
Block iterative lattice Boltzmann algorithm for linear oscillatory

flow in the frequency domain

Hang Kang a, Yong Shi a,* and Yuying Yan a, b

a Research Centre for Fluids and Thermal Engineering, The University of Nottingham Ningbo

China, Ningbo 315100, People's Republic of China

b Research Group of Fluids and Thermal Engineering, The University of Nottingham,

Nottingham NG7 2RD, United Kingdom

Abstract

A recent article (Y. Shi and John E. Sader, Phys. Rev. E 81, 036706 (2010)) developed a

linear lattice Boltzmann (LB) model in the frequency domain to characterize the performance

of micro- and nanoelectromechanical systems (M/NEMS). Nonetheless, its numerical

algorithm is formulated in the conventional time-marching form with addition of a virtual

time scale. In this article, we propose a different algorithm to solve such a linear frequency-

dependent LB model using the block iteration scheme consisting of the tri-diagonal matrix

method and Jacobi line iteration. This change in the LB algorithm leads to straightforward

modelling of linear oscillatory flow in the frequency domain without mimicking a numerical

time evolution. Through simulating the one-dimensional oscillatory Couette flow and two-

dimensional flow around an oscillating circular cylinder, we examined numerical accuracy of

the block iterative LB algorithm proposed in this article. Importantly, we also explored

modifications under this block-iterative LB algorithmic framework through use of other

prevailing computational fluid dynamics (CFD) techniques. Computational efficiency of

these original and modified block iterative LB algorithms was compared with that of the

conventional time-marching LB algorithm. The numerical results in this article demonstrate

the block iterative LB algorithm is a useful alternative numerical solver exhibiting nearly 2nd

order accuracy for simulating frequency-dependent linear oscillatory flow in MEMS and

NEMS. Our simulations also reveal rich extensions of this block iterative LB algorithm

through combining the LB theory with advanced CFD numerical techniques.

* Corresponding author. Tel: +86 (0)574 88180000 (Ext. 9413); fax: +86 (0)574 88180715

 E-mail addresses: Yong.Shi@nottingham.edu.cn (Y. Shi)

mailto:Yong.Shi@nottingham.edu.cn

Keywords: Lattice Boltzmann algorithm; Linear Oscillatory flow; Block iteration; TDMA

1. Introduction

Over the last twenty-five years, there has been a tremendous surge of interests in the

lattice Boltzmann (LB) method, which spurred its rapid and productive development for

modelling a wide variety of physical processes [1-3]. In particular, the LB method achieved

great successes in simulating complex fluid transport phenomena, including, but not limited

to, multicomponent/multiphase flow [4, 5], suspension flow [6], flow in porous media [7, 8],

[9], flow coupled with heat and mass transfer [10, 11] and even turbulence [12]. From the

numerical point of view, the LB method possesses many distinguished advantages over

conventional computational fluid dynamics (CFD) approaches, such as its simple formulas,

parallel algorithmic structure and intrinsic particle-dynamics related framework [13].

Especially, the last feature enables the method employs some simple heuristic particle

dynamic like treatments to tackle tough numerical issues. One known representative is the

bounce-back for no-slip boundary conditions on solid walls [14]. Significantly, the LB

method has a direct link to the Boltzmann equation with Bhatnagar-Gross-Krook assumption

(Boltzmann BGK equation) [15, 16]. Many LB models for continuum flow in the literature

are derived from the Boltzmann-BGK equation in the limit of low Mach number by

appropriate discretization in the time, physical space and particle-velocity space [15]. This

theoretical foundation in the Boltzmann theory triggers recent intensive efforts in

investigating the LB capability for simulating flow beyond the Navier-Stokes order. Among

various developments are the effective mean free path models [17, 18], high-order LB

models [19, 20], half-space LB models [21-22], etc.

During almost the same period, we also witnessed great strides in micro-fabrication

technologies and nanoscience [23, 24]. Plenty of micro-and nanosize electromechanical

systems (M/NEMS) with different functions were designed and manufactured in elaborate

structures [24-26]. The broad applications of these M/NEMS provide direct practical

relevance of the LB models for flow beyond the Navier-Stokes order as the characteristic

length scales of some M/NEMS are comparable to the mean free path of working fluids,

leading to pronounced non-continuum effects in flow [24, 27].

On the other hand, not all flows in M/NEMS are non-continuum nonetheless. Many

liquid flows over wetting surfaces and even some gas flows in these miniature devices still

satisfy the Navier-Stokes equations subject to no-slip boundary conditions [28, 29]. In

comparison to macroscale flow, however, the continuum flow in M/NEMS manifest itself

some distinct transport characteristics, e.g., the dominant viscous-force effects [28].

Especially, flow in some cases undergoes periodical oscillation driven by the resonating

components imbedded in M/NEMS [30, 31]. In the literature, Y. Shi et al. proposed a LB

model different from the classical version to describe this type of continuum flows in

M/NEMS [32]. They derived a LB model from the linearized Boltzmann BGK equation, and

formulated it depending on the frequency of oscillation, instead of the conventional time

scale. In so doing, this linearized LB model eliminates the intrinsic nonlinearity of the LB

method corresponding to advection, and is able to treat the oscillating structures in the flow

as fixed boundaries in its simulation [32]. Importantly, the model outputs frequency-

dependent numerical results. All these features make such a linearized LB model as a

favourable numerical tool for modelling oscillatory flow in M/NEMS, where nonlinear

advection is rather weak due to the very small Reynolds number and measurements in terms

of frequency are preferable for characterizing system performance.

However, we note this linearized LB model developed in the frequency domain was

ultimately solved numerically through use of the time-marching method [32], though it is

irrelevant to any time scale. In the literature, a massive majority, if not all, of LB models are

formulated depending on time, regardless of whether they originate from the lattice-gas

cellular automata [33, 34] or the Boltzmann BGK equation [15, 16]. It is thus not surprising

that the time-marching algorithm gain a prevailing position in the LB numerical

implementation. The linearized frequency-based LB model in Ref. [32] followed this

convention, which introduced a virtual time in its framework and modified its equation with

addition of a derivative of this time scale. As such, the model was again solved using the

time-marching method as an evolution process in the frequency domain. In this case, only

“steady-state” results are meaningful and used as true numerical outputs of the simulation.

Numerically, there do not exist any prerequisites to enforce a LB algorithm to be devised

by the time-marching method. This point is of particular importance for the above LB model

in the frequency domain [32] as its inherent linearity and time independence allow flexible

choices of numerical methods to constitute its algorithm. Actually, such a model turns into a

sparse banded linear system of algebraic equations after discretizing the physical space and

particle-velocity space. These resulting linear equations can be well solved either by direct or

iterative numerical methods with the unnecessary introduction of a virtual time scale in the

frequency domain at all [35, 36]. Two direct numerical methods, i.e., Cramer’s rule [37] and

Gaussian elimination [35], are usually referred to in CFD studies. However, both methods

necessitate formidable computational costs when solving a large linear system of

N algebraic equations for N unknowns, where 1N . In a Gaussian elimination, the

number of arithmetic operations is approximately proportional to 3N , and the operations in a

Cramer’s rule-based computation will dramatically increase up to the order of  1 !N  [36].

This computational inefficiency has significantly hindered applications of the direct methods,

especially for multi-dimensional problems. Iterative methods is another category to attack a

large linear system of equations using a different computational strategy. These methods

make use of the matrix splitting technique to derive from the linear equations a sequence

amenable to iteration [35, 36]. Through this sequence, iterative methods compute the

unknowns at the thn step using the results from the previous levels, and repeat such a

recurrence until convergence is reached. The key for a good iterative method is to ensure that

the designed sequence is convergent or conditionally convergent, and its iteration proceeds

toward convergence at a fast rate [35, 36].

 Interestingly, nowadays few CFD studies construct a numerical algorithm based on only

one type of methods. Instead, integration of a direct method with an iterative method is a

widespread treatment in the CFD simulation for two- and three-dimensional (2 and 3D)

problems. An example is the so-called block iteration, in which a direct method is used to

solve the unknowns simultaneously in one dimension while those in the other dimensions are

updated in an iterative manner [36]. In this article, we apply the thought of block iteration to

solve the linearized LB model in the frequency domain. To be specific, we construct a purely

frequency-dependent LB numerical algorithm based on a block iteration scheme consisting

of the tri-diagonal matrix algorithm (TDMA) [38] and Jacobi line iteration (JLI) [36].

The TDMA is a simplified Gaussian elimination, which is known for its high efficiency

for solving the large tridiagonal system of algebraic equations. In comparison to other

Gaussian elimination techniques, the operations in a TDMA-based computation are just in

the order of N . Another advantage of the TDMA is it has a large variety of variants for

different problems. In this article, we will use one of its variants, i.e., the cyclic tri-diagonal

matrix algorithm (CTDMA), to simulate flow subject to periodic boundary conditions [36,

39]. Crucially, on top of the JLI just mentioned, this article also explores a stretch of the

block iterative LB algorithm (BLB) through use of other more efficient iterative methods. We

develop a set of modified BLB algorithms based on the Gaussian-Seidel line iteration (SLI)

[36], alternative direction iteration (ADI) [36, 40] and over relaxing (OR) [36]. An attempt of

non-uniform grids is also made in our simulation. Computational efficiency of these LB

algorithms are carefully examined in comparison to that of the original BLB (JLI) version

and the conventional time-marching LB (TLB) algorithm constructed based on a virtual time

scale [32], respectively.

The article is organized as follows: we first briefly introduce the linearized Boltzmann

BGK equation and the corresponding LB model in the frequency domain in Section 2. In

Section 3, the BLB algorithm based on the TDMA and JLI is developed. This algorithm is

then applied to simulate the oscillatory Couette flow and flow around an oscillating circular

cylinder in Section 4. Its numerical accuracy is validated by the available analytical solutions.

Section 4 also uses the oscillatory Couette flow as a test to analyze computational efficiency

of the BLB algorithms modified by the SLI, ADI, OR and non-uniform. A comparison of

these results with those obtained by the original BLB (JLI) and TLB algorithms is elaborated.

Finally, we draw our conclusions in Section 5, and relegate the mathematical details pertinent

to the modified BLB algorithms to Appendix A – D.

2. Linearized lattice Boltzmann model in the frequency domain

In this section, we use the linearized Boltzmann Bhatnagar-Gross-Krook (BGK) equation

as a kinetic model for linear oscillatory flows, and present its LB version in the frequency

domain.

2.1. Linearized Boltzmann-BGK equation

In the kinetic theory of gases, the well-known linearized Boltzmann BGK equation is [41]

1
()eqh h
h - h

t 

 
   

 
c

r
, (1)

where t ,r and c represent the time, particle position and particle velocity, respectively.  is

the relaxation time and h is a perturbation to the distribution function f from the global

equilibrium
eq

f . It is defined as

1
eq

f
h

f
  . (2)

In the right hand side of Eq. (1), eqh represents a perturbation to the local equilibrium from

eq

f . This function can be formulated as a polynomial in terms of the fluid density

perturbation  and velocity perturbation u, i.e.,

0 0 0

eqh
R T






 

c u
, (3)

where
0 and 0T are the fluid density and temperature at the global equilibrium, respectively.

0R is the gas constant.

As pointed out in Ref. [32], use of the linear Boltzmann-BGK equation, Eq. (1), in the

frequency domain is much more convenient for simulating oscillatory flow in M/NEMS. We

thus apply the time-frequency transformation of    ˆ , , i t, t e    r c r c , where the radial

frequency  and the imaginary unit i . In the frequency domain, the linear Boltzmann-BGK

equation becomes

*

ˆ ˆ ˆeqh h h

 


   


c
r

, (4)

where ĥ and ˆeqh are the frequency-based version of ĥ and ˆeqh obtained through use of the

aforementioned time-frequency transformation. The complex relaxation time

 * 1 i    . Importantly, after the transformation, Eq. (4) does not involve any time

scale in the frequency domain.

2.2. Linearized lattice Boltzmann model in the frequency domain

A linearized LB model can be derived from Eq. (4) by discretizing its physical space and

particle velocity space. For simplicity while without loss of generality, we only consider 2-D

flow in this article. Furthermore, we point out that the following derivation does not involve

temporal discretization. This contrasts to the conventional discretization procedure used to

derive a TLB algorithm [32].

Discretization starts from the particle velocity space in Eq. (4). In this article, the popular

D2Q9 discrete particle velocity space [42] is used, in which the corresponding discrete

particle velocities are

 

    

    

0, 0 , 0,

cos 1 2 , sin 1 2 , 1, 2, 3, 4,

2 cos 2 9 4 , sin 2 9 4 ,

j j

j

c c j j j

c j j

 

 



          

       

c e

 5, 6, 7, 8.j









(5)

where c is the particle speed and je is the unit vector in the direction of the thj discrete

particle velocity. With this D2Q9-based discretization, Eq. (4) is reduced to

*

ˆ ˆ ˆeq

j j j

j

h h h
c

 


   


e
r

, (6)

where ˆ
jh and

ˆeq

jh are the discrete particle-velocity versions of ĥ and ˆeqh . ˆeq

jh is further

expressed as

0 0

ˆˆˆ jeq

j

c
h

RT






 

e u
. (7)

In Eq. (7), ˆ and û denote the fluid property perturbations in the form depending on the

frequency. They are computed by [32]

0
ˆˆ

j j

j

w h   , ˆˆ
j j j

j

w h cu e . (8)

The moment weights, jw , in the D2Q9 space are specified [42]

4 / 9, 0,

1/ 9, 1, 2, 3, 4,

1/ 36, 5, 6,7, 8.

j

j

w j

j




 
 

 (9)

Next, we extend discretization to the physical space in Eq. (6) using the finite difference

schemes. In this section, two finite difference schemes are assigned to approximate the

spatial gradient on the left hand of Eq. (6). For better demonstration, we take a spatial

gradient with respect to x in Cartesian coordinates as an example. We approximate this

gradient on a bulk node,  ,m nx y , using the second-order upwind finite difference scheme

(SUS) [36], i.e.,

     2

(,)

ˆ ˆ ˆˆ 3 , 4 , ,

2

jx jx

m n

j m n j m e n j m e nj

jx

x y

h x y h x y h x yh
e

x x

  
 

 
, (10a)

whilst the hybrid scheme (HS) [36] is applied to that on a node next to the solid boundary,

i.e.,  ,m nx y

 

 
   

 
 

,

ˆ ˆˆ ˆ, ,,
1 1

2 2

jx jx

m n

j m e n j m e nj j m n

jx

x y

h x y h x yh h x y
e

x x x x
  

 
 
         
    
 

, (10b)

where x is the grid spacing and jxe is the component of je in the x direction. The prefactor

in Eq. (10b) 0.05  to ensure the resulting LB simulations are stable while nearly second-

order accurate. It is worth mentioning that Eqs. (10a) and (10b) are only applicable to 0jxe  .

For 0jxe  , our modelling specifies directly

ˆ
0

j

jx

h
ce

x


 


. (11)

In summary, Eqs. (5) – (11) compose a linearized LB model in the frequency domain [32].

In contrast to the previous LB studies, this model does not include any time scale, and thus

the common-used time-marching algorithm being inapplicable. To be alternative, we will

develop a different LB algorithm based on the block iteration in the next section, which

consists of the TDMA and JLI to solve the frequency-based linearized LB model.

3. Block iterative lattice Boltzmann algorithm

In this section, we construct a BLB algorithm for the LB model in Section 2. To be

specific, we formulate two difference algebraic equations for bulk nodes and nodes next to

solid boundaries, respectively. The iterative procedure of the proposed BLB algorithm is

outlined at the end of this section. Before discussing the details, we point out all equations in

this section are derived in Cartesian coordinates  , x y and the symbol “^” above the

frequency-dependent variables is dropped for convenience.

As discussed in Section 2, we used the SUS to approximate the spatial gradients jh x 

and jh y  in Eq. (6) on bulk nods, i.e.,  ,m nx y . This finite difference discretization leads

to a linear system of algebraic equations. In our block iteration for these algebraic equations,

we use the TDMA to solve the unknown perturbation functions in the y direction whereas

the JLI rule sweeps along the x coordinates. With these numerical arrangements, Eq. (6) is

reduced to

     
     

2

1 1 1

2

, , ,

, , ,

jy jy

jx jx

k k k

j j m n j j m n e j j m n e

k k k

j m n j j m e n j j m e n

h x y h x y h x y

x y h x y h x y

 

  

 

 

 

  

  
, (12)

where

*

3 1

2

jx jy

j

e ec

x y 

 
    
  
 

, (13a)

2 jx

j

c e

x
  


, (13b)

2

jx

j

c e

x
 


, (13c)

2 jy

j

c e

y
  


, (13d)

2

jy

j

c e

y
 


, (13e)

and

 
 , 1

1
,

,

eq k

j m nk

j m n

h x y
x y





  . (13f)

In Eqs. (12) – (13f), a

denotes the absolute value of a and the subscript k represents the

thk iteration step. Equation (12) indicates the calculation of  k

j m nh x , y depends on its

neighbours in both the x and y directions. In this equation, because of the JLI rule applied,

the neighbouring perturbation functions in the x direction, together with the source term

 1 ,k

j m nx y , have been specified using their results from the previous  1
th

k  step.

On the other hand,  k

j m nh x , y and its neighbours in the y direction on the left hand side

of Eq. (12) are unknown yet at the current thk level. These functions will be directly solved

through the TDMA [36, 38]. In the TDMA framework, Eq. (12) can be rewritten for all nodes

in the column at
mx x as

       
jy

k k k k

j m n j m n j m j m nn e
h x , y P x , y h x , y Q x , y


  , (14)

where

  
 

   1

max , 0

max , 0

j jyk

j m n k

j j jy j m n

e
P x , y

e P x , y 

 

  

, with  1 0k

j mP x , y  , (15a)

  
       

   

1 1

2 1

1

max , 0

max , 0

jy

k k k

j m n j j m n e j jy j m nk

j m n k

j j jy j m n

x , y h x , y e Q x , y
Q x , y

e P x , y

 

 



   


  
,

with    
1 1

k k

j m n j mQ x , y h x , y , (15b)

and

       1 1 1 1

2,
jx jx

k k k k

j m n j m n j j m e n j j m e nx , y x y h x , y h x , y   

     . (15c)

 max , a b

represents the maximum between a and b . The coordinates  1,mx y denote the

first bulk node in the column at
mx x , and the node  1mx , y is its neighbour next to a solid

boundary. In the TDMA computation, we first use Eqs. (15a) – (15c) to compute k

jP and k

jQ

at all nodes in one column, and then specify the corresponding perturbation functions, k

jh s, in

a reverse order by the recurrence formula, Eq. (14). This TDMA computation will be

repeated column by column with the JLI sweeping along the x coordinates. Interested

readers can refer to Ref. [36] for more details about the TDMA implementation.

The above discussion reveals one prerequisite for the calculation on bulk nodes is the

neighbouring perturbation functions on nodes next to solid boundaries should be known

beforehand. For these functions, Section 2 has pointed out that the HS Eq. (10b), rather than

the SUS Eq. (10a), was applied to perform their finite-difference discretization. Here for a

clear demonstration, we take a node close to a solid boundary parallel to the x direction as an

example, i.e.,  ,m nx y . In this case, the HS and SUS are used to approximate jh y  and

jh x  , respectively, which results in a difference algebraic equation as

       

   

1 -1 1

2

1 1

, , , ,

, ,

jx jx

jy jy

k k k k

j j m n j m n j j m e n j j m e n

k k

j j m n e j j m n e

h x y x y h x y h x y

h x y h x y

   

 

 

 

 

 

 






, (16)

where

*

3 1

2

jx jy

j

c e c e

x y
 


  

 
, (17a)

2 jx

j

c e

x
  


, (17b)

2

jx

j

c e

x
 


, (17c)

  1
2

jy

j

c e

y
    


, (17d)

  1
2

jy

j

c e

y
   


, (17e)

and

 
 1,

1

k eq

j m nk

j m n

h x , y
x , y





  . (17f)

In contrasts to Eq. (12), Eq. (16) uses the JLI to specify all neighbouring functions in both the

x and y directions. The reason we adopt this adjustment is just for simplifying the

corresponding numerical implementation. In so doing, the discrete perturbation function

 k

j m nh x , y is fully determined by its neighbours specified at the previous  1
th

k  step. In

summary, Eqs. (5), (7) – (9), together with Eqs. (12) – (13f) and (16) – (17f), consist of our

BLB algorithm based on the TDMA and JLI. The numerical procedure of this BLB algorithm

is illustrated by

Guess the initial values of  0

j n mh x , y and

 0

j n mh x , y .

Apply the JLI (Eq. (16)) to update   , 1k

j n mh x , y k 

in a sweeping along the x coordinate.

Through use of the combined JLI and TDMA,

compute   , 1k

j n mh x , y k  column by column based

on Eq. (12).

Calculate k and k
u in the whole computational

domain using Eq. (8).

Evaluate the numerical error kE at the thk step and

compare it to a predefined threshold
0E .

Specify  0

j b bh x , y on boundaries subject to the

given boundary conditions.

Yes

Output the convergent numerical results

No
0

kE E

For simplicity, we will use BLB (JLI, SUS+HS) to represent the LB algorithm developed

in this section, and evaluate its numerical accuracy and efficiency through simulating two

linear oscillatory flow problems in the following discussion.

4. Numerical simulation and discussion

We apply the BLB (JLI, SUS+HS) algorithm proposed in Section 3 to simulate linear

oscillatory flow in this section. We first validate its numerical accuracy by simulating the 1-D

oscillatory Couette flow (flat solid boundaries) and 2-D flow around an oscillating circular

cylinder (curved solid boundaries). This section also includes a comparison of computational

efficiency among this BLB algorithm, its modified versions and the TLB algorithm [32].

4.1. One dimensional oscillatory Couette flow

We first validate the BLB (JLI, SUS+HS) algorithm by simulating the 1-D oscillatory

Couette flow in the frequency domain. This flow is driven by two parallel plates separated by

a distance L . The top plate is stationary while the bottom plate oscillates in its own plane

with a velocity 0

i t

wallu u e  , where 0u is a constant velocity and  is the radial frequency,

see Fig. 1. To characterize the corresponding flow dynamics, we introduce the Stokes number

0 /S L   , with
0 and  being the reference density and viscosity of the fluid confined

between the plates.

Fig. 1. Schematic of geometry of the oscillatory Couette flow. Origin of the coordinates

system is on the bottom plate.

In our simulation, we applied periodic boundary conditions to the two ends in the x

direction, and used the non-equilibrium extrapolation method [43] to prescribe the

perturbation functions on the solid plates subject to no-slip boundary conditions. Moreover,

we specified the sound speed 100s wallc u  , and the relaxation time  2

01 sc S  . To

obtain dimensionless numerical results, we chose 1L  , 0 1  and
0 1u  .

Fig. 2. Dimensionless streamwise velocities for the oscillatory Couette flows. Open circles:

BLB (JLI, SUS+HS) results; Solid lines: analytical solution [32]. (a). 5S  ; (b). 25S  ; (c).

50S  ; (d). Errors of the LB simulations in different grids when 25S  .

We performed the BLB (JLI, SUS+HS) simulations on 100 100N N   grids. Fig. 2

shows the dimensionless streamwise velocities (i.e., component in the x direction) for the

flows with 5S  , 25 and 50 , respectively. In Fig. 2, all velocities include both the real and

imaginary parts as these variables are complex-valued in the frequency domain. Interestingly,

we see that in the cases with a small Stokes number, the fluid velocities across the channel

have been significantly influenced by oscillatory movement of the bottom plate, see Figs. 2(a)

and 2(b). However, the impact of such a movement becomes rather weak on flow far away

from the plate when the Stokes number grows. This has been clearly exhibited in Fig. 2(c),

where the fluid beyond 0.6Y  is almost unperturbed by the bottom plate’s oscillation. The

numerical results in Figs. 2(a) – 2(c) are well agreed with the analytical solutions and the

results given by the TLB simulation [32].

In this numerical case, we also conducted grid-convergence tests of the BLB (JLI,

SUS+HS) algorithm. The oscillatory Couette flow with S =25 was chosen as a test case and

we simulated it using the algorithm on four different grids, i.e., 25 25 , 50 50 , 100 100

and 200 200 . In each grid, we computed the root-mean-square error to quantify the global

accuracy of the LB simulation, i.e.,

  
2

02
,

1
,

m n

m n

x y

E U x y U
N

  , (18)

where  ,m nU x y and 0U represent the velocity obtained by the LB simulation at the node

 ,m nx y and the corresponding analytical solution, respectively. The symbol “” means a

sum over all nodes in both the x and y directions. Figure 2(d) shows the obtained errors E

in different grids. We see a linear decrease of this error with the increasing grid number in the

double logarithm coordinates. Importantly, the slop of this E N line in Fig. 2(d) is about 2.3.

This index evidences that the BLB (JLI, SUS+HS) algorithm proposed in Section 3 is

second-order accurate for the oscillatory Couette flow.

4.2. Two dimensional flow around an oscillating circular cylinder

Next, we apply the BLB (JLI, SUS+HS) algorithm to simulate a 2-D flow generated by

an oscillating circular cylinder in an unbounded fluid [32], see Fig. 3.

Fig. 3. Schematic of geometry of the flow around an oscillating circular cylinder. Origin of

the coordinates system is at the centre of the cylinder.

In this problem, a circular cylinder with a radius a is immersed in a fluid with a density

0 and a viscosity  . It oscillates at a horizontal velocity 0

i t

cylinderu u e  parallel to the x

direction [44]. In the corresponding numerical settings, we specified 1a  , 0 1  and
0 1u 

to nondimensionalize the results and defined the Stokes number as 2

0S a   . The

computational domain was set as a square with a side length 70L a . Our numerical tests

has validated that this choice is large enough to ensure the fluids far away from the

oscillating cylinder are unperturbed. In this problem, we realized the non-equilibrium

extrapolation scheme [43] was inapplicable in Cartesian coordinates as the treatments set in

this scheme for curved boundaries in rectilinear grids (i.e., lattices) were formulated under

the TLB framework. To circumvent this barrier, we transformed our BLB (JLI, HS+SUS)

simulations to the polar coordinates, which enable the first layer of grid nodes in the radial

direction to be exactly allocated on the cylinder’s surface. With this simple mathematical

manipulation, the non-equilibrium extrapolation scheme [43] becomes workable again in our

simulation. Importantly, the linear LB equation in Section 2 is almost unchanged in the new

coordinates except that the involved spatial gradients turn to

j j j j

j jr

h h c h
c

r r





  
    
  

c
r

, (19)

where r and  denotes the radial and azimuth coordinates of the polar coordinate system,

and jrc and jc  are the respective particle velocity components. For Eq. (19), the SUS and

HS were carried out for its physical-space discretization on different nodes. The resulting

difference approximations, taking the r direction as example, are

     2

(,)

3 , 4 , ,

2

jr jr

m n

j m n j m e n j m e nj

jr

r

h r h r h rh
e

r r


    
 

 
, (20a)

for bulk nodes while on nodes next to solid boundaries, we have

  
   

 
 

(,)

, ,,
1 1

2 2

jr jr

m n

j m e n j m e nj m nj

jr

r

h r h rh rh
e

r r r r


 
  

 
 
         
    
 

. (20b)

jre is the component of je in the r direction.

Fig. 4. Dimensionless streamwise velocities for the flow around an oscillating circular

cylinder. Open circles: BLB (JLI, HS+SUS) results; Solid lines: analytical solution [44, 45].

(a). 5, 0S   ; (b). 5, 2S    ; (c). 25, 0S   ; (d). 25, 2S    ; (e).

50, 0S   ; (f). 50, 2S    .

Figure 4 shows the streamwise velocities, 0U u u , at 0  and 2 obtained by the

BLB (JLI, HS+SUS) simulations on 360 360 grids with 5S  , 25 and 50 . For a clear

illustration, Fig. 4 only exhibits the velocities between 1R  and 30R  (where R r a) as

the fluids in the region 30R  are almost unperturbed to the cylinder’s oscillation. In all

cases in Fig. 4, the velocity profiles display significant variations in a boundary layer near the

cylinder’s surface, and then decay to a unperturbed state, i.e., 0U  , with the increasing R .

Importantly, we observe that the decay rates of velocities vary with different Stokes numbers:

the velocities at both 0  and 2 corresponding to a larger Stokes number always decay

more quickly than those with a smaller S , see Figs. 4(e) and 4(f) in comparison to Figs. 4(a)

and 4(b). Theoretically, the Stokes number is a squared ratio of the radius of cylinder to the

viscous penetration depth; the latter is a length scale characterising the velocity decay from

solid boundaries. Therefore, a larger Stokes number implies a shorter viscous penetration

depth for a given cylinder’s radius. This explains the phenomena in Figs. 4(e) and 4(f) that

the velocity profiles have a faster decay rate than those in Figs. 4(a) and 4(b). In addition, we

compared the numerical results with the available analytical solutions [44, 45] for each case

in Fig. 4. Again, good agreements between the numerical and analytical results are found.

Fig. 5. Comparison of the BLB (JLI, HS+SUS) errors in different grids when 25, 0S   .

Our discussion in this simulation also includes grid-dependence tests of the BLB (JLI,

HS+SUS) simulation to quantify its accuracy. We chose 25 25 , 50 50 , 100 100 and

200 200 grids to repeat the numerical simulations with 25, 0S   . Figure 5 displays the

errors E defined by Eq. (18) in these four grids. As expected, such an error gradually

decreases when denser grids are employed, and the corresponding decreasing slop is 1.9 in

the log-log plot in Fig. 5. The results in Fig. 5, together with those in Fig. 2, confirm that the

BLB (JLI, HS+SUS) algorithm is nearly second-order accurate for linear oscillatory flow,

regardless of solid boundaries being flat or curved.

4.3. Comparison of computational efficiency

In subsections 4.1 and 4.2, we examined numerical accuracy of the BLB (JLI, HS+SUS)

algorithm. The results demonstrate its high accuracy for simulating linear oscillatory flow.

Examination of its computational efficiency will be conducted in this subsection, especially

in comparison to that of the TLB algorithm constructed with a virtual time scale [32]. We

point out that all simulations in this subsection were performed on the same computer, i.e.,

Dell Precision 7910 CTO.

For simplicity while without loss of generality, we took the 1-D oscillatory Couette flow

with 10S  as a test case and recorded the root-mean-square errors E at every 10000

iterative (time) steps for both the BLB (JLI, HS+SUS) and TLB simulations. The decay of

the error is used as a measure to quantify computational efficiency of these LB algorithms.

Figure 6 exhibits the root-mean-square errors E during the iterative course in the BLB (JLI,

HS+SUS) simulation (i.e., Curve A) and the time evolution and TLB simulation (i.e. Curve F)

on the 100 100 uniform grids. Interestingly, we see that the TLB algorithm displays a much

faster decay rate (i.e., higher efficiency) than the BLB (JLI, HS+SUS) algorithm. To be

specific, the TLB simulation only spent 12 minutes in reducing its error to 31.7 10E   ,

whereas the time for the BLB (JLI, HS+SUS) algorithm reaching the same error level was

100 minutes. This comparison of E illustrates that as far as computational efficiency is

concerned, the BLB (JLI, HS+SUS) algorithm is not a better numerical solver for linear

oscillatory flow. We attribute this inefficiency to the used JLI and motivate a series of

modifications of the proposed BLB algorithm through use of more efficient iterative

approaches and simpler finite difference schemes. To achieve improved computational

efficiency, use of non-uniform grids was also attempted.

Figure 6 shows the error decay of the four BLB algorithms after our modification. Curve

B corresponds to a BLB algorithm still based on JLI but using the HS to approximate all

spatial gradients. Curve C is obtained by the similar algorithm as that for Curve B, but

replacing the JLI by the SLI (see Appendix A for the SLI details). The modified BLB

algorithms for Curve D and E are two versions modified by a combined iterative rule based

on SLI, ADI and OR on 100 100 uniform (i.e., see Appendix B and C for the ADI and OR

details) and 20 100 non-uniform grids, respectively. For convenience, these four modified

BLB algorithms are simply represented as BLB (JLI, HS), BLB (SLI, HS), BLB

(SLI+ADI+OR, HS) and BLB _N (SLI+ADI+OR, HS) in the next discussion.

Fig. 6. Error decay of different LB algorithms. A: BLB (JLI, SUS+HS); B: BLB (JLI, HS); C:

BLB (SLI, HS); D. BLB (SLI+ADI+OR, HS); E: BLB_N (SLI+ADI+OR, HS); F: TLB [32].

In Fig. 6, we compared Curve A with Curve B, and found the use of the HS throughout

in the BLB simulation did not bring about instability, but an improvement in computational

efficiency. As shown by Curve B, the BLB (JLI, HS) algorithm only spent 73.2 minutes to

achieve 31.7 10E   . Such an efficiency improvement is enhanced in the BLB (SLI, HS)

simulation. Curve C shows that the change from the JLI to SLI saves about 13.46% in

computational time as compared to Curve B. Meanwhile, however, we also note that the

modifications resulted from the HS and SLI are insufficient – the error-decay rates in Curve

B and Curve C are still far behind that in Curve F (TLB algorithm). This motivates

development of the BLB (SLI+ADI+OR, HS) algorithm and its non-uniform grid version,

i.e., BLB_N (SLI+ADI+OR, HS) algorithm. In these two algorithms, CTDMA (see Appendix

D for the details) was introduced as the replacement of TDMA for direct computation of the

discrete perturbation functions in rows. These functions are subject to periodic boundary

conditions in the oscillatory Couette flow. The error changes of the BLB (SLI+ADI+OR, HS)

and BLB_N (SLI+ADI+OR, HS) simulations are exhibited in Fig. 6, see Curve D and Curve

E. Impressively, unlike those shown in Curve A, Curve B and Curve C, these two

simulations initiated their simulations with very small errors, and such errors decayed

quickly with the progress of computation. In Fig. 6, Curve E is very close to Curve F,

indicating the BLB_N (SLI+ADI+OR, HS) algorithm converged at a comparable rate to that

of the TLB algorithm.

In this subsection, our numerical simulations show the conventional TLB algorithm

exhibits quite good efficiency in comparison to the BLB (JLI, SUS+HS) algorithm and even

some modified BLB algorithms. Only the BLB_N (SLI+ADI+OR, HS) algorithm in our test

has achieved a close convergence rate to the TLB algorithm. For the proposed BLB

simulation, we understand that an appropriate algorithm design is of critical importance for

achieving high computational efficiency. Meanwhile, the BLB algorithm also manifests

distinct numerical compatibility with a large variety of CFD techniques and flexible

applicability in both uniform and non-uniform grids.

5. Conclusion

In this article, we propose a block iterative algorithm to solve the purely frequency-

dependent linear LB model for simulating linear oscillatory flow. The primary feature of this

BLB algorithm, in contrast to the conventional TLB algorithm, is that it completely excludes

any time scale, and computes the perturbation functions directly in the frequency domain

without mimicking a false evolution in virtual time.

Numerical accuracy of the BLB algorithm proposed in this article was validated by

simulating two classical flow problems: the oscillatory Couette flow and flow around an

oscillating circular cylinder with different Stokes numbers. All results are of near second-

order accuracy and well agreed with the available analytical solutions. We also studied

computational efficiency of the BLB algorithm, in particular in comparison to the

conventional TLB algorithm based on the virtual time. A set of modified BLB algorithms

were also proposed and involved in this efficiency comparison. Our simulations reveal that

different BLB algorithms have rather various computational efficiency; only well-designed

BLB version can achieve good efficiency as compared with the TLB algorithm. On the other

hand, our studies also reveals that flexibility and richness in the construction of BLB

algorithms, which is in sharp contrast to its TLB counterpart. The BLB framework can

readily develop various versions through use of different CFD numerical techniques and

grids. This is of value for simulating flow processes in practical M/NEMS, where complex

structures and varying operating conditions are involved. We will investigate such possible

applications of the BLB algorithm in M/NEMS in our future work.

Acknowledgements

The authors would like to acknowledge support from Zhejiang Provincial Natural Science

Foundation of China under Grant No. LY16E060001, Ningbo Science and Technology

Bureau Technology Innovation Team under Grant No. 2016B10010 and Ningbo

International Cooperation Program under Grant No. 2015D10018. Y.S. thanks John E. Sader

for many interesting and stimulating discussions. H.K. acknowledges partial support by

International Doctoral Innovation Centre at the University of Nottingham Ningbo China.

Appendix A. Seidel line iteration

The difference algebraic equations in Section 3, Eqs. (12) and (16), are constructed based

on the JLI, which suffer from low computational efficiency in comparison to the TLB

algorithm. As a solution, we reformulated these equations through use of the SLI.

The major difference of a SLI from a JLI is the former makes use of the latest perturbation

functions on neighbouring nodes for calculation. These latest neighbouring results are

specified at either the  1
th

k  or thk step, depending on the sweeping direction in which the

iteration proceeds. In this appendix, we introduce the SLI-related details used in the BLB

(SLI, HS) algorithm in Section 4.3, where spatial gradients on all nodes are approximated by

the HS. Its difference equations after the finite difference discretization are

     
     1 1

+

jy jy

jx jx

s k k k

j j m n j j m n e j j m n e

k s k s k

j m n j j m e n j j m e n

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

 

 

 



  
 for 0jxe  , (A1)

while

     
     1 1

 =

jy jy

jx jx

s k k k

j j m n j j m n e j j m n e

k s k s k

j m n j j m e n j j m e n

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

 

 

 

 


 for 0jxe  , (A2)

where

*

1jy jxs

j

e e
c

y x
 



 
   
  
 

, (A3)

 1
2

jxs

j

c e

x
    


 , (A4)

 1
2

jxs

j

c e

x
   


 , (A5)

and j , j and  1 ,k

j m mx y  are given by Eqs. (17d) – (17f), respectively.

In the BLB (SLI, HS) algorithm, we performed a SLI along the x direction sweeping

from 0x to
Nx , where 0 Nx x . Therefore, the three terms on the right hand side of Eqs. (A1)

and (A2) have been specified. In simulation, we applied the TDMA to solve Eqs. (A1) and

(A2) for  k

j m nh x , y ,  
jy

k

j m n eh x , y  ,  
jy

k

j m n eh x , y  and other perturbation functions in the

same column at
mx x , and then repeated this direct-solving procedure column by column

until the SLI had swept the entire computational domain at the thk iteration. Generally, our

BLB (SLI, HS) algorithm will terminate its computation once a predefined convergence

criterion is met.

Appendix B. Alternative direction iteration

On top of the SLI, the ADI is another advanced iterative method employed for modifying

the BLB algorithm in Section 4.3. An ADI process designs an iteration consisting of two

successive sweeping– one by columns (along the x direction) and the other by rows (along

the y direction). In this appendix, we discuss the ADI details pertinent to the BLB

(SLI+ADI+OR, HS) algorithm.

In the BLB (SLI+ADI+OR, HS) algorithm, a SLI was first conducted along the positive

x direction. The difference algebraic equations in this half are

     
     

1 2 1 2 1 2

1 1 2 1

jy jy

jx jx

s k k k

j j m n j j m n e j j m n e

k s k s k

j m n j j m e n j j m e n

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

  

 

  

 

 

 
 for 0jxe  , (B1)

while

     
     

1 2 1 2 1 2

1 1 1 2

jy jy

jx jx

s k k k

j j m n j j m n e j j m n e

k s k s k

j m n j j m e n j j m e n

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

  

 

  

 

 

 
 for 0jxe  ,

(B2)

where the coefficients are defined the same as those in Appendix A. Actually, Eqs. (B1) and

(B2) are almost the same as Eqs. (A1) and (A2) except that the superscript “ k ” has been

replaced by “  1 2k  ” to denote the column sweeping as the first half in one ADI process.

Equations (B1) and (B2) were then solved directly using the TDMA following the same

procedure as Appendix A.

Next, the perturbation functions updated by the column sweeping were used as inputs for

the row sweeping along the positive y direction, the second half. The corresponding

difference algebraic equations are

     

     1 2 1 2

jx jx

jy jy

s k s k s k

j j m n j j m e n j j m e n

k k k

j m n j j m n e j j m n e

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

 

 

 



  


 for 0jye  , (B3)

while

     
     1 2 1 2

 =

jx jx

jy jy

s k s k s k

j j m n j j m e n j j m e n

k k k

j m n j j m n e j j m n e

h x , y h x , y h x , y

x , y h x , y h x , y

  

  

 

 

 



 


 for e

jy
< 0 .

(B4)

Again, the coefficients in Eqs. (B3) and (B4) are the same as those in those in Appendix A

and the terms in the right hand side are all known. We solved Eqs. (B3) and (B4) for the

perturbation functions in the row at ny y by the CTDMA (see Appendix D) as periodic

boundary conditions were imposed in the x direction in the oscillatory Couette flow.

With a column sweeping (Eqs. (B1) and (B2)) and a row sweeping (Eqs. (B3) and (B4)),

an ADI process completed updating all perturbation functions in the domain at the thk step.

In the BLB (SLI+ADI+OR, HS) algorithm, we repeated this ADI until convergence was

reached.

Appendix C. Over relaxation scheme

The over relaxation (OR) scheme is a simple while efficient means to improve

computational efficiency. In Section 4.3, we applied OR in both the BLB (SLI+ADI+OR, HS)

and BLB_N (SLI+ADI+OR, HS) algorithms.

Consider a perturbation function  k

j m nh x , y , which is just calculated after the TDMA or

CTDMA at the thk step. In the OR framework, the true value of this function will be

modified by

       11k k k

j m n o j m n o j m nh x , y h x , y h x , y    , (C1)

where 0 is a numerical weight, and  1k

j m nh x , y
 is the value of this perturbation function

obtained by the OR at the previous  1
th

k  step. In Section 4.3, the BLB (SLI+ADI+OR, HS)

algorithm chose
0 1.9  in its OR adjustment while

0 1.5 

was used in the non-uniform

grid version, i.e., the BLB_N (SLI+ADI+OR, HS) algorithm.

Appendix D. Cyclic tri-diagonal matrix algorithm

The CTDMA is a variant of the TDMA for a problem with periodic boundary conditions.

As discussed in Section 4.3 and Appendix B, this is the case when we solve the perturbation

functions in one row for the oscillatory Couette flow. Since we only adopted the CTDMA in

the row sweeping in the ADI, we take Eqs. (B3) and (B4) on a row

 1 2 1, ,......, ,......, ,m N Nx x x x x x and ny y

as an example to elaborate its details in this

appendix. In the CTDMA framework, Eqs. (B3) and (B4) are rewritten as

           
xj

k k k k k k

j m n j m n j n j m n j N n j m nm e
h x , y p x , y h x , y o x , y h x , y q x , y


   , (D1)

where

 
 1

jk

j m n s k

j j j m n

p x , y
p x , y



  




, with  1

k s

j n j jp x , y   , (D2)

  
 

 1

k

j j m nk

j m n s k

j j j m n

o x , y
o x , y

p x , y



  





 , with  1

k s

j n j jo x , y    , (D3)

  
   

 

1

1

1

,

,

k k

j m n j j m nk

j m n s k

j j j m n

x , y q x y
q x , y

p x y

 

 











, with    1

1 1

k k s

j n j n jq x , y x , y  . (D4)

In Eqs. (D2) – (D4),  max ,0
jx s

j jx j

c e
e

x
   


,  max ,0

jxs

j j jx

c e
e

x
   


 and

       1 1/2 1/2

n ,
jy jy

k k k k

j m j m n j j m n e j j m n ex , y x y h x , y h x , y     

    , for 0jye  , (D5)

while

       1 1/2 1/2

n ,
jy jy

k k k k

j m j m n j j m n e j j m n ex , y x y h x , y h x , y     

    , for 0jye  . (D6)

We point out that different from Eq. (14) in the TDMA, Eq. (D1) includes  k

j N nh x , y

when calculating  k

j m nh x , y . This function should be first specified by

 
      

         
1 1 1

1 1 1 1

, ,

,

k k k

j N n j N n j j N nk

j N n k k k k

j N n j N n j j N n j N n

x y x y q x , y
h x , y

x , y x y p x , y o x , y





  

   

 


  

r q

p q
. (D7)

Equation (D7) includes three new coefficients,
k

jp ,
k

jq and
k

jr , and they are computed by a

set of back-substitution equations:

       1 1 1, , , ,k k k k

j m n j m n j m n j m nx y x y x y o x y   r r q , with  1,
k s

j n jx y r , (D8)

     1 1, , ,k k k

j m n j m n j m nx y x y p x y q q , with  1,
k

j n jx y q , (D9)

       1 1 1, ,k k k k

j m n j m n j m n j m nx , y x y x y q x , y   p p q , with    1,
k k

j n j N nx y q x , yp . (D10)

In addition, when Eq. (D1) is used to compute some perturbation functions with special

particle velocities on 1x or
Nx ,  0

k

j nh x , y and  1

k

j N nh x , y are required to input as known

conditions. Making use of periodic boundary conditions, we specified the two functions by

   0

k k

j n j N nh x , y h x , y , (D11)

   1 1

k k

j N n j nh x , y h x , y  . (D12)

In summary, a CTDMA solving procedure includes calculation of
k

jp ,
k

jo ,
k

jq and
k

jp ,
k

jq ,

k

jr on all nodes in the row of
ny y through use of Eqs. (D2) – (D6) and (D8) – (D10),

respectively. The function  k

j N nh x , y is then specified by Eq. (D7). Equation (D1), as the

final step, will be solved in an order from
1Nx 
to 1x to obtain all perturbation functions in

the row of
ny y [36]. In the ADI in Section 4.3, we repeated this procedure row by row in

its second half.

References

[1] A. Nabovati, D.P. Sellan, C. H. Amon, On the lattice Boltzmann method for phonon

transport, Journal of Computational Physics 230 (2011) 5864-5876.

[2] U.M.B. Marconi and S. Melchionna, Kinetic theory of correlated fluids: From dynamic

density functional to lattice Boltzmann methods, Journal of Chemical Physics 131 (2009)

014105.

[3] F. Wu, W. Shi and F. Liu, A lattice Boltzmann model for the Fokker-Planck equation,

Communications in Nonlinear Science and Numerical Simulation 17 (2012) 2776-2790.

[4] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases

and components, Physical Review E 47 (1993) 1815-1820.

[5] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous and D. Joseph, The lattice Boltzmann

equation method: theoretical interpretation, numerics and implications, International

Journal of Multiphase Flow 29 (2003) 117-169.

[6] O. B. Usta, A.J.C. Ladd and J.E. Butler, Lattice-Boltzmann simulations of the dynamics

of polymer solutions in periodic and confined geometries, Journal of Chemical Physics

122 (2005) 094902.

[7] Z.L. Guo and T.S. Zhao, Lattice Boltzmann model for incompressible flows through

porous media, Physical Review E 66 (2002) 036304.

[8] M. Liu, Y. Shi, J. Yan and Y. Yan, Lattice Boltzmann simulation of flow and heat transfer

in random porous media constructed by simulated annealing algorithm, Applied Thermal

Engineering (2017). http://dx.doi.org/10.1016/j.applthermaleng.2016.12.107.

[9] C. Sun, C. Migliorini and L.L. Munn, Red blood cells initiate leukocyte rolling in

postcapillary expansions: A lattice Boltzmann analysis, Biophysical Journal 85 (2003)

208-222.

[10] Y. Shi, T.S. Zhao and Z.L. Guo, Thermal lattice Bhatnagar-Gross-Krook model for flows

with viscous heat dissipation in the incompressible limit, Physical Review E 70 (2004)

066310.

[11] M. Wang and Q. Kang, Modelling electrokinetic flows in microchannels using coupled

lattice Boltzmann methods, Journal of Computational Physics 229 (2010) 728-744.

[12] H. Chen, et al., Extended Boltzmann kinetic equation for turbulent flows, Science 301

(2003) 633-636.

[13] Z.L. Guo and C. Shu, Lattice Boltzmann method and its applications in engineering,

World Scientific Publishing, Singapore, 2013.

http://dx.doi.org/10.1016/j.applthermaleng.2016.12.107

[14] D.P. Ziegler, Boundary conditions for lattice Boltzmann simulations, Journal of Statistical

Physics, 71 (1993) 1171-1177.

[15] X. He, L.-S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation

to the lattice Boltzmann equation, Physical Review E 56 (1997) 6811-6817.

[16] X. Shan and X. He, Discretization of the velocity space in the solution of the Boltzmann

equation, Physical Review Letters 80 (1998) 65-68.

[17] Y.-H. Zhang, X.-J. Gu, R.W. Barber and D.R. Emerson, Capturing Knudsen layer

phenomena using a lattice Boltzmann model, Physical Review E 74 (2006) 046704.

[18] Z.L. Guo, B.C. Shi and C. G. Zheng, An extended Navier-Stokes formulation for gas

flwos in the Knudsen layer near a wall, Europhysics Letters 80 (2007) 24001.

[19] Y. Shi, Y. W. Yap and J. E. Sader, Lattice Boltzmann method for linear oscillatory

noncontinuum flows, Physical Review E 89 (2014) 033305.

[20] J. Meng and Y. Zhang, Accuracy analysis of high-order lattice Boltzmann models for

rarefied gas flows, Journal of Computational Physics 230 (2011) 835-849.

[21] Y. Shi, Y. W. Yap and J. E. Sader, Linearized lattice Boltzmann method for micro- and

nanoscale flow and heat transfer, Physical Review E 92 (2015) 013307.

[22] G.P. Ghiroldi and L. Gibelli, A finite-difference lattice Boltzmann approach for gas

microflows, Communications in Computational Physics 17 (2015) 1007-1018.

[23] R. Luttge, Industrial micro & nano fabrication, William Andrew, N.Y., 2010.

[24] The MEMS handbook, edited by M. Gad-el-Hak, CRC press, Boca Raton, USA, 2002.

[25] J. W. Judy, Microelectromechanical systems (MEMS): Fabrication, design and

applications, Smart Materials and Structures 10 (2001) 1115-1134.

[26] D. J. Laser and J. G. Santiago, A review of micropumps, Journal of Micromechanics and

Microengineering 14 (2004) R35-R64.

[27] G. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows: Fundamentals and

simulation, Springer, N.Y., 2005.

[28] H.A. Stone, A.D. Stroock and A. Ajdari, Engineering flows in small devices:

Microfluidics towards a lab-on-a-chip, Annual Review of Fluid Mechanics 36 (2004)

381-411.

[29] A. Kainz, et al., Air damping as design feature in lateral oscillators, Sensors and

Actuators A 236 (2015) 357-363.

[30] M. K. Ghatkesar, et al., Resonating modes of vibrating microcantilevers in liquid,

Applied Physics Letters 92 (2008) 043106.

[31] T. P. Burg, et al., Weighing of biomolecules, single cells and nanoparticles in fluid,

Nature 446 (2007) 1066-1069.

[32] Y. Shi and J. E. Sader, Lattice Boltzmann method for oscillatory Stokes flow with

applications to micro- and nanodevices, Physical Review E 81 (2010) 036706.

[33] G.R. McNamara and G. Zanetti, Use of the Boltzmann equation to simulate lattice-gas

automata, Physical Review Letters 61 (1988) 2332-2335.

[34] H. Chen, S. Chen and W.H. Matthaeus, Recovery of the Navier-Stokes equations using a

lattice-gas Boltzmann method, Physical Review A 45 (1992) R5339.

[35] C. D. Conte and C. de Boor, Elementary numerical analysis: An algorithmic approach,

McGraw-Hill, N.Y., 1980.

[36] W.Q. Tao, Numerical heat transfer, Xi’an Jiaotong university press, Xi’an, 2001.

[37] F. Zhang, Linear algebra: Challenging problems for students, The Johns Hopkins

University Press, Baltimore, 2009.

[38] L. H. Thomas, Elliptic problems in linear differential equations over a network, Watson

science computer laboratory report, Columbia university, N.Y., 1949.

[39] S. V. Patankar, C. H. Liu and E. M. Sparrow, Fully developed flow and heat transfer in

ducts having streamwise-periodic variation of cross sectional area, ASME Journal of Heat

Transfer 99 (1977) 180-186.

[40] D. W. Peaceman and H. H. Rachford, The numerical solution of parabolic and elliptic

differential equations, Journal of the Society for Industrial and Applied Mathematics 3

(1955) 28-41.

[41] C. Cercignani, Rarefied gas dynamics: From basic concept to actual calculations,

Cambridge university press, Cambridge, UK, 2000.

[42] Y. H. Qian, D. D’Humieres and P. Lallemand, Lattice BGK models for Navier-Stokes

equations, Europhysics Letters 17 (1992) 479-484.

[43] Z. L. Guo, C. Zheng and B. Shi, Non-equilibrium extrapolation method for velocity and

pressure boundary conditions in the lattice Boltzmann method, Chinese Physics 11 (2002)

366-374.

[44] G. G. Stokes, Mathematical and physical papers vol. 3, Cambridge university press,

Cambridge, UK, 1901.

[45] L. Rosenhead, Laminar boundary layer, Clarendon press, Oxford, UK, 1963.

