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Microscale coiling in bis-imidazolium supramolecular hydrogel 

fibres induced by release of a cationic serine protease inhibitor  

David Limón,a,b Claire Jiménez-Newman,a Ana C. Calpena,b,c Arántzazu González-Campo,d David B. 
Amabilino,e,f and Lluïsa Pérez-García.a,b,‡ ,*

Gels formed by a gemini dicationic amphiphile incorporate a serine 

protease inhibitor, which could be used in a new approach to the 

treatment of Rosacea, within the fibres as well as in the space 

between them, affecting a number of gel properties but most 

importantly inducing remarkable fibre coiling at the microscopic 

level as a result of drug release from the gel. Drug release and skin 

permeation experiments show its potential for topical 

administration. 

Low molecular weight gelators (LMWGs) self-assemble to form 

fibres through non-covalent forces.1 These supramolecular gels 

are soft and sometimes thermoreversible, making them 

suitable for therapeutic applications.2 Their three-dimensional 

morphology depends on the nature of the gelator, the self-

assembly conditions, and non-covalent interactions established 

with host molecules incorporated into the gel matrix, like, ion-

dipole interactions in metal and anion-binding gels.3 Also, gel 

skeletal modification can be made introducing metal ions.4 

However, to the best of our knowledge, no examples are known 

of changes in the morphology of the gel fibres caused by the 

release of a previously incorporated host. 

 Our group has shown that gemini imidazolium salts can 

deliver anionic drugs,5 including from hydrogels that are useful 

for topical applications.6 The self-assembly of the cationic 

gelators and the interaction with anionic guests in the 

supramolecular gels is driven not only by ionic interactions but 

also hydrogen bonds and hydrophobic forces.6 Here, we show 

that the incorporated drug can also be cationic, that this feature 

makes drug release more effective, leading to a change in the 

morphology of the cationic gels through coiling of the gel fibres. 

 We chose the drug 4-(2-aminoethyl)-benzenesulfonyl 

fluoride hydrochloride (AEBSF·HCl), as an irreversible serine 

protease inhibitor whose activity has shown to be successful, 

inhibiting Kallikrein-5 (K5),7 a protein that is overexpressed in 

ailments such as Rosacea.8 Its clinical use would imply a new 

therapeutic strategy that has not been reported, the main 

drawback being low drugability. A delivery material could 

overcome this obstacle and make a novel approach in the 

topical treatment of Rosacea. Furthermore, topical 

administration helps increase the drug concentration at the 

target site, lowering the side effects in other tissues. 

 For all these reasons, the ability of bis-imidazolium 1·2Br to 

form gels in presence of AEBSF·HCl (Fig. 1) using water and 

ethanol as solvents was explored and the gelling conditions 

were optimized. The structure and behaviour of the gels were 

characterized, and drug release and skin permeation 

experiments were performed in order to assess their suitability 

as a possible new topical treatment for Rosacea. 

 The optimum gelling conditions of compound 1·2Br are a 

final concentration of 5 mg/mL in 50:50 ethanol:water, and at 

room temperature, giving a fast gel formation (ca. 10 min.). The 

influence of AEBSF·HCl concentration was assessed using these 

optimized conditions. Gels 1·AEBSF are also formed in 10 

minutes in the presence of low concentrations of drug, but the 

gelling time increased significantly at higher concentrations 

(above 4 mg/mL, See ESI Fig. S1). A final concentration of 5 

mg/mL AEBSF·HCl was chosen as optimum for being the highest 

one that permits gelation in 20 minutes or less. This proportion 

is an approximate 1:4 gelator:drug molar ratio, a much higher 

loading than that possible using the same gelator and anionic 

drugs.6 
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Fig. 1 Chemical structures of the gelator 1·2Br and the serine protease inhibitor 

AEBSF·HCl. 

 Rheological studies of gels 1·2Br and 1·AEBSF show their 

resistance to rupture by the critical stress value: the addition of 

AEBSF·HCl makes the gel three times more elastic as compared 

to the gel alone (ESI Table S1 and Fig. S2), as opposed to the 

observations with other drugs.6b However, when the critical 

stress is reached, gels show an abrupt rupture rather than a 

slow one, making it suitable for a topical pharmaceutical form. 

Frequency sweep tests showed the gel resistance to 

deformation at different frequencies, shown by the Storage (G’) 

and Loss (G’’) moduli, at a constant shear stress of  = 0.5 Pa for 

being within the viscoelastic region. In both the gel 1·AEBSF and 

the gel 1·2Br, independently of the frequency applied, an elastic 

plateau was observed, where the Storage modulus is higher 

than the Loss modulus (G’ > G’’), meaning that gels present a 

predominant elastic, solid-like behaviour, for which they can be 

classified as “solid-like” gels.1a,9  The addition of AEBSF·HCl 

decreases the gel resistance to deformation, making it softer 

than gel 1·2Br which is also useful for topical application (ESI Fig. 

S2). 

 1H NMR spectroscopy experiments show (ESI Fig. S3) that at 

a 1:1 molar ratio of 1·2Br and AEBSF·HCl (5:1 mg/mL) the 

totality of 1·2Br assembles forming the gel 1·AEBSF, leaving no 

remaining compound in solution, as no peaks from compound 

1·2Br can be observed. Ca. 76% of the AEBSF·HCl present in the 

mixture is incorporated in the gel fibres, the remainder left in 

the interstitial space.  The versatility of the gelator 1·2Br to 

incorporate both anionic and cationic drugs confirms its 

promise for drug delivery. 

 Xerogel 1·2Br has fibres longer than 20 μm and around 100 

nm width, that stick together forming ribbons and do not show 

signs of ageing (Fig. 2a and Fig. S4a in ESI). Contrastingly, the 

morphology of the gels 1·AEBSF changes with time, a 

phenomenon which is also dependent on the concentration of 

AEBSF·HCl used (ranging from 1-5 mg/mL). AEBSF precipitates 

might be expected after complete evaporation of the solvent in 

the gel, because even at 1 mg/mL 24% of the material is in the 

interstitial space (as shown by NMR); pure AEBSF·HCl 

precipitates in rod-shaped crystals (Fig. 2b). In all gels with 

1·AEBSF, no clear drug precipitates were found on freshly 

prepared gels, when gelation takes place in the presence of 

either 1, 3 or 5 mg/mL of AEBSF·HCl, as shown by SEM images 

(Fig. 2c and ESI Fig. S5). It is interesting that fibres in 1·AEBSF 

are densely twisted much more than pure gel 1·2Br, which could 

be the reason of their subsequent coiling in order to reduce the 

tension created. 

 
Fig. 2 SEM images showing the influence of drug concentration and age of the gel on 

the morphology of gel fibres. a) Gel 1·2Br. b) Precipitates of AEBSF·HCl, from a 5 mg/mL 

solution. c) Freshly prepared 1·AEBSF gel. d) Influence of the drug concentration in a 

two-week old gel. Yellow scale bar represents 8 μm in all images. 

 When gels 1·AEBSF are left for two weeks in a sealed vial the 

morphology of the xerogels exhibits changes depending of the 

amount of AEBSF·HCl present in the gelation process.  Thus, 

when 1mg/mL of AEBSF·HCl was used, the fibres in 1·AEBSF 

retain the same morphology as when freshly prepared, as seen 

in Fig. 2d (see also ESI Fig. S5a). In contrast, in the two-week old 

gels formed at a concentration above 3 mg/mL of AEBSF·HCl, 

the bending of the fibres in a circular way, resembling “coiled 
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ropes” can be observed (Fig. 2d, ESI Fig. S4b, Fig. S5a). These 

rolls range from 5 to 15 μm in diameter, and the thickness of 

the ring varies widely due to the number of times the “rope” is 

coiled. As can be seen, the concentration of AEBSF·HCl 

influences the structure of fibres in two-week old gels 1·AEBSF. 

Coils were formed both at 3 and 5 mg/mL gels, the coils being 

thinner at 3 mg/mL, as fibres are coiled less times. Also, at this 

concentration some long straight fibres are still starting to bend, 

suggesting the subsequent coil formation. 

 Just a few examples of differences in morphology of 

nanostructured materials have been reported before,10 but 

mainly as the consequence of induced self-assembly after 

evaporation, and very rarely as a result of doping gels with 

metal ions.4 The coiling observed on the fibres of 1·AEBSF 

appears as an unprecedented example of ordering 

rearrangement induced by intermolecular interactions. Thus, 

the cationic drug AEBSF·HCl seems to be kinetically entrapped 

within the gel nanostructure, due to the fast self-assembly in 

the gelation process, generating a metastable state where the 

drug is incorporated in the lamellar gel. However, its presence 

disturbs the interlayer packing of the gelator 1·2Br that can 

experiment alterations upon changes in external experimental 

conditions. 

 The chemical composition of the fibres was measured by 

Energy Dispersive X-ray spectroscopy (EDX) on different areas 

of two-week old 1·AEBSF xerogels assembled in the presence of 

3 mg/mL (ESI Fig. S6) or 5 mg/mL (Fig. 3) of AEBSF·HCl. The 

spectra show the presence of sulphur in the straight fibres in 

gels for both concentrations, confirming the presence of the 

drug after two weeks. However, in the coiled fibres the absence 

or diminution of both the sulphur and fluorine peaks suggests 

that there is release of drug from the fibres over time, 

presumably into the interstitial liquid. The release could trigger 

the disruption in the interlayer packing within the fibres, 

prompting their coiling. 

 Differential Scanning Calorimetry (DSC) showed that the 

time needed for gel formation of 1·AEBSF and the thermodyna 

 

Fig. 3 EDX spectra from straight fibre and coiled fibre of 5 mg/mL 1·AEBSF gel. 

mic parameters associated with the phase transition are very 

different to gel 1·2Br.  The addition of AEBSF·HCl to gelator 

1·2Br influences greatly the gelling temperature (Fig. S7 in ESI), 

time of gelation, and associated enthalpy change. Gel 1·2Br 

spontaneously starts forming at around 21 °C, while gel 1·AEBSF 

starts forming at ca. 30 °C. This shows that adding the drug 

makes the gel more stable at higher temperatures. Conversely, 

the whole width of the peak indicates the total time for gel 

formation, which increases considerably from around 5 min to 

20 min by adding AEBSF·HCl, similar to the observations with 

the naked eye, and suggesting that the interaction between the 

drug and the gelator lengthens the gelling period, presumably 

because of slower gel fibre assembly. The heat capacity (Cp) in 

the plot also represents the speed of gelation, where the onset 

temperature is the point at which gelation starts, and the 

maximum value is when the gelation occurs fastest. For 

instance, the gelation of 1·AEBSF is 20 times slower than that of 

gel 1·2Br, which is in accordance to the increase in the gelling 

period. 

 The most noticeable change observed is in the 

thermodynamic parameters of the process. The gelation of 

1·2Br is exothermic, and is related to the decrease of entropy 

upon the formation of fibres. Very differently, the gelling of 

1·AEBSF shows both an exothermic event in the beginning, and 

an endothermic one at lower temperatures, giving an overall 

enthalpy close to zero. These results indicate that upon the 

mixture of 1·2Br with AEBSF·HCl and the solvents, not only the 

gelation occurs, but at least a second process is happening at 

the same time, which is endothermic, and therefore, necessarily 

entropic. This event could be an adsorption of the drug in the 

interstitial space of the gel to the fibres, and might be related to 

an increase in the surface tension of the solvent. The 

thermoreversibility of 1·AEBSF was proven by subsequent 

heating-cooling cycles, in order to melt the gel and form it again, 

and similar peaks were observed. However, a slight decrease in 

Cp values, and a slight increase in the gelling temperature, occur 

in each cycle, which suggests that heating up the sample to 35 

°C melts the gel but still leaves some gel nucleation points 

intact, not seen macroscopically, which facilitate the 

subsequent gelation on cooling (ESI, Table S2 and Fig. S8). 

 Drug release experiments from the nanocomposite material 

using PBS as the receptor medium for complying SINK 

conditions,11 to prove of the drug when applied on human skin 

is not limited, showed that gel 1·AEBSF releases almost 92% of 

the drug during the first 15 hours (fitting a one phase 

exponential association model). Afterwards, drug degradation 

occurs in the receptor chamber,12 following a one phase 

exponential decay model (Fig. 4 and Table S3). This degradation 

would not compromise the therapeutical efficacy of the gel 

when applied on the skin, as the speed of release is ten times 

higher than the speed of degradation, whose half-life (55 h) is 

much longer than the usual administration intervals of topical 

formulations. Moreover, at the normal pH of the skin (5.5), 

degradation would barely occur. Permeation studies on human 

skin show that 1·AEBSF promotes the complete permeation of 

AEBSF through the skin in 6 hours (lag-time, see Fig. 5 and ESI 

Table S4). 

As K5 is located mainly at the epidermis, specifically at the 

cornified and granular layers,13,14 the amount of drug retained 

inside the skin becomes an even more important parameter to 

be considered. The total amount of AEBSF retained (As corr.) is 

estimated by considering both the amount of drug extracted 

from the skin after the experiment [As] and the percentage of 

drug that can actually be extracted out of the total drug 
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retained (recovery experiments). After topical application, 

around 3484 µg/g·cm2, is retained in the skin, where it has its 

therapeutic activity, equivalent to 69% of the total dose applied 

(Fig. 5). 

 
Fig. 4. Cumulative amount of drug released of from gel 1·AEBSF and degradation in 

receptor medium. Values are means and error bars represent one standard deviation 

(n=3). Release and decay both follow one phase exponentials (see ESI and equation 

parameters in Table S3).  

 

Fig. 5. Cumulative amount of AEBSF permeated (left) and retained in human skin (right) 

after application of gel 1·AEBSF. Values in permeation experiments represent the Means 

± one standard deviation. The bar in retention experiments represents the Median value 

(n=5). 

 Changes in the morphology of the gels were scrutinized by 

SEM after being subjected to release conditions, for a maximum 

of 16 h, the maximum period permitting almost a total release 

with no detectable hydrolysis of the drug. In all the samples, 

some lumpy material arises from the buffer used under those 

conditions. No variation was observed for the pure gel 1·2Br, for 

which only straight fibres were seen (Fig. S9 in ESI). The release 

of the drug from 1·AEBSF under these release conditions for  6 

and 16 hours is also accompanied by the formation of fibre coils 

(see SEM images in ESI Fig S9 and S10). The images clearly show 

the formation of coils and a more structured and curved nature 

to the fibres of the gelator. Direct quantification is not possible, 

but the number of coiled fibres seems similar to those on aged 

gels under storage conditions over a longer period of time. 

While the morphological change is clear, powder X-ray 

diffraction of gels before and after release shows no significant 

structural rearrangement (Fig. S11 in ESI). A model such that in 

Fig. S12 might explain this observation. 

 In summary, AEBSF·HCl strongly influences the self-

assembly of 1·2Br and the behaviour of the resulting gel, which 

is soft and thus suitable for dermal application. AEBSF is 

released from the gel, triggering its morphological change 

evidenced by the twisting of fibres and the subsequent 

formation of coils, although not all fibres are able to coil, 

presumably because their length and being trapped physically 

by other fibres. Almost all the drug incorporated in 1·AEBSF is 

released and penetrates human skin, where it is retained. By the 

nature of the drug incorporated, this gel would imply a novel 

therapeutic approach in the topical treatment of ailments like 

Rosacea. 
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