in the 

double logarithm coordinates. Importantly, the slop of this E N line in Fig. 2(d) is about 2.3. 

This index evidences that the BLB (JLI, SUS+HS) algorithm proposed in Section 3 is 

second-order accurate for the oscillatory Couette flow. 

 

4.2. Two dimensional flow around an oscillating circular cylinder 

 

Next, we apply the BLB (JLI, SUS+HS) algorithm to simulate a 2-D flow generated by 

an oscillating circular cylinder in an unbounded fluid [32], see Fig. 3. 



 

 

Fig. 3. Schematic of geometry of the flow around an oscillating circular cylinder. Origin of 

the coordinates system is at the centre of the cylinder. 

 

In this problem, a circular cylinder with a radius a  is immersed in a fluid with a density 

0  and a viscosity  . It oscillates at a horizontal velocity 0

i t

cylinderu u e   parallel to the x 

direction [44]. In the corresponding numerical settings, we specified 1a  , 0 1   and 
0 1u   

to nondimensionalize the results and defined the Stokes number as 2

0S a   . The 

computational domain was set as a square with a side length 70L a . Our numerical tests 

has validated that this choice is large enough to ensure the fluids far away from the 

oscillating cylinder are unperturbed. In this problem, we realized the non-equilibrium 

extrapolation scheme [43] was inapplicable in Cartesian coordinates as the treatments set in 

this scheme for curved boundaries in rectilinear grids (i.e., lattices) were formulated under 

the TLB framework. To circumvent this barrier, we transformed our BLB (JLI, HS+SUS) 

simulations to the polar coordinates, which enable the first layer of grid nodes in the radial 

direction to be exactly allocated on the cylinder’s surface. With this simple mathematical 

manipulation, the non-equilibrium extrapolation scheme [43] becomes workable again in our 

simulation. Importantly, the linear LB equation in Section 2 is almost unchanged in the new 

coordinates except that the involved spatial gradients turn to 
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,                                                 (19) 

            

where r  and   denotes the radial and azimuth coordinates of the polar coordinate system, 

and jrc  and jc   are the respective particle velocity components. For Eq. (19), the SUS and 



HS were carried out for its physical-space discretization on different nodes. The resulting 

difference approximations, taking the r  direction as example, are 
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for bulk nodes while on nodes next to solid boundaries, we have 
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jre  is the component of je in the r  direction. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 4. Dimensionless streamwise velocities for the flow around an oscillating circular 

cylinder. Open circles: BLB (JLI, HS+SUS) results; Solid lines: analytical solution [44, 45]. 

(a). 5,   0S   ; (b). 5,   2S    ; (c). 25,   0S   ; (d). 25,   2S    ; (e). 

50,   0S   ; (f). 50,   2S    .  

 

Figure 4 shows the streamwise velocities, 0U u u , at 0   and 2  obtained by the 

BLB (JLI, HS+SUS) simulations on 360 360  grids with 5S  , 25 and 50 .  For a clear 



illustration, Fig. 4 only exhibits the velocities between 1R   and 30R   (where R r a ) as 

the fluids in the region 30R   are almost unperturbed to the cylinder’s oscillation. In all 

cases in Fig. 4, the velocity profiles display significant variations in a boundary layer near the 

cylinder’s surface, and then decay to a unperturbed state, i.e., 0U  , with the increasing R . 

Importantly, we observe that the decay rates of velocities vary with different Stokes numbers: 

the velocities at both 0   and 2  corresponding to a larger Stokes number always decay 

more quickly than those with a smaller S , see Figs. 4(e) and 4(f) in comparison to Figs. 4(a) 

and 4(b).  Theoretically, the Stokes number is a squared ratio of the radius of cylinder to the 

viscous penetration depth; the latter is a length scale characterising the velocity decay from 

solid boundaries. Therefore, a larger Stokes number implies a shorter viscous penetration 

depth for a given cylinder’s radius. This explains the phenomena in Figs. 4(e) and 4(f) that 

the velocity profiles have a faster decay rate than those in Figs. 4(a) and 4(b). In addition, we 

compared the numerical results with the available analytical solutions [44, 45] for each case 

in Fig. 4. Again, good agreements between the numerical and analytical results are found.    

 

 

 

Fig. 5. Comparison of the BLB (JLI, HS+SUS) errors in different grids when 25,  0S   . 

 

Our discussion in this simulation also includes grid-dependence tests of the BLB (JLI, 

HS+SUS) simulation to quantify its accuracy. We chose 25 25 , 50 50 , 100 100  and 

200 200  grids to repeat the numerical simulations with 25,  0S   . Figure 5 displays the 

errors E  defined by Eq. (18) in these four grids. As expected, such an error gradually 

decreases when denser grids are employed, and the corresponding decreasing slop is 1.9 in 

the log-log plot in Fig. 5. The results in Fig. 5, together with those in Fig. 2, confirm that the 



BLB (JLI, HS+SUS) algorithm is nearly second-order accurate for linear oscillatory flow, 

regardless of solid boundaries being flat or curved. 

 

4.3. Comparison of computational efficiency  

 

In subsections 4.1 and 4.2, we examined numerical accuracy of the BLB (JLI, HS+SUS) 

algorithm. The results demonstrate its high accuracy for simulating linear oscillatory flow. 

Examination of its computational efficiency will be conducted in this subsection, especially 

in comparison to that of the TLB algorithm constructed with a virtual time scale [32]. We 

point out that all simulations in this subsection were performed on the same computer, i.e., 

Dell Precision 7910 CTO. 

For simplicity while without loss of generality, we took the 1-D oscillatory Couette flow 

with 10S   as a test case and recorded the root-mean-square errors E  at every 10000 

iterative (time) steps for both the BLB (JLI, HS+SUS) and TLB simulations. The decay of 

the error is used as a measure to quantify computational efficiency of these LB algorithms. 

Figure 6 exhibits the root-mean-square errors E  during the iterative course in the BLB (JLI, 

HS+SUS) simulation (i.e., Curve A) and the time evolution and TLB simulation (i.e. Curve F) 

on the 100 100  uniform grids. Interestingly, we see that the TLB algorithm displays a much 

faster decay rate (i.e., higher efficiency) than the BLB (JLI, HS+SUS) algorithm. To be 

specific, the TLB simulation only spent 12 minutes in reducing its error to 31.7 10E   , 

whereas the time for the BLB (JLI, HS+SUS) algorithm reaching the same error level was 

100 minutes. This comparison of E  illustrates that as far as computational efficiency is 

concerned, the BLB (JLI, HS+SUS) algorithm is not a better numerical solver for linear 

oscillatory flow. We attribute this inefficiency to the used JLI and motivate a series of 

modifications of the proposed BLB algorithm through use of more efficient iterative 

approaches and simpler finite difference schemes. To achieve improved computational 

efficiency, use of non-uniform grids was also attempted.  

Figure 6 shows the error decay of the four BLB algorithms after our modification. Curve 

B corresponds to a BLB algorithm still based on JLI but using the HS to approximate all 

spatial gradients. Curve C is obtained by the similar algorithm as that for Curve B, but 

replacing the JLI by the SLI (see Appendix A for the SLI details). The modified BLB 

algorithms for Curve D and E are two versions modified by a combined iterative rule based 

on SLI, ADI and OR on 100 100  uniform (i.e., see Appendix B and C for the ADI and OR 



details) and 20 100  non-uniform grids, respectively. For convenience, these four modified 

BLB algorithms are simply represented as BLB (JLI, HS), BLB (SLI, HS), BLB 

(SLI+ADI+OR, HS) and BLB _N (SLI+ADI+OR, HS) in the next discussion.   

 

 

 

Fig. 6. Error decay of different LB algorithms. A: BLB (JLI, SUS+HS); B: BLB (JLI, HS); C: 

BLB (SLI, HS); D. BLB (SLI+ADI+OR, HS); E: BLB_N (SLI+ADI+OR, HS); F: TLB [32]. 

 

In Fig. 6, we compared Curve A with Curve B, and found the use of the HS throughout 

in the BLB simulation did not bring about instability, but an improvement in computational 

efficiency. As shown by Curve B, the BLB (JLI, HS) algorithm only spent 73.2 minutes to 

achieve 31.7 10E   . Such an efficiency improvement is enhanced in the BLB (SLI, HS) 

simulation. Curve C shows that the change from the JLI to SLI saves about 13.46% in 

computational time as compared to Curve B. Meanwhile, however, we also note that the 

modifications resulted from the HS and SLI are insufficient – the error-decay rates in Curve 

B and Curve C are still far behind that in Curve F (TLB algorithm). This motivates 

development of the BLB (SLI+ADI+OR, HS) algorithm and its non-uniform grid version, 

i.e., BLB_N (SLI+ADI+OR, HS) algorithm. In these two algorithms, CTDMA (see Appendix 

D for the details) was introduced as the replacement of TDMA for direct computation of the 

discrete perturbation functions in rows. These functions are subject to periodic boundary 

conditions in the oscillatory Couette flow. The error changes of the BLB (SLI+ADI+OR, HS) 

and BLB_N (SLI+ADI+OR, HS) simulations are exhibited in Fig. 6, see Curve D and Curve 

E.  Impressively, unlike those shown in Curve A, Curve B and Curve C, these two 

simulations initiated their simulations with very small errors, and such errors decayed 



quickly with the progress of computation. In Fig. 6, Curve E is very close to Curve F, 

indicating the BLB_N (SLI+ADI+OR, HS) algorithm converged at a comparable rate to that 

of the TLB algorithm.  

In this subsection, our numerical simulations show the conventional TLB algorithm 

exhibits quite good efficiency in comparison to the BLB (JLI, SUS+HS) algorithm and even 

some modified BLB algorithms. Only the BLB_N (SLI+ADI+OR, HS) algorithm in our test 

has achieved a close convergence rate to the TLB algorithm. For the proposed BLB 

simulation, we understand that an appropriate algorithm design is of critical importance for 

achieving high computational efficiency.  Meanwhile, the BLB algorithm also manifests 

distinct numerical compatibility with a large variety of CFD techniques and flexible 

applicability in both uniform and non-uniform grids.  

 

5. Conclusion  

In this article, we propose a block iterative algorithm to solve the purely frequency-

dependent linear LB model for simulating linear oscillatory flow. The primary feature of this 

BLB algorithm, in contrast to the conventional TLB algorithm, is that it completely excludes 

any time scale, and computes the perturbation functions directly in the frequency domain 

without mimicking a false evolution in virtual time.  

Numerical accuracy of the BLB algorithm proposed in this article was validated by 

simulating two classical flow problems: the oscillatory Couette flow and flow around an 

oscillating circular cylinder with different Stokes numbers. All results are of near second-

order accuracy and well agreed with the available analytical solutions. We also studied 

computational efficiency of the BLB algorithm, in particular in comparison to the 

conventional TLB algorithm based on the virtual time. A set of modified BLB algorithms 

were also proposed and involved in this efficiency comparison. Our simulations reveal that 

different BLB algorithms have rather various computational efficiency; only well-designed 

BLB version can achieve good efficiency as compared with the TLB algorithm. On the other 

hand, our studies also reveals that flexibility and richness in the construction of BLB 

algorithms, which is in sharp contrast to its TLB counterpart. The BLB framework can 

readily develop various versions through use of different CFD numerical techniques and 

grids. This is of value for simulating flow processes in practical M/NEMS, where complex 

structures and varying operating conditions are involved. We will investigate such possible 

applications of the BLB algorithm in M/NEMS in our future work.  
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Appendix A.  Seidel line iteration  

 

The difference algebraic equations in Section 3, Eqs. (12) and (16), are constructed based 

on the JLI, which suffer from low computational efficiency in comparison to the TLB 

algorithm. As a solution, we reformulated these equations through use of the SLI.  

The major difference of a SLI from a JLI is the former makes use of the latest perturbation 

functions on neighbouring nodes for calculation. These latest neighbouring results are 

specified at either the  1
th

k   or thk  step, depending on the sweeping direction in which the 

iteration proceeds. In this appendix, we introduce the SLI-related details used in the BLB 

(SLI, HS) algorithm in Section 4.3, where spatial gradients on all nodes are approximated by 

the HS. Its difference equations after the finite difference discretization are  
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and j , j  and  1 ,k

j m mx y   are given by Eqs. (17d) – (17f), respectively.  

In the BLB (SLI, HS) algorithm, we performed a SLI along the x  direction sweeping 

from 0x  to 
Nx , where 0 Nx x . Therefore, the three terms on the right hand side of Eqs. (A1) 

and (A2) have been specified. In simulation, we applied the TDMA to solve Eqs. (A1) and 

(A2) for  k

j m nh x , y ,  
jy

k

j m n eh x , y  ,  
jy

k

j m n eh x , y   and other perturbation functions in the 

same column at
mx x , and then repeated this direct-solving procedure column by column 

until the SLI had swept the entire computational domain at the thk  iteration. Generally, our 

BLB (SLI, HS) algorithm will terminate its computation once a predefined convergence 

criterion is met.   

  

Appendix B. Alternative direction iteration 

 

On top of the SLI, the ADI is another advanced iterative method employed for modifying 

the BLB algorithm in Section 4.3. An ADI process designs an iteration consisting of two 

successive sweeping– one by columns (along the x  direction) and the other by rows (along 

the y  direction). In this appendix, we discuss the ADI details pertinent to the BLB 

(SLI+ADI+OR, HS) algorithm.  

In the BLB (SLI+ADI+OR, HS) algorithm, a SLI was first conducted along the positive 

x  direction. The difference algebraic equations in this half are 
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while 
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(B2) 

 

where the coefficients are defined the same as those in Appendix A. Actually, Eqs. (B1) and 

(B2) are almost the same as Eqs. (A1) and (A2) except that the superscript “ k ” has been 

replaced by “  1 2k  ” to denote the column sweeping as the first half in one ADI process. 

Equations (B1) and (B2) were then solved directly using the TDMA following the same 

procedure as Appendix A.   

Next, the perturbation functions updated by the column sweeping were used as inputs for 

the row sweeping along the positive y  direction, the second half. The corresponding 

difference algebraic equations are 
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Again, the coefficients in Eqs. (B3) and (B4) are the same as those in those in Appendix A 

and the terms in the right hand side are all known. We solved Eqs. (B3) and (B4) for the 

perturbation functions in the row at ny y  by the CTDMA (see Appendix D) as periodic 

boundary conditions were imposed in the x  direction in the oscillatory Couette flow.  

With a column sweeping (Eqs. (B1) and (B2)) and a row sweeping (Eqs. (B3) and (B4)), 

an ADI process completed updating all perturbation functions in the domain at the thk  step. 

In the BLB (SLI+ADI+OR, HS) algorithm, we repeated this ADI until convergence was 

reached.   

 



Appendix C.  Over relaxation scheme  

 

The over relaxation (OR) scheme is a simple while efficient means to improve 

computational efficiency. In Section 4.3, we applied OR in both the BLB (SLI+ADI+OR, HS) 

and BLB_N (SLI+ADI+OR, HS) algorithms.  

Consider a perturbation function  k

j m nh x , y , which is just calculated after the TDMA or 

CTDMA at the thk  step. In the OR framework, the true value of this function will be 

modified by 

 

       11k k k

j m n o j m n o j m nh x , y h x , y h x , y    ,                             (C1) 

 

where 0  is a numerical weight, and  1k

j m nh x , y
 is the value of this perturbation function 

obtained by the OR at the previous  1
th

k   step. In Section 4.3, the BLB (SLI+ADI+OR, HS) 

algorithm chose 
0 1.9   in its OR adjustment while 

0 1.5 
 
was used in the non-uniform 

grid version, i.e., the BLB_N (SLI+ADI+OR, HS) algorithm. 

 

Appendix D.  Cyclic tri-diagonal matrix algorithm  

 

The CTDMA is a variant of the TDMA for a problem with periodic boundary conditions. 

As discussed in Section 4.3 and Appendix B, this is the case when we solve the perturbation 

functions in one row for the oscillatory Couette flow.  Since we only adopted the CTDMA in 

the row sweeping in the ADI, we take Eqs. (B3) and (B4) on a row 

 1 2 1, ,......, ,......, ,m N Nx x x x x x  and ny y
 
as an example to elaborate its details in this 

appendix. In the CTDMA framework, Eqs. (B3) and (B4) are rewritten as 

 

           
xj

k k k k k k

j m n j m n j n j m n j N n j m nm e
h x , y p x , y h x , y o x , y h x , y q x , y


   ,     (D1) 

 

where 

 

 
 1

jk

j m n s k

j j j m n

p x , y
p x , y



  




,             with   1

k s

j n j jp x , y   ,              (D2) 



 

 

  
 

 1

k

j j m nk

j m n s k

j j j m n

o x , y
o x , y

p x , y



  





 ,              with  1

k s

j n j jo x , y    ,              (D3) 

    

                                                                

  
   

 

1

1

1

,

,

k k

j m n j j m nk

j m n s k

j j j m n

x , y q x y
q x , y

p x y

 

 











,       with    1

1 1

k k s

j n j n jq x , y x , y  .   (D4) 

 

In Eqs. (D2) – (D4),   max ,0
jx s

j jx j

c e
e

x
   


,  max ,0

jxs

j j jx

c e
e

x
   


 and 

 

       1 1/2 1/2

n ,
jy jy

k k k k

j m j m n j j m n e j j m n ex , y x y h x , y h x , y     

    ,   for 0jye  ,  (D5) 

 

while 

 

       1 1/2 1/2

n ,
jy jy

k k k k

j m j m n j j m n e j j m n ex , y x y h x , y h x , y     

    ,   for 0jye  .  (D6) 

 

We point out that different from Eq. (14) in the TDMA, Eq. (D1) includes  k

j N nh x , y  

when calculating  k

j m nh x , y . This function should be first specified by  

 

 
      

         
1 1 1

1 1 1 1

, ,

,

k k k

j N n j N n j j N nk

j N n k k k k

j N n j N n j j N n j N n

x y x y q x , y
h x , y

x , y x y p x , y o x , y





  

   

 


  

r q

p q
.             (D7) 

 

Equation (D7) includes three new coefficients, 
k

jp , 
k

jq  and 
k

jr  , and they are computed by a 

set of back-substitution equations: 

 

       1 1 1, , , ,k k k k

j m n j m n j m n j m nx y x y x y o x y   r r q ,      with   1,
k s

j n jx y r ,      (D8) 

 

     1 1, , ,k k k

j m n j m n j m nx y x y p x y q q ,                      with   1,
k

j n jx y q ,       (D9)                                        



 

       1 1 1, ,k k k k

j m n j m n j m n j m nx , y x y x y q x , y   p p q , with    1,
k k

j n j N nx y q x , yp . (D10) 

 

In addition, when Eq. (D1) is used to compute some perturbation functions with special 

particle velocities on 1x  or 
Nx ,  0

k

j nh x , y  and  1

k

j N nh x , y  are required to input as known 

conditions. Making use of periodic boundary conditions, we specified the two functions by   

 

   0

k k

j n j N nh x , y h x , y ,                                           (D11) 

 

   1 1

k k

j N n j nh x , y h x , y  .                                           (D12) 

 

In summary, a CTDMA solving procedure includes calculation of 
k

jp , 
k

jo ,
k

jq  and 
k

jp , 
k

jq , 

k

jr  on all nodes in the row of 
ny y  through use of Eqs. (D2) – (D6) and (D8) – (D10), 

respectively. The function  k

j N nh x , y  is then specified by Eq. (D7). Equation (D1), as the 

final step, will be solved in an order from  
1Nx 
to 1x  to obtain all perturbation functions in 

the row of 
ny y  [36]. In the ADI in Section 4.3, we repeated this procedure row by row in 

its second half. 
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