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Abstract

In this paper we examine the issue of detecting explosive behaviour in economic and financial

time series when an explosive episode is both ongoing at the end of the sample, and of finite

length. We propose a testing strategy based on the sub-sampling method of Andrews

(2003), in which a suitable test statistic is calculated on a finite number of end-of-sample

observations, with a critical value obtained using sub-sample test statistics calculated on

the remaining observations. This approach also has the practical advantage that, by virtue

of how the critical values are obtained, it can deliver tests which are robust to, among other

things, conditional heteroskedasticity and serial correlation in the driving shocks. We also

explore modifications of the raw statistics to account for unconditional heteroskedasticity

using studentisation and a White-type correction. We evaluate the finite sample size and

power properties of our proposed procedures, and find that they offer promising levels

of power, suggesting the possibility for earlier detection of end-of-sample bubble episodes

compared to existing procedures.

Keywords: Rational bubble; Explosive autoregression; Right-tailed unit root testing: Sub-

sampling.

JEL Classification: C22; C12; G14.

∗We are grateful to the Guest Editors, Peter Phillips and Aman Ullah, and two anonymous referees for their

helpful and constructive comments on earlier versions of this paper. Address correspondence to: Robert Taylor,

Essex Business School, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.



1 Introduction

The effi cacy of unit root tests for detecting explosive rational asset price bubbles is well docu-

mented. In the seminal paper on the presence of explosive rational asset price bubbles in stock

prices by Diba and Grossman (1988), the authors note that if the bubble component of a stock

price series follows an explosive autoregressive process, the explosive behaviour caused by the

bubble component is still manifest in the first difference of the series. This is due to the fact

that an explosive autoregressive process cannot be differenced to stationarity. As such, if a

series is found to be non-stationary in levels, but stationary in first differences, then the series

is not subject to explosive behaviour. Based on this, Diba and Grossman (1988) propose testing

the null hypothesis of no explosive behaviour by applying standard left-tailed regression-based

unit root tests to a series in both levels and first differences. Recent research on the detection

of asset price bubbles, however, has concentrated on applying right-tailed Dickey-Fuller [DF]

tests to the levels of a series. The earliest contribution to this approach in the literature was

made by Phillips, Wu and Yu (2011) [PWY], who propose a test procedure for detecting ex-

plosive rational bubbles in stock markets based on the supremum of a set of forward recursive

right-tailed DF test statistics applied to both the price and dividend series in levels. If explosive

behaviour is found in the price series, but not in the dividend series, they conclude that the

stock price is subject to an explosive rational bubble. PWY apply their test procedure to the

NASDAQ composite stock price and dividend index for the period from February 1973 —June

2005 and identify the emergence of the dot-com bubble in the middle of 1995.

Due to the simplicity of the PWY test procedure, and its favourable power properties, this

test procedure has been utilised extensively in the both the finance and econometrics literature

to detect bubbles in a number of financial series. Gilbert (2010) applies the PWY test procedure

to commodities futures prices for the years 2000-2009 and finds evidence of explosive behaviour

in the nickel, copper and crude oil series. Homm and Breitung (2012) apply both the PWY

test and a Chow-type test to various series including stock prices, commodity prices and house

prices, finding evidence of bubbles in a number of the series examined. Bettendorf and Chen

(2103) apply the PWY test procedure to the sterling-US dollar exchange rate and find evidence

of explosive behaviour in the exchange rate driven by explosive behaviour in the price index for

traded goods. In a subsequent paper aimed at dealing with the issue that more than one asset

price bubble could potentially be present within a given sample of data, Phillips, Shi and Yu

(2015) [PSY] propose a test for at least one bubble based on a supremum of right-tailed DF

statistics computed over all possible start and end dates (subject to a minimum sample size).

If a rejection is obtained by this test, PSY propose a dating procedure to identify the timing

of the bubble episodes, which uses sequential application of a sequence of backward recursive

right-tailed DF statistics.

Based on the aforementioned evidence for the presence of explosive asset price bubbles,

and the detrimental impact to the economy often caused by the collapse of such bubbles, it is
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imperative that bubbles are detected as early as possible. Arguably, the most useful application

of tests for asset price bubbles to policy makers is detecting an ongoing asset price bubble as

soon as possible. Thus, our focus in this paper is on testing for an explosive asset price bubble

of finite length that is ongoing at the end of the sample. Whilst most tests proposed in the

literature concentrate on detecting and dating past asset price bubbles, the backward recursive

approach of PSY is particularly well-suited to detect an end-of-sample bubble. A potential

drawback of the PSY approach to bubble detection, however, is that for its asymptotic validity,

it assumes that the length of the bubble regime is some non-vanishing fraction of the total

sample size. In the context of detecting end-of-sample bubbles quickly, a more appropriate

assumption might be one of a finite length end-of-sample bubble regime, because possibly only

a few bubble observations might have been observed at the time when the tests are executed.

The approach we consider in this paper is based on the end-of-sample instability testing

approach developed by Andrews (2003) and Andrews and Kim (2006). This involves calculating

a test statistic based on a finite sized window of end-of-sample observations, and comparing

this with critical values obtained by sub-sampling across the remaining earlier observations.

This approach, by design, delivers tests which are robust to serial correlation and conditional

heteroskedasticity in the driving shocks, without the need for any correction (parametric or non-

parametric) to the test statistics. In this paper we propose such Andrews-type tests, adapted

to the case of testing the null of no end-of-sample bubble against the bubble alternative. The

statistics we consider for this Andrews-type approach take the form of: (i) a right-tailed DF

statistic (notice that because of the robustness to serial correlation mentioned above, no lags are

needed in the DF test regression), and (ii) implementations of the Andrews and Kim (2006)-type

statistics that are motivated by a first order Taylor series expansion of the first differences of

an explosive autoregressive process. We find that all these procedures offer decent finite sample

size control, and the Andrews-Kim-type variants in particular offer promising levels of power,

suggesting the possibility for earlier detection of end-of-sample bubble episodes compared to

extant procedures.

When testing for the possibility of changing autoregressive dynamics in financial series, it

can also be important to recognise that the underlying innovation process may be susceptible to

changes in unconditional variance. To this end, we also consider variants of the above procedures

that are robust to heteroskedasticity. A studentisation of the Andrews and Kim (2006)-type

statistics automatically delivers tests which are robust to breaks in the unconditional volatility of

the driving shocks occurring before the end-of-sample window of observations used to compute

the statistics. To achieve robustness to a wider class of heteroskedastic processes, including

volatility changes that occur during the end-of-sample window, we propose a further correction

to the statistics based on a White-type heteroskedasticity adjustment. Following Harvey et

al. (2016) [HLST] who proposed wild bootstrap versions of the PWY test, we also consider a

wild bootstrap variant of the backward recursive approach of PSY in order to also render this

statistic asymptotically robust to non-stationary volatility.
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The remainder of the paper is organised as follows. In section 2 we outline the model and

present our proposed test procedures. The finite sample size and power properties of the tests

are examined in section 3 using Monte Carlo simulations, where comparisons are made with

the PSY approach. In section 4 we consider extensions to the proposed tests, and also to the

PSY approach, that are robust to heteroskedasticity, and assess the finite sample and power

properties of the different procedures. Section 5 presents an application to the same S&P500

price-dividend ratio data studied by PSY, and section 6 concludes.

2 The Model and Tests for an End-of-Sample Bubble

Consider a time series process {yt} generated according to the following data-generating process
[DGP]

yt = µ+ ut, t = 1, ..., T +m (1)

ut =

{
ut−1 + εt, t = 1, ..., T

φut−1 + εt, t = T + 1, ..., T +m
(2)

where u0 = Op(1) and where, following Andrews (2003) and Andrews and Kim (2006), we

assume the innovation process {εt} is mean zero, stationary and ergodic. The series yt follows
a unit root process for the first T observations and is then subject to (potential) explosive

behaviour for the final m observations (where m is considered to be small relative to T ). The

null hypothesis (H0) of no explosive behaviour corresponds to φ = 1 in (2), so that yt remains

unit root throughout the entire sample of T +m observations, while the alternative (H1) of an

end-of-sample explosive regime occurs when φ > 1 in (2).

Standard Dickey-Fuller-type approaches to testing H0 against H1 have been developed (see,

among others, PWY, Homm and Breitung, 2012, and PSY), and rely on large sample theory to

establish properties of their test procedures, implicitly treating the length of the bubble regime

to be of order T . Given that our focus is on developing tests to detect end-of-sample bubble

behaviour in yt when there are only a few observations from the bubble regime in the sample,

an alternative approach to consider is that of the end-of-sample instability tests that follow the

work of Andrews (2003) and Andrews and Kim (2006), where the asymptotics rely on T →∞
while, importantly, m is allowed to remain finite. Initially treating m as known, the general

Andrews-type approach involves calculating a test statistic based on a finite length window ofm

end-of-sample observations, and comparing this with critical values obtained by sub-sampling

using the first T observations. Specifically, T −m + 1 analogous test statistics are computed,

each using a rolling window of m observations, from t = 1, ...,m to t = T −m + 1, ..., T ; the

α-level critical value is then equal to the 1−α empirical quantile of these T −m+ 1 sub-sample

statistics. In this paper we consider a number of suitably designed tests within this Andrews-

type framework, where the intention is to distinguish between H0 : φ = 1 and H1 : φ > 1 by

comparing a statistic that detects explosivity based on t = T +1, ..., T +m, with a critical value

3



obtained from this same statistic applied to the T −m+ 1 prior sub-samples.

A natural candidate statistic to use in the Andrews-type approach is the Dickey-Fuller

t-ratio (DFm) associated with the OLS estimator of ρ in the regression

∆yt = µ∗ + ρyt−1 + εt, t = j + 1, ..., j +m

defined for the sub-samples j ∈ [1, ..., T − m] (for critical value calculation) and j = T (for

the test statistic), where a rejection of H0 in favour of H1 is signalled by an upper-tail rejec-

tion. Notice that lagged difference augmentation is not required because any dependence in

εt is common to all sub-samples. Under our assumptions, the Andrews-type approach applied

to DFm will result in a correctly sized test under H0 for large T . A potential problem for

this implementation of the Andrews-type approach is that the estimator of the autoregressive

parameter ρ is likely to be inaccurate for the small values we envisage using for m, which may

have a detrimental effect on power.

A simple alternative statistic to employ in the Andrews-type framework can be motivated

by considering the properties of the first differences of yt. Under H0, it is clear that ∆yt = εt

throughout the full sample period, while under H1, ∆yt = εt up to time t = T , at which point

the bubble regime commences and ∆yt = (φ− 1)ut−1 + εt. Defining the explosive offset δ > 0

as δ := φ− 1, we can write, for t = T + 1, ..., T +m,

ut = (1 + δ)t−TuT +

t−T−1∑
j=0

(1 + δ)jεt−j

∆yt = ∆ut

= δ(1 + δ)t−T−1uT +
t−T−1∑
j=0

(1 + δ)j∆εt−j . (3)

Notice that the stochastic behaviour of ∆yt is dominated by the first term on the right hand

side of (3), with, for finite m, δ(1 + δ)t−T−1uT = Op(T
1/2) and

∑t−T−1
j=0 (1 + δ)j∆εt−j = Op(1).

Next consider approximating (1 + δ)t−T−1 using a first order Taylor series expansion around

δ = 0. We find

(1 + δ)t−T−1 ≈ 1 + (t− T − 1)δ

giving the approximation

∆yt = δ(1− δ)uT + δ2uT (t− T ) + et (4)

where et contains the higher order terms in the Taylor series expansion and the Op(1) term

from (3).

Using the approximation in (4), an obvious candidate statistic for an Andrews-type instabil-

ity test would be the F -statistic for joint significance of the estimated coeffi cients in a regression

of ∆yt on uT and uT (t − T ), which is identical to calculating the F -statistic in a regression

of ∆yt on a constant and linear trend. However, such a statistic is inherently two-sided and
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does not take account of the fact that the form of explosive behaviour we are trying to detect

imposes positivity constraints on both the constant and linear trend terms in (4). A natural

one-sided possibility would be to focus on just the trend term, and simply test for an upward

trend in a regression of ∆yt on a constant and linear trend using a t-statistic. The drawback

of this approach is that it involves estimating the constant term in all of the rolling sub-sample

regressions from which the critical value is obtained (as well as the end-of-sample regression).

This constitutes an ineffi cient approach to testing because it does not make use of the fact that

the rolling sub-samples up to time T contain a zero intercept in population terms.

An alternative is instead to simply test for an upward trend in a regression of ∆yt on

a linear trend alone using a standard t-statistic. This is correctly specified for the rolling

sub-sample statistics (relevant for the critical value); the end-of-sample statistic is then based

on an under-specified model, but will retain power against H1 nonetheless, and unreported

simulations confirm that this restricted testing approach yields higher power than either the

F -statistic approach or the t-statistic approach that fits a constant. The restricted regression

t-statistic in question is a studentised version of the trend coeffi cient estimator∑j+m
t=j+1(t− j)∆yt∑j+m
t=j+1(t− j)2

defined for the sub-sample t = j+1, ..., j+m, with j ∈ [1, ..., T−m] (for critical value calculation)

and j = T (for the test statistic). In fact, given the nature of the Andrews-type methodology,

we can simply consider the numerator

Sm :=

j+m∑
t=j+1

(t− j)∆yt

because the denominator is numerically identical across j, and neither is a studentisation re-

quired under the assumption that εt is stationary and ergodic. Under our assumptions, the

Andrews-type approach applied to Sm will result in a correctly sized test under H0 for large T .

It is interesting to note the relation of Sm to the R statistic of Andrews and Kim (2006) for

testing an end-of-sample change from I(0) to I(1) behaviour. In the present context, ∆yt is I(0)

up to time T , and, given that an explosive autoregressive process retains explosive behaviour

when first differenced, it would be expected that a test for a change to I(1) behaviour in ∆yt

will also reject in the presence of a change to explosivity. The Andrews-Kim R statistic in this

context would be

Rm :=

j+m∑
t=j+1

(
j+m∑
s=t

∆ys

)2
.

Note that our statistic Sm can equivalently be expressed as

Sm =

j+m∑
t=j+1

j+m∑
s=t

∆ys (5)

so in a sense, Rm could be interpreted as a two-sided variant of Sm.
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An attractive feature of the Andrews-type approach is that the asymptotic (in T ) size of S

(and R) will be unaffected by the presence of a finite number of bubbles, each of finite length,

occurring earlier in the sample period. This arises because the ∆yt from these bubble regimes

affect only an asymptotically negligible number of the sub-sample statistics used for computing

the critical value.

In practice, the true value of the putative bubble regime length m is of course unknown.

In the remainder of the paper we use m′ to denote the sub-sample window width used when

construction the tests, denoting the procedures hereafter by Sm′ , Rm′ and DFm′ , retaining m

as the DGP parameter in (1)-(2).

3 Finite Sample Simulations

In this section we perform a set of Monte Carlo simulation exercises to examine the finite

sample (empirical) size and power properties of the end-of-sample Sm′ , Rm′ and DFm′ tests

proposed in the previous section. Because in practice the true value of m (the length of the

end-of-sample bubble period) will be unknown, we will consider the properties of the tests with

different window width settings, m′.

The performance of these tests is assessed in relation to a recursive Dickey-Fuller-based

approach following the work of PWY and PSY. Of the procedures proposed by PWY and PSY,

the most suitable for testing for the presence of a bubble that occurs at the end of the sample

period is an implementation of the BSADF test of PSY. Specifically, we consider the statistic

BSADF := sup
r∈[0,1−r0]

ADF 1r

where ADF 1r denotes the standard augmented Dickey-Fuller statistic based on fitting the fol-

lowing regression

∆yt = µ+ ρyt−1 +
k∑
i=1

γk∆yt−k + errort

over the sub-sample period t = brT ∗c + 1, ..., T ∗ (where b.c denotes the integer part of its
argument), with T ∗ the sample size (i.e. T ∗ := T + m). The BSADF statistic is therefore

a supremum of a sequence of backward recursive unit root statistics running to the end of

the sample period. The minimum sub-sample length is given by br0T ∗c, with r0 chosen to
ensure that the sub-samples exceed an appropriate minimum length; we follow PSY and set

r0 = 0.01 + 1.8/
√
T ∗. PSY recommend using a small fixed lag length in the Dickey-Fuller

regressions, so in the simulations that follow the BSADF test statistic is calculated with

k = 1. The limiting null distribution of the BSADF statistic is obtained from the result in

equation (5) of PSY, on fixing r2 = 1. We employ asymptotic critical values for this test, and

we obtained these by simulating the limiting null distribution.

All Monte Carlo simulations that follow were conducted in Gauss 9.0. The size simulations

were computed using 50,000 replications, while powers were evaluated with 5,000 replications,
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all tests being performed at the nominal 0.05-level. We generate data according to the DGP

(1)-(2), setting µ = 0 without loss of generality, and with an initial value u0 = 100, chosen such

that under the alternative hypothesis, the bubbles generated are generally upwardly explosive

(note that the tests are invariant to u0 under the null).

3.1 Empirical Size

To examine the size of the test procedures discussed in this paper, we set φ = 1, and let εt

be generated according to the moving average process εt = vt + θvt−1 with vt ∼ IIDN(0, 1)

for θ = {0,±0.3,±0.5}. Table 1 reports the empirical size of the test procedures for the total
sample sizes T ∗ := T + m = {100, 200}, where the Sm′ , Rm′ and DFm′ tests are implemented
using m′ = 5 and m′ = 10.

The overall picture from Table 1 is that all procedures control size fairly well, particularly

for the larger sample size, and with the exception of BSADF , the tests are largely unaffected

by the presence of serially correlated innovations. Concentrating on the IID case θ = 0, we

see that for the smaller sample size of T ∗ = 100 the newly proposed Sm′ , Rm′ and DFm′ tests

exhibit some modest oversize; the size of these tests is also increasing in the window width,

m′, used in their construction. The BSADF test also exhibits mild oversize in this scenario,

with maximum size similar to S5, R5 and somewhat lower than S10, R10. As we increase the

sample size the degree of oversize exhibited by the tests is generally decreasing. The reduction

in oversize for Sm′ , Rm′ and DFm′ is due to the fact that, as the sample size increases, we

are able to calculate more sub-sample test statistics, allowing more accurate calculations of the

critical values of the tests. For non-zero values of θ we see a distinction between the BSADF

test and our proposed Sm′ , Rm′ and DFm′ tests. While the latter three are little affected by

the value of θ for any sample size, the BSADF test can suffer from undersize for the negative

values of θ considered. The relative robustness of the Sm′ , Rm′ and DFm′ tests to moving

average components is explained by the fact that the same serial correlation properties present

in observations used by the end-of-sample statistic are also present in all of the sub-sample

statistics used for critical value computation, thereby rendering the size of the test relatively

unaffected.

Given that the undersize observed for BSADF could be attributable to the fact that k

in the Dickey-Fuller regressions is fixed at k = 1 rather than being data-dependent, we also

investigated the properties of BSADF where k is chosen according to the Bayes Information

Criterion (BIC). Table 1 also reports results for this variant, which we denote by BSADFB,

and where the maximum value of k is set to 6. We find that the undersize is indeed generally

removed, but at the expense of substantial oversize, particularly for T = 100 and also for θ > 0

for the larger sample sizes. As a result, we do not consider the BSADFB procedure further in

this paper.
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3.2 Empirical Power

We now examine the power of the tests to detect an end-of-sample bubble. To do so, we generate

εt ∼ IIDN(0, 1) innovations, and consider bubble lengths of m = {2, 5, 10} in sample sizes of
T ∗ = {100, 200}. Figure 1 reports power curves across φ ∈ [1, φmax] using a grid of 50 steps,

with φmax = 1.05 for m = 2, and φmax = 1.02 for m = 5 and 10, respectively (reflecting the

fact that, for a given value of φ, a bubble of longer duration is easier to detect).

For the shortest bubble length, m = 2, there is a fairly clear ranking of the tests in terms

of power, with the best overall performance given by the Sm′ tests, followed by the Rm′ tests,

with the results qualitatively similar across T ∗ = 100 and T ∗ = 200. The DFm′ tests exhibit

substantially lower power, and the BSADF test has the poorest power performance of all. It

is clear, then, that the Sm′ and Rm′ tests are well suited to detect end-of-sample bubbles of

very short duration, unlike the DFm′ and BSADF tests. It is also interesting to note that the

choice of the end of sample window width, m′, used in the Sm′ and Rm′ tests has an impact

on their respective power levels, with the shorter window settings (i.e. S5 and R5) delivering

relatively higher power for this short duration end-of-sample bubble than the longer window

widths (i.e. S10 and R10). This ranking is reversed for the DFm′ tests, where DF5 has lower

power than DF10.

Moving to the case of m = 5, we observe a broadly similar power ranking among the tests.

In particular, the Sm′ tests continue to display the best overall power profiles, with both window

width variants S5 and S10 now emerging as unambiguously the most powerful procedures. The

power of the Rm′ tests again lie between the power curves for the Sm′ and BSADF tests, but

interestingly, the power of the DFm′ tests is now very sensitive to the choice of m′, with DF5

displaying very low power levels, below that of BSADF .

For the case of m = 10, all the DFm′ tests have poor power performance, while BSADF

now has a more competitive power profile for this bubble of longer duration. The power of the

S5 and R5 tests is lower for this case where the bubble duration is considerably longer than the

window width used in the tests; this arises because bubble observations are now being included

in the sample period from which the critical values are derived. However, the S10 test retains

its position as the best performing test.

From a real-time monitoring perspective, it is interesting to investigate how quickly a bubble

is likely to be detected by the different procedures. One way of measuring this speed of detection

is to examine the powers of the tests when the sample contains just a single bubble observation

at the end, then when the last two observations correspond to the bubble regime, then the last

three, and so on. Other things being equal, a good test for real-time monitoring purposes will

be one that has high power for a low number of bubble observations, so that in practice the null

would be expected to be rejected in favour of a bubble relatively early into the bubble regime.

We now consider such power comparisons, restricting our attention to the best-performing

procedure Sm′ and the comparator test BSADF , by simulating processes with T ∗ = 200 and
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a single end-of-sample bubble of length m = 20. We initially apply the tests to the simulated

series using only the observations t = 1, ..., 160, thereby evaluating the rejection frequencies

of the tests as if we were at the point in time 160. We then repeat the simulation exercise

using the observations t = 1, ..., 161, again calculating the rejection frequencies of the tests

(now associated with time period 161), and continue in this manner until we are simulating

the rejection frequencies based on the full sample t = 1, ..., 200. Of course, for the simulation

experiments up to and including time period 180, no bubble is present in the data so we expect

to see rejection frequencies close to the nominal size for these cases. After this point, a bubble

is present of increasing duration, and we can evaluate the powers of the tests to detect it, giving

an indication of the relative performance of the procedures to provide an early warning of a

bubble in an evolving real-time situation.

Denoting the end-date of the sample to which the tests are applied by E, Figure 2 reports

the rejection frequencies of the Sm′ and BSADF tests for E = {160, 161, ..., 200} for φ = 1.01

and φ = 1.02.1 We observe that the rejection frequencies for all the tests are approximately

equal to their nominal size up to E = 180, after which time the bubble enters the samples and

the rejection frequencies begin to rise. It can be seen that the powers reinforce the results from

our earlier power simulations, with the Sm′ test most likely to reject early into the bubble than

BSADF . As we move further into the bubble, the rejection frequency of some of the Sm′ tests

begins to plateau or decrease; this feature arises because when E > 180+m′, the critical values

start to increase due to contamination by bubble observations. The BSADF test is not subject

to these power decreases due to its construction, and power continues to rise with increasing

numbers of bubble observations. However, the results demonstrate that it is the Sm′ procedure

that is particularly well-suited to early detection of an end-of-sample bubble.2

4 Accounting for Heteroskedasticity

The tests considered thus far implicitly assume that the unconditional variance of the innovation

process {εt} is constant throughout the sample period. However, when dealing with financial
time series, it is important to recognise that the underlying innovations may be susceptible to

1Note that the BSADF results depend on φ but do not of course change across the settings for m′; the results

are simply repeated for ease of comparison. Figure 2 also reports results for tests that will be introduced and

discussed later in the paper.
2 In a companion discussion paper version of this paper (Astill et al., 2016), we also considered DGPs where

a bubble abruptly collapses after a number of periods, and also examined the impact of a previously collapsed

bubble on the power of the tests to detect an end-of-sample bubble. Overall, we find similar power patterns to

those in Figure 2, apart from when a previously collapsed bubble is relatively close to the end-of-sample bubble.

In this latter case, the Sm′ tests recover their properties from the collapse of the first bubble much more rapidly

than the BSADF test, which has relatively poor power to detect the second bubble. Of course, a prior bubble

of long duration can adversely affect the powers of the Sm′ tests, since a large proportion of sub-sample statistics

used for computing the critical values are affected by the earlier bubble, hence caution should be exercised if a

long bubble is present in the sample period used to obtain critical values.
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variance changes. To this end, we now consider variants of the better-performing Sm′ tests

that account for unconditional heteroskedasticity (note that conditional heteroskedasticity is

already permitted under the conditions on εt; see Andrews, 2003).

A first step in this direction would be to consider a simple studentised version of Sm′ , taking

the form

S∗m′ :=
Sm′√∑j+m′

t=j+1 (∆yt)
2
. (6)

Such a modification imbues the S∗m′ tests with robustness to a finite number of volatility shifts

that occur over the period t = 1, ..., T ∗ − m′. This arises because, for all sub-samples which
do not contain a variance break, the statistics are correctly studentised, while only a finite

number of sub-sample statistics will have a studentisation that is contaminated by the variance

change. Given that only an asymptotically negligible number of the sub-sample statistics used

for computing the critical value are affected, S∗m′ will be asymptotically correctly size. While

S∗m′ would not deliver size control if a volatility shift occurred in the final m
′ observations of

the series, in some circumstances it may be deemed that the greater concern is robustness to

volatility shifts that arise over the much longer sample period used to obtain the critical values.

A further modification that would produce a test robust to unconditional heteroskedasticity

of more general form across the full sample period (including the final m′ observations) is to

adopt a White-type correction in the studentisation, i.e.:

S∗wm′ :=
Sm′√∑j+m′

t=j+1{(t− j)∆yt}2
. (7)

In what follows we assess the relative size and power performance of S∗m′ and S
∗w
m′ , under both

homoskedastic and heteroskedastic DGPs, and also consider their properties in relation to the

unmodified Sm′ tests.

In a recent paper, HLST developed wild bootstrap variants of the PWY test that deliver

asymptotic robustness to non-stationary volatility. In the current setting, it is natural to

consider a similar wild bootstrap approach applied to the BSADF statistic outlined above,

which will also serve as a useful comparator for the S∗m′ and S
∗w
m′ tests. HLST propose two

bootstrap algorithms, one based on the wild bootstrap applied to the first differences of the

series, the other based on the wild bootstrap applied to residuals from a fitted model, which

makes use of the BIC-based approach of Harvey, Leybourne and Sollis (2016). We also consider

the equivalent two wild bootstrap methods here, although in the latter case, because we are

purely interested in modelling a putative bubble that occurs at the end of the sample, we restrict

attention to Model 1 of that paper in the model fitting stage, thereby fitting a unit root to

bubble model with the change-point date identified by minimising the sum of squares residuals.3

Asymptotic results similar to those of HLST would apply to such bootstrap tests, ensuring the
3The HLST dating methodology only identifies valid bubble dates where the end of bubble date (denoted yT∗

here) exceeds the start of bubble date (denoted yT here). In cases where this is not satisfied for any T , we revert

to using ∆yt for the model-based residuals.
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asymptotic validity of these procedures under heteroskedasticity of the form considered here.

In the sequel, we denote the first difference-based wild bootstrap approach by BSADF 1b , and

the model-based variant by BSADF 2b .

We now evaluate the finite sample size and power of the heteroskedasticity-adjusted tests

using a similar set of Monte Carlo simulations to those of the previous section. Table 2 reports

the sizes of S∗m′ , S
∗w
m′ , BSADF

1
b and BSADF 2b , along with the original Sm′ and BSADF

tests for comparison. Here, we introduce a single shift in the variance of the innovations,

with εt ∼ IIDN(0, 1) for t = 1, ..., Tσ and εt ∼ IIDN(0, σ2) for t = Tσ + 1, ..., T ∗, for σ2 =

{1/10, 1/5, 1, 5, 10}. We consider two cases: (i) Tσ = T/2, allowing for a mid sample shift,

and (ii) Tσ = T ∗ − 5, where the shift occurs five observations from the end of the sample,

commensurate with our focus on changes occurring late in the sample period. First, in the

homoskedastic case (σ2 = 1), we find that the S∗5 , S
∗w
5 and S∗10, S

∗w
10 tests display very similar

sizes to their uncorrected counterparts S5 and S10, respectively. Similarly, the size of BSADF 2b
is similar to that of BSADF , with the size of BSADF 1b a little lower.

When the innovation variance changes, the impact on the tests is dependent on both the

timing and the direction of the change. The unadjusted tests S5, S10 and BSADF lack robust-

ness to σ2, and, relative to the homoskedastic case, size decreases when there is a downward

variance shift, and size increases when the shift is upwards. The extent of the size distortions

is relatively modest in the case of a mid sample variance change, but is more exaggerated when

the change occurs late. Indeed, quite large oversize is seen in all these tests when a late upward

change arises. For the S∗5 and S
∗
10, as would be expected, size robustness is seen when the

volatility change occurs mid sample, although when the volatility change is only present in the

last five observations, the S∗m′ approach does not generally deliver robustness. This is seen in the

size distortions manifest in the S∗10 test, with undersize associated with an increase in variance,

and oversize with a decrease in variance. Note that here, S∗5 is numerically invariant to σ
2 as

the window width coincides with the number of observations in the final variance regime for this

particular case. The S∗wm′ tests achieve good size control across σ
2 when T ∗ = 200, demonstrat-

ing the robustness of this approach to heteroskedasticity. When T ∗ = 100, some upward size

distortions are present, but these are modest in nature compared to the unadjusted tests. The

asymptotically heteroskedasticity-robust BSADF 1b and BSADF
2
b tests improve finite sample

size relative to BSADF , although the BSADF 2b variant can still have size in excess of 0.10 for

late upward volatility shifts, even when T ∗ = 200.

Figure 3 reports finite sample power results for S∗m′ , S
∗w
m′ , BSADF

1
b and BSADF

2
b for the

same homoskedastic DGPs as were considered in Figure 1. The original Sm′ and BSADF power

curves are also super-imposed for comparison purposes. Consider first m = 2 where the bubble

begins very close to the sample end. It is evident that the heteroskedasticity corrections applied

to S∗m′ and S
∗w
m′ have a cost in terms of power, with the power ranking being, for a given m

′,

Sm′ followed by S∗m′ and then S
∗w
m′ . As with the Sm′ tests, S

∗
5 outperforms S

∗
10 here, although

interestingly, S∗w10 displays greater power than S
∗w
5 . The BSADF

2
b test displays similar levels
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of power to BSADF , as might be expected given the results of HLST who show that this wild

bootstrap approach involves no loss in (size-adjusted) power. It is noticeable that BSADF 1b
does not achieve the same power as BSADF , in contrast to HLST’s findings for this test when

applied to bubbles of longer duration. On comparing the S∗wm′ and BSADF
2
b tests, S

∗w
m′ offers

higher power for the smaller values of φ, while the ranking is reversed for larger φ, suggesting

a possible role for BSADF 2b in the early detection of large bubbles. Turning to m = 5, we see

that S∗m′ and S
∗w
m′ have levels of power closer to each other, and also closer to the uncorrected

Sm′ tests. Here, the S∗m′ and S
∗w
m′ tests have superior power to BSADF

2
b (and BSADF

1
b ) across

φ for both values of m′. For m = 10, the S∗w10 becomes the best performing of all the corrected

tests, dominating S∗10 and BSADF
2
b , as well as S

∗
5 and S

∗w
5 . On the basis of these results, our

recommendation would be for the S10 test in the absence of heteroskedasticity concerns, and

the S∗w10 variant if full robustness to heteroskedasticity is desired.

The rejection frequency simulations across sample end-dates reported in Figure 2 also con-

tain results for the S∗m′ , S
∗w
m′ , BSADF

1
b and BSADF

2
b tests. In line with the results of Figure

3, we observe that the S∗m′ and S
∗w
m′ follow the same broad rejection patterns as Sm′ , but with

reduced power levels. It can be seen that across all the figures, S∗m′ is more likely to reject early

into the bubble regime compared with S∗wm′ , but then the S
∗
m′ tests achieve a greater rejection

frequency when further into the bubble. The BSADF 2b test displays a similar rejection pattern

to BSADF (again in line with Figure 3), with the BSADF 1b powers somewhat lower. As was

the case with BSADF , BSADF 1b and BSADF
2
b have power that always rises with increasing

numbers of bubble observations, while the S∗m′ and S
∗w
m′ powers eventually plateau and decrease.

As before, however, the Andrews-based approaches deliver greater early rejection frequencies

than the BSADF approach and its bootstrap variants.

Finally, in Figure 4 we consider powers when heteroskedasticity is present in the innovations.

We restrict attention to T ∗ = 200 and m = 5, and simulate the powers of the S∗m′ , S
∗w
m′ ,

BSADF 1b and BSADF
2
b tests for four cases, covering both a mid sample increase and decrease

in volatility (σ2 = 1/5 and σ2 = 5), and volatility shifts of the same magnitude that occur in

the last five observations. Consider first the results for the mid sample volatility shifts. Here,

all tests are asymptotically robust to the heteroskedasticity, as is reflected in the φ = 1 power

curve intercepts. Compared to the corresponding DGP without any variance shift (i.e. Figure

3(d)), the powers of the tests are increased for σ2 = 1/5 and decreased for σ2 = 5. However, the

relative rankings of the procedures are broadly unaffected by the presence of heteroskedasticity,

with the most noticeable feature being the dominance of S∗m′ and S∗wm′ over BSADF
1
b and

BSADF 2b . When the variance change applies only to the last five observations, S
∗
10 is no longer

robust, and is subject to undersize when σ2 = 1/5 and oversize when σ2 = 5. For the volatility

decrease, the S∗wm′ tests substantially outperform BSADF 1b and BSADF
2
b , while the ranking

is less clear with respect to BSADF 2b when the volatility increases, partly because BSADF
2
b

displays some finite sample oversize in this case. Overall, our recommendation remains for the

S∗w10 test in the presence of possible heteroskedasticity.
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5 An Empirical Application

We now examine the ability of our test procedures to detect bubbles in an empirical data series.

PSY apply their real-time dating strategy (based on sequential application of a sequence of

backward recursive right-tailed DF statistics) to the S&P500 price-dividend ratio, using monthly

data over the period 1871M01-2010M12. They identify five primary bubble episodes: the post

long-depression period (1879M10-1880M04), the Great Crash episode (1928M11-1929M10), the

postwar boom (1955M01-1956M04), Black Monday in October 1987 (1986M06-1987M09) and

the dot-com bubble (1995M11-2001M08). Focusing on these episodes, we apply the Sm′ , S∗m′

and S∗wm′ tests in a pseudo-real-time manner to the same dataset, beginning the testing with

the first 100 observations (1871M01-1879M4), to examine whether these new procedures could

have detected the onset of these bubble episodes sooner than using PSY’s approach. Table 3

reports, for each bubble episode, the first date for which each test rejects in favour of explosive

behaviour (the first of the PSY bubble regime dates is also listed for comparison in each case).

For the post long-depression, there is little to choose between the Sm′ and S∗m′ tests, with all

of these tests first rejecting in either 1879M10 or 1879M11, broadly in line with the PSY date

of 1879M10. The S∗wm′ tests do not detect this episode, possibly due to the reduced power of

this test when allowing for heteroskedasticity in the final m′ observations. For the Great Crash

episode, the Sm′ tests reject in exactly the same period identified by PSY. The S∗m′ and S
∗w
m′

tests reject well before this, generally in late 1925 (S∗10 first rejects in 1927M08, and S
∗w
5 also

rejects at this point in time as well as in 1925M10), potentially indicating an early detection

of explosive behaviour in the run-up to the Great Crash episode. In the case of the postwar

boom, the S∗m′ and S
∗w
m′ tests reject several months before the initial bubble date identified

by PSY. The first rejection is in 1954M02 for S∗5 and S
∗w
5 , while rejections are first found in

1954M05 and 1954M06 for S∗10 and S
∗w
10 , respectively; these are to be compared with the date

of 1955M01 for PSY, demonstrating clear evidence of earlier detection of this bubble episode

(in contrast, however, the Sm′ tests only show a rejection six months after the date identified

by PSY). Turning to the Black Monday period, S5 and S10 reject three to four months sooner

than PSY, S∗10 rejects two months earlier, and S
∗w
10 rejects at the same time as PSY. The S

∗
5

and S∗w5 tests fail to reject for this episode, reinforcing our overall preference for the m′ = 10

tests. Finally, for all of our proposed tests, the first rejections seen for the dot-com bubble are

well ahead of the date identified by PSY, with S5, S∗5 and S
∗w
5 rejecting six months before the

PSY date of 1995M11, and S10, S∗10 and S
∗w
10 rejecting four to five months ahead of PSY’s dates.

In addition to the exuberance periods focused on above, the Sm′ , S∗m′ and S
∗w
m′ tests also

reject for a number of other sequential dates across the sample period, suggesting that there

may well have been additional periods of explosive autoregressive behaviour in this series that

the newly proposed tests detect. For example, our proposed tests find evidence of explosive

behaviour in both the years leading up to and during the Second World War, and also find

evidence of a period of explosivity following the end of the First World War. In summary then,
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the Sm′ , S∗m′ and S
∗w
m′ tests would in many cases have detected well-documented periods of

exuberance before the PSY approach, and also find evidence of some periods of explosive be-

haviour not identified by PSY. This suggests a worthwhile role for the new tests, in complement

to existing procedures such as, in particular, that of PSY.

6 Conclusions

In this paper we have proposed test procedures for the detection of an end-of-sample asset

price bubble of finite length. These involve calculating the test statistic of interest on a small

number of end-of-sample observations, with a critical value obtained by sub-sampling using the

same statistic calculated on the remaining observations. Simulation evidence highlights the size

robustness properties of our tests in finite samples, and also their potential power advantages

when compared to existing approaches, particularly in terms of the possibility for early detection

of an ongoing end-of-sample bubble. A (pseudo) real-time monitoring exercise using the S&P500

price dividend ratio was performed, and it was found that our testing approach detected a

number of past bubble episodes a number of months in advance of the dates suggested by PSY.

As such we believe the Sm′ , S∗m′ and S
∗w
m′ tests developed in this paper are a valuable addition

to the suite of recently developed bubble detection procedures when the focus is on early bubble

detection in a real-time setting.
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Table 1. Finite sample size - serial correlation

T ∗ = 100

θ S5 S10 R5 R10 DF5 DF10 BSADF BSADFB

−0.5 0.064 0.075 0.064 0.072 0.060 0.071 0.011 0.106
−0.3 0.067 0.081 0.066 0.076 0.060 0.070 0.040 0.127

0.0 0.069 0.086 0.067 0.081 0.061 0.068 0.073 0.148
0.3 0.071 0.088 0.069 0.083 0.061 0.067 0.066 0.193
0.5 0.072 0.088 0.069 0.083 0.060 0.067 0.055 0.208

T ∗ = 200

θ S5 S10 R5 R10 DF5 DF10 BSADF BSADFB

−0.5 0.057 0.062 0.056 0.061 0.057 0.059 0.007 0.055
−0.3 0.058 0.064 0.058 0.062 0.055 0.059 0.035 0.068

0.0 0.059 0.066 0.059 0.064 0.057 0.058 0.065 0.082
0.3 0.059 0.066 0.059 0.064 0.057 0.058 0.056 0.121
0.5 0.059 0.067 0.059 0.064 0.056 0.058 0.044 0.129
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Table 3. Identified exuberance period start dates

Exuberance period PSY S5 S10 S∗5 S∗10 S∗w5 S∗w10

Post long-depression 1879M10 1879M10 1879M10 1879M10 1879M11 - -
Great Crash 1928M11 1928M11 1928M11 1925M10 1927M08 1925M09 1925M12
Postwar boom 1955M01 1955M07 1955M07 1954M02 1954M05 1954M02 1954M06
Black Monday 1986M06 1986M02 1986M03 - 1986M04 - 1986M06
Dot-com bubble 1995M11 1995M05 1995M06 1995M05 1995M06 1995M05 1995M07

Notes: The column headed PSY records the start dates of the exuberance periods identified by Phillips,
Shi and Yu (2015). The remaining columns record the first date for which a particular test rejects in favour
of a bubble. For a given window width m′ = {5, 10}, Sm′ denotes our proposed Andrews-type statistic
given in equation (5), S∗m′ denotes the studentized version given in (6) which robustifies the procedure to
volatility shifts that occur prior to the testing window, and S∗wm′ denotes the White-type corrected variant
given in (7) which delivers robustness to heteroskedasticity across the full sample period.
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(a) T ∗ = 100, m = 2 (b) T ∗ = 200, m = 2

(c) T ∗ = 100, m = 5 (d) T ∗ = 200, m = 5

(e) T ∗ = 100, m = 10 (f) T ∗ = 200, m = 10

Figure 1. Finite sample power of nominal 0.05-level tests: i.i.d. innovations:
S5: – –, S10: , R5: – –, R10: , DF5: – –, DF10: , BSADF :
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(a) φ = 1.01, m′ = 5 (b) φ = 1.02, m′ = 5

(c) φ = 1.01, m′ = 10 (d) φ = 1.02, m′ = 10

Figure 2. Rejection frequencies of nominal 0.05-level tests: single end-of-sample bubble:
Sm′ : , S∗m′ : , S∗wm′ : , BSADF : , BSADF 1

b : – –, BSADF 2
b : - - -
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(a) T ∗ = 100, m = 2 (b) T ∗ = 200, m = 2

(c) T ∗ = 100, m = 5 (d) T ∗ = 200, m = 5

(e) T ∗ = 100, m = 10 (f) T ∗ = 200, m = 10

Figure 3. Finite sample power of nominal 0.05-level tests: i.i.d. innovations:
S5: – –, S10: , S∗5 : – –, S∗10: , S∗w5 : – –, S∗w10 : , BSADF : , BSADF 1

b : – –, BSADF 2
b : - - -
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(a) Mid sample, σ2 = 1/5 (b) Mid sample, σ2 = 5

(c) Last 5 observations, σ2 = 1/5 (d) Last 5 observations, σ2 = 5

Figure 4. Finite sample power of nominal 0.05-level tests: shift in volatility, T = 200, m = 5:
S∗5 : – –, S∗10: , S∗w5 : – –, S∗w10 : , BSADF 1

b : – –, BSADF 2
b : - - -
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